1 /* 2 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Copyright (c) 2011 Linaro Limited 6 * Written by Paul Brook, Peter Maydell 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "hw/irq.h" 24 #include "hw/ptimer.h" 25 #include "hw/timer/arm_mptimer.h" 26 #include "migration/vmstate.h" 27 #include "qapi/error.h" 28 #include "qemu/main-loop.h" 29 #include "qemu/module.h" 30 #include "qom/cpu.h" 31 32 #define PTIMER_POLICY \ 33 (PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD | \ 34 PTIMER_POLICY_CONTINUOUS_TRIGGER | \ 35 PTIMER_POLICY_NO_IMMEDIATE_TRIGGER | \ 36 PTIMER_POLICY_NO_IMMEDIATE_RELOAD | \ 37 PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) 38 39 /* This device implements the per-cpu private timer and watchdog block 40 * which is used in both the ARM11MPCore and Cortex-A9MP. 41 */ 42 43 static inline int get_current_cpu(ARMMPTimerState *s) 44 { 45 int cpu_id = current_cpu ? current_cpu->cpu_index : 0; 46 47 if (cpu_id >= s->num_cpu) { 48 hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n", 49 s->num_cpu, cpu_id); 50 } 51 52 return cpu_id; 53 } 54 55 static inline void timerblock_update_irq(TimerBlock *tb) 56 { 57 qemu_set_irq(tb->irq, tb->status && (tb->control & 4)); 58 } 59 60 /* Return conversion factor from mpcore timer ticks to qemu timer ticks. */ 61 static inline uint32_t timerblock_scale(uint32_t control) 62 { 63 return (((control >> 8) & 0xff) + 1) * 10; 64 } 65 66 static inline void timerblock_set_count(struct ptimer_state *timer, 67 uint32_t control, uint64_t *count) 68 { 69 /* PTimer would trigger interrupt for periodic timer when counter set 70 * to 0, MPtimer under certain condition only. 71 */ 72 if ((control & 3) == 3 && (control & 0xff00) == 0 && *count == 0) { 73 *count = ptimer_get_limit(timer); 74 } 75 ptimer_set_count(timer, *count); 76 } 77 78 static inline void timerblock_run(struct ptimer_state *timer, 79 uint32_t control, uint32_t load) 80 { 81 if ((control & 1) && ((control & 0xff00) || load != 0)) { 82 ptimer_run(timer, !(control & 2)); 83 } 84 } 85 86 static void timerblock_tick(void *opaque) 87 { 88 TimerBlock *tb = (TimerBlock *)opaque; 89 /* Periodic timer with load = 0 and prescaler != 0 would re-trigger 90 * IRQ after one period, otherwise it either stops or wraps around. 91 */ 92 if ((tb->control & 2) && (tb->control & 0xff00) == 0 && 93 ptimer_get_limit(tb->timer) == 0) { 94 ptimer_stop(tb->timer); 95 } 96 tb->status = 1; 97 timerblock_update_irq(tb); 98 } 99 100 static uint64_t timerblock_read(void *opaque, hwaddr addr, 101 unsigned size) 102 { 103 TimerBlock *tb = (TimerBlock *)opaque; 104 switch (addr) { 105 case 0: /* Load */ 106 return ptimer_get_limit(tb->timer); 107 case 4: /* Counter. */ 108 return ptimer_get_count(tb->timer); 109 case 8: /* Control. */ 110 return tb->control; 111 case 12: /* Interrupt status. */ 112 return tb->status; 113 default: 114 return 0; 115 } 116 } 117 118 static void timerblock_write(void *opaque, hwaddr addr, 119 uint64_t value, unsigned size) 120 { 121 TimerBlock *tb = (TimerBlock *)opaque; 122 uint32_t control = tb->control; 123 switch (addr) { 124 case 0: /* Load */ 125 /* Setting load to 0 stops the timer without doing the tick if 126 * prescaler = 0. 127 */ 128 if ((control & 1) && (control & 0xff00) == 0 && value == 0) { 129 ptimer_stop(tb->timer); 130 } 131 ptimer_set_limit(tb->timer, value, 1); 132 timerblock_run(tb->timer, control, value); 133 break; 134 case 4: /* Counter. */ 135 /* Setting counter to 0 stops the one-shot timer, or periodic with 136 * load = 0, without doing the tick if prescaler = 0. 137 */ 138 if ((control & 1) && (control & 0xff00) == 0 && value == 0 && 139 (!(control & 2) || ptimer_get_limit(tb->timer) == 0)) { 140 ptimer_stop(tb->timer); 141 } 142 timerblock_set_count(tb->timer, control, &value); 143 timerblock_run(tb->timer, control, value); 144 break; 145 case 8: /* Control. */ 146 if ((control & 3) != (value & 3)) { 147 ptimer_stop(tb->timer); 148 } 149 if ((control & 0xff00) != (value & 0xff00)) { 150 ptimer_set_period(tb->timer, timerblock_scale(value)); 151 } 152 if (value & 1) { 153 uint64_t count = ptimer_get_count(tb->timer); 154 /* Re-load periodic timer counter if needed. */ 155 if ((value & 2) && count == 0) { 156 timerblock_set_count(tb->timer, value, &count); 157 } 158 timerblock_run(tb->timer, value, count); 159 } 160 tb->control = value; 161 break; 162 case 12: /* Interrupt status. */ 163 tb->status &= ~value; 164 timerblock_update_irq(tb); 165 break; 166 } 167 } 168 169 /* Wrapper functions to implement the "read timer/watchdog for 170 * the current CPU" memory regions. 171 */ 172 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr, 173 unsigned size) 174 { 175 ARMMPTimerState *s = (ARMMPTimerState *)opaque; 176 int id = get_current_cpu(s); 177 return timerblock_read(&s->timerblock[id], addr, size); 178 } 179 180 static void arm_thistimer_write(void *opaque, hwaddr addr, 181 uint64_t value, unsigned size) 182 { 183 ARMMPTimerState *s = (ARMMPTimerState *)opaque; 184 int id = get_current_cpu(s); 185 timerblock_write(&s->timerblock[id], addr, value, size); 186 } 187 188 static const MemoryRegionOps arm_thistimer_ops = { 189 .read = arm_thistimer_read, 190 .write = arm_thistimer_write, 191 .valid = { 192 .min_access_size = 4, 193 .max_access_size = 4, 194 }, 195 .endianness = DEVICE_NATIVE_ENDIAN, 196 }; 197 198 static const MemoryRegionOps timerblock_ops = { 199 .read = timerblock_read, 200 .write = timerblock_write, 201 .valid = { 202 .min_access_size = 4, 203 .max_access_size = 4, 204 }, 205 .endianness = DEVICE_NATIVE_ENDIAN, 206 }; 207 208 static void timerblock_reset(TimerBlock *tb) 209 { 210 tb->control = 0; 211 tb->status = 0; 212 if (tb->timer) { 213 ptimer_stop(tb->timer); 214 ptimer_set_limit(tb->timer, 0, 1); 215 ptimer_set_period(tb->timer, timerblock_scale(0)); 216 } 217 } 218 219 static void arm_mptimer_reset(DeviceState *dev) 220 { 221 ARMMPTimerState *s = ARM_MPTIMER(dev); 222 int i; 223 224 for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) { 225 timerblock_reset(&s->timerblock[i]); 226 } 227 } 228 229 static void arm_mptimer_init(Object *obj) 230 { 231 ARMMPTimerState *s = ARM_MPTIMER(obj); 232 233 memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s, 234 "arm_mptimer_timer", 0x20); 235 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); 236 } 237 238 static void arm_mptimer_realize(DeviceState *dev, Error **errp) 239 { 240 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 241 ARMMPTimerState *s = ARM_MPTIMER(dev); 242 int i; 243 244 if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) { 245 error_setg(errp, "num-cpu must be between 1 and %d", 246 ARM_MPTIMER_MAX_CPUS); 247 return; 248 } 249 /* We implement one timer block per CPU, and expose multiple MMIO regions: 250 * * region 0 is "timer for this core" 251 * * region 1 is "timer for core 0" 252 * * region 2 is "timer for core 1" 253 * and so on. 254 * The outgoing interrupt lines are 255 * * timer for core 0 256 * * timer for core 1 257 * and so on. 258 */ 259 for (i = 0; i < s->num_cpu; i++) { 260 TimerBlock *tb = &s->timerblock[i]; 261 QEMUBH *bh = qemu_bh_new(timerblock_tick, tb); 262 tb->timer = ptimer_init(bh, PTIMER_POLICY); 263 sysbus_init_irq(sbd, &tb->irq); 264 memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb, 265 "arm_mptimer_timerblock", 0x20); 266 sysbus_init_mmio(sbd, &tb->iomem); 267 } 268 } 269 270 static const VMStateDescription vmstate_timerblock = { 271 .name = "arm_mptimer_timerblock", 272 .version_id = 3, 273 .minimum_version_id = 3, 274 .fields = (VMStateField[]) { 275 VMSTATE_UINT32(control, TimerBlock), 276 VMSTATE_UINT32(status, TimerBlock), 277 VMSTATE_PTIMER(timer, TimerBlock), 278 VMSTATE_END_OF_LIST() 279 } 280 }; 281 282 static const VMStateDescription vmstate_arm_mptimer = { 283 .name = "arm_mptimer", 284 .version_id = 3, 285 .minimum_version_id = 3, 286 .fields = (VMStateField[]) { 287 VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu, 288 3, vmstate_timerblock, TimerBlock), 289 VMSTATE_END_OF_LIST() 290 } 291 }; 292 293 static Property arm_mptimer_properties[] = { 294 DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0), 295 DEFINE_PROP_END_OF_LIST() 296 }; 297 298 static void arm_mptimer_class_init(ObjectClass *klass, void *data) 299 { 300 DeviceClass *dc = DEVICE_CLASS(klass); 301 302 dc->realize = arm_mptimer_realize; 303 dc->vmsd = &vmstate_arm_mptimer; 304 dc->reset = arm_mptimer_reset; 305 dc->props = arm_mptimer_properties; 306 } 307 308 static const TypeInfo arm_mptimer_info = { 309 .name = TYPE_ARM_MPTIMER, 310 .parent = TYPE_SYS_BUS_DEVICE, 311 .instance_size = sizeof(ARMMPTimerState), 312 .instance_init = arm_mptimer_init, 313 .class_init = arm_mptimer_class_init, 314 }; 315 316 static void arm_mptimer_register_types(void) 317 { 318 type_register_static(&arm_mptimer_info); 319 } 320 321 type_init(arm_mptimer_register_types) 322