xref: /openbmc/qemu/hw/timer/arm_mptimer.c (revision da34e65c)
1 /*
2  * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Copyright (c) 2011 Linaro Limited
6  * Written by Paul Brook, Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "hw/timer/arm_mptimer.h"
24 #include "qapi/error.h"
25 #include "qemu/timer.h"
26 #include "qom/cpu.h"
27 
28 /* This device implements the per-cpu private timer and watchdog block
29  * which is used in both the ARM11MPCore and Cortex-A9MP.
30  */
31 
32 static inline int get_current_cpu(ARMMPTimerState *s)
33 {
34     if (current_cpu->cpu_index >= s->num_cpu) {
35         hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
36                  s->num_cpu, current_cpu->cpu_index);
37     }
38     return current_cpu->cpu_index;
39 }
40 
41 static inline void timerblock_update_irq(TimerBlock *tb)
42 {
43     qemu_set_irq(tb->irq, tb->status && (tb->control & 4));
44 }
45 
46 /* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
47 static inline uint32_t timerblock_scale(TimerBlock *tb)
48 {
49     return (((tb->control >> 8) & 0xff) + 1) * 10;
50 }
51 
52 static void timerblock_reload(TimerBlock *tb, int restart)
53 {
54     if (tb->count == 0) {
55         return;
56     }
57     if (restart) {
58         tb->tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
59     }
60     tb->tick += (int64_t)tb->count * timerblock_scale(tb);
61     timer_mod(tb->timer, tb->tick);
62 }
63 
64 static void timerblock_tick(void *opaque)
65 {
66     TimerBlock *tb = (TimerBlock *)opaque;
67     tb->status = 1;
68     if (tb->control & 2) {
69         tb->count = tb->load;
70         timerblock_reload(tb, 0);
71     } else {
72         tb->count = 0;
73     }
74     timerblock_update_irq(tb);
75 }
76 
77 static uint64_t timerblock_read(void *opaque, hwaddr addr,
78                                 unsigned size)
79 {
80     TimerBlock *tb = (TimerBlock *)opaque;
81     int64_t val;
82     switch (addr) {
83     case 0: /* Load */
84         return tb->load;
85     case 4: /* Counter.  */
86         if (((tb->control & 1) == 0) || (tb->count == 0)) {
87             return 0;
88         }
89         /* Slow and ugly, but hopefully won't happen too often.  */
90         val = tb->tick - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
91         val /= timerblock_scale(tb);
92         if (val < 0) {
93             val = 0;
94         }
95         return val;
96     case 8: /* Control.  */
97         return tb->control;
98     case 12: /* Interrupt status.  */
99         return tb->status;
100     default:
101         return 0;
102     }
103 }
104 
105 static void timerblock_write(void *opaque, hwaddr addr,
106                              uint64_t value, unsigned size)
107 {
108     TimerBlock *tb = (TimerBlock *)opaque;
109     int64_t old;
110     switch (addr) {
111     case 0: /* Load */
112         tb->load = value;
113         /* Fall through.  */
114     case 4: /* Counter.  */
115         if ((tb->control & 1) && tb->count) {
116             /* Cancel the previous timer.  */
117             timer_del(tb->timer);
118         }
119         tb->count = value;
120         if (tb->control & 1) {
121             timerblock_reload(tb, 1);
122         }
123         break;
124     case 8: /* Control.  */
125         old = tb->control;
126         tb->control = value;
127         if (value & 1) {
128             if ((old & 1) && (tb->count != 0)) {
129                 /* Do nothing if timer is ticking right now.  */
130                 break;
131             }
132             if (tb->control & 2) {
133                 tb->count = tb->load;
134             }
135             timerblock_reload(tb, 1);
136         } else if (old & 1) {
137             /* Shutdown the timer.  */
138             timer_del(tb->timer);
139         }
140         break;
141     case 12: /* Interrupt status.  */
142         tb->status &= ~value;
143         timerblock_update_irq(tb);
144         break;
145     }
146 }
147 
148 /* Wrapper functions to implement the "read timer/watchdog for
149  * the current CPU" memory regions.
150  */
151 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
152                                    unsigned size)
153 {
154     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
155     int id = get_current_cpu(s);
156     return timerblock_read(&s->timerblock[id], addr, size);
157 }
158 
159 static void arm_thistimer_write(void *opaque, hwaddr addr,
160                                 uint64_t value, unsigned size)
161 {
162     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
163     int id = get_current_cpu(s);
164     timerblock_write(&s->timerblock[id], addr, value, size);
165 }
166 
167 static const MemoryRegionOps arm_thistimer_ops = {
168     .read = arm_thistimer_read,
169     .write = arm_thistimer_write,
170     .valid = {
171         .min_access_size = 4,
172         .max_access_size = 4,
173     },
174     .endianness = DEVICE_NATIVE_ENDIAN,
175 };
176 
177 static const MemoryRegionOps timerblock_ops = {
178     .read = timerblock_read,
179     .write = timerblock_write,
180     .valid = {
181         .min_access_size = 4,
182         .max_access_size = 4,
183     },
184     .endianness = DEVICE_NATIVE_ENDIAN,
185 };
186 
187 static void timerblock_reset(TimerBlock *tb)
188 {
189     tb->count = 0;
190     tb->load = 0;
191     tb->control = 0;
192     tb->status = 0;
193     tb->tick = 0;
194     if (tb->timer) {
195         timer_del(tb->timer);
196     }
197 }
198 
199 static void arm_mptimer_reset(DeviceState *dev)
200 {
201     ARMMPTimerState *s = ARM_MPTIMER(dev);
202     int i;
203 
204     for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
205         timerblock_reset(&s->timerblock[i]);
206     }
207 }
208 
209 static void arm_mptimer_init(Object *obj)
210 {
211     ARMMPTimerState *s = ARM_MPTIMER(obj);
212 
213     memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s,
214                           "arm_mptimer_timer", 0x20);
215     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
216 }
217 
218 static void arm_mptimer_realize(DeviceState *dev, Error **errp)
219 {
220     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
221     ARMMPTimerState *s = ARM_MPTIMER(dev);
222     int i;
223 
224     if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) {
225         error_setg(errp, "num-cpu must be between 1 and %d",
226                    ARM_MPTIMER_MAX_CPUS);
227         return;
228     }
229     /* We implement one timer block per CPU, and expose multiple MMIO regions:
230      *  * region 0 is "timer for this core"
231      *  * region 1 is "timer for core 0"
232      *  * region 2 is "timer for core 1"
233      * and so on.
234      * The outgoing interrupt lines are
235      *  * timer for core 0
236      *  * timer for core 1
237      * and so on.
238      */
239     for (i = 0; i < s->num_cpu; i++) {
240         TimerBlock *tb = &s->timerblock[i];
241         tb->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, timerblock_tick, tb);
242         sysbus_init_irq(sbd, &tb->irq);
243         memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb,
244                               "arm_mptimer_timerblock", 0x20);
245         sysbus_init_mmio(sbd, &tb->iomem);
246     }
247 }
248 
249 static const VMStateDescription vmstate_timerblock = {
250     .name = "arm_mptimer_timerblock",
251     .version_id = 2,
252     .minimum_version_id = 2,
253     .fields = (VMStateField[]) {
254         VMSTATE_UINT32(count, TimerBlock),
255         VMSTATE_UINT32(load, TimerBlock),
256         VMSTATE_UINT32(control, TimerBlock),
257         VMSTATE_UINT32(status, TimerBlock),
258         VMSTATE_INT64(tick, TimerBlock),
259         VMSTATE_TIMER_PTR(timer, TimerBlock),
260         VMSTATE_END_OF_LIST()
261     }
262 };
263 
264 static const VMStateDescription vmstate_arm_mptimer = {
265     .name = "arm_mptimer",
266     .version_id = 2,
267     .minimum_version_id = 2,
268     .fields = (VMStateField[]) {
269         VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
270                                      2, vmstate_timerblock, TimerBlock),
271         VMSTATE_END_OF_LIST()
272     }
273 };
274 
275 static Property arm_mptimer_properties[] = {
276     DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
277     DEFINE_PROP_END_OF_LIST()
278 };
279 
280 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
281 {
282     DeviceClass *dc = DEVICE_CLASS(klass);
283 
284     dc->realize = arm_mptimer_realize;
285     dc->vmsd = &vmstate_arm_mptimer;
286     dc->reset = arm_mptimer_reset;
287     dc->props = arm_mptimer_properties;
288 }
289 
290 static const TypeInfo arm_mptimer_info = {
291     .name          = TYPE_ARM_MPTIMER,
292     .parent        = TYPE_SYS_BUS_DEVICE,
293     .instance_size = sizeof(ARMMPTimerState),
294     .instance_init = arm_mptimer_init,
295     .class_init    = arm_mptimer_class_init,
296 };
297 
298 static void arm_mptimer_register_types(void)
299 {
300     type_register_static(&arm_mptimer_info);
301 }
302 
303 type_init(arm_mptimer_register_types)
304