xref: /openbmc/qemu/hw/timer/arm_mptimer.c (revision d4842052100a3b44167e34ebdce0e7b3bf7512cf)
1 /*
2  * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Copyright (c) 2011 Linaro Limited
6  * Written by Paul Brook, Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "hw/irq.h"
24 #include "hw/ptimer.h"
25 #include "hw/timer/arm_mptimer.h"
26 #include "migration/vmstate.h"
27 #include "qapi/error.h"
28 #include "qemu/main-loop.h"
29 #include "qemu/module.h"
30 #include "qom/cpu.h"
31 
32 #define PTIMER_POLICY                       \
33     (PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD |  \
34      PTIMER_POLICY_CONTINUOUS_TRIGGER    |  \
35      PTIMER_POLICY_NO_IMMEDIATE_TRIGGER  |  \
36      PTIMER_POLICY_NO_IMMEDIATE_RELOAD   |  \
37      PTIMER_POLICY_NO_COUNTER_ROUND_DOWN)
38 
39 /* This device implements the per-cpu private timer and watchdog block
40  * which is used in both the ARM11MPCore and Cortex-A9MP.
41  */
42 
43 static inline int get_current_cpu(ARMMPTimerState *s)
44 {
45     int cpu_id = current_cpu ? current_cpu->cpu_index : 0;
46 
47     if (cpu_id >= s->num_cpu) {
48         hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
49                  s->num_cpu, cpu_id);
50     }
51 
52     return cpu_id;
53 }
54 
55 static inline void timerblock_update_irq(TimerBlock *tb)
56 {
57     qemu_set_irq(tb->irq, tb->status && (tb->control & 4));
58 }
59 
60 /* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
61 static inline uint32_t timerblock_scale(uint32_t control)
62 {
63     return (((control >> 8) & 0xff) + 1) * 10;
64 }
65 
66 static inline void timerblock_set_count(struct ptimer_state *timer,
67                                         uint32_t control, uint64_t *count)
68 {
69     /* PTimer would trigger interrupt for periodic timer when counter set
70      * to 0, MPtimer under certain condition only.
71      */
72     if ((control & 3) == 3 && (control & 0xff00) == 0 && *count == 0) {
73         *count = ptimer_get_limit(timer);
74     }
75     ptimer_set_count(timer, *count);
76 }
77 
78 static inline void timerblock_run(struct ptimer_state *timer,
79                                   uint32_t control, uint32_t load)
80 {
81     if ((control & 1) && ((control & 0xff00) || load != 0)) {
82         ptimer_run(timer, !(control & 2));
83     }
84 }
85 
86 static void timerblock_tick(void *opaque)
87 {
88     TimerBlock *tb = (TimerBlock *)opaque;
89     /* Periodic timer with load = 0 and prescaler != 0 would re-trigger
90      * IRQ after one period, otherwise it either stops or wraps around.
91      */
92     if ((tb->control & 2) && (tb->control & 0xff00) == 0 &&
93             ptimer_get_limit(tb->timer) == 0) {
94         ptimer_stop(tb->timer);
95     }
96     tb->status = 1;
97     timerblock_update_irq(tb);
98 }
99 
100 static uint64_t timerblock_read(void *opaque, hwaddr addr,
101                                 unsigned size)
102 {
103     TimerBlock *tb = (TimerBlock *)opaque;
104     switch (addr) {
105     case 0: /* Load */
106         return ptimer_get_limit(tb->timer);
107     case 4: /* Counter.  */
108         return ptimer_get_count(tb->timer);
109     case 8: /* Control.  */
110         return tb->control;
111     case 12: /* Interrupt status.  */
112         return tb->status;
113     default:
114         return 0;
115     }
116 }
117 
118 static void timerblock_write(void *opaque, hwaddr addr,
119                              uint64_t value, unsigned size)
120 {
121     TimerBlock *tb = (TimerBlock *)opaque;
122     uint32_t control = tb->control;
123     switch (addr) {
124     case 0: /* Load */
125         /* Setting load to 0 stops the timer without doing the tick if
126          * prescaler = 0.
127          */
128         if ((control & 1) && (control & 0xff00) == 0 && value == 0) {
129             ptimer_stop(tb->timer);
130         }
131         ptimer_set_limit(tb->timer, value, 1);
132         timerblock_run(tb->timer, control, value);
133         break;
134     case 4: /* Counter.  */
135         /* Setting counter to 0 stops the one-shot timer, or periodic with
136          * load = 0, without doing the tick if prescaler = 0.
137          */
138         if ((control & 1) && (control & 0xff00) == 0 && value == 0 &&
139                 (!(control & 2) || ptimer_get_limit(tb->timer) == 0)) {
140             ptimer_stop(tb->timer);
141         }
142         timerblock_set_count(tb->timer, control, &value);
143         timerblock_run(tb->timer, control, value);
144         break;
145     case 8: /* Control.  */
146         if ((control & 3) != (value & 3)) {
147             ptimer_stop(tb->timer);
148         }
149         if ((control & 0xff00) != (value & 0xff00)) {
150             ptimer_set_period(tb->timer, timerblock_scale(value));
151         }
152         if (value & 1) {
153             uint64_t count = ptimer_get_count(tb->timer);
154             /* Re-load periodic timer counter if needed.  */
155             if ((value & 2) && count == 0) {
156                 timerblock_set_count(tb->timer, value, &count);
157             }
158             timerblock_run(tb->timer, value, count);
159         }
160         tb->control = value;
161         break;
162     case 12: /* Interrupt status.  */
163         tb->status &= ~value;
164         timerblock_update_irq(tb);
165         break;
166     }
167 }
168 
169 /* Wrapper functions to implement the "read timer/watchdog for
170  * the current CPU" memory regions.
171  */
172 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
173                                    unsigned size)
174 {
175     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
176     int id = get_current_cpu(s);
177     return timerblock_read(&s->timerblock[id], addr, size);
178 }
179 
180 static void arm_thistimer_write(void *opaque, hwaddr addr,
181                                 uint64_t value, unsigned size)
182 {
183     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
184     int id = get_current_cpu(s);
185     timerblock_write(&s->timerblock[id], addr, value, size);
186 }
187 
188 static const MemoryRegionOps arm_thistimer_ops = {
189     .read = arm_thistimer_read,
190     .write = arm_thistimer_write,
191     .valid = {
192         .min_access_size = 4,
193         .max_access_size = 4,
194     },
195     .endianness = DEVICE_NATIVE_ENDIAN,
196 };
197 
198 static const MemoryRegionOps timerblock_ops = {
199     .read = timerblock_read,
200     .write = timerblock_write,
201     .valid = {
202         .min_access_size = 4,
203         .max_access_size = 4,
204     },
205     .endianness = DEVICE_NATIVE_ENDIAN,
206 };
207 
208 static void timerblock_reset(TimerBlock *tb)
209 {
210     tb->control = 0;
211     tb->status = 0;
212     if (tb->timer) {
213         ptimer_stop(tb->timer);
214         ptimer_set_limit(tb->timer, 0, 1);
215         ptimer_set_period(tb->timer, timerblock_scale(0));
216     }
217 }
218 
219 static void arm_mptimer_reset(DeviceState *dev)
220 {
221     ARMMPTimerState *s = ARM_MPTIMER(dev);
222     int i;
223 
224     for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
225         timerblock_reset(&s->timerblock[i]);
226     }
227 }
228 
229 static void arm_mptimer_init(Object *obj)
230 {
231     ARMMPTimerState *s = ARM_MPTIMER(obj);
232 
233     memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s,
234                           "arm_mptimer_timer", 0x20);
235     sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
236 }
237 
238 static void arm_mptimer_realize(DeviceState *dev, Error **errp)
239 {
240     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
241     ARMMPTimerState *s = ARM_MPTIMER(dev);
242     int i;
243 
244     if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) {
245         error_setg(errp, "num-cpu must be between 1 and %d",
246                    ARM_MPTIMER_MAX_CPUS);
247         return;
248     }
249     /* We implement one timer block per CPU, and expose multiple MMIO regions:
250      *  * region 0 is "timer for this core"
251      *  * region 1 is "timer for core 0"
252      *  * region 2 is "timer for core 1"
253      * and so on.
254      * The outgoing interrupt lines are
255      *  * timer for core 0
256      *  * timer for core 1
257      * and so on.
258      */
259     for (i = 0; i < s->num_cpu; i++) {
260         TimerBlock *tb = &s->timerblock[i];
261         QEMUBH *bh = qemu_bh_new(timerblock_tick, tb);
262         tb->timer = ptimer_init(bh, PTIMER_POLICY);
263         sysbus_init_irq(sbd, &tb->irq);
264         memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb,
265                               "arm_mptimer_timerblock", 0x20);
266         sysbus_init_mmio(sbd, &tb->iomem);
267     }
268 }
269 
270 static const VMStateDescription vmstate_timerblock = {
271     .name = "arm_mptimer_timerblock",
272     .version_id = 3,
273     .minimum_version_id = 3,
274     .fields = (VMStateField[]) {
275         VMSTATE_UINT32(control, TimerBlock),
276         VMSTATE_UINT32(status, TimerBlock),
277         VMSTATE_PTIMER(timer, TimerBlock),
278         VMSTATE_END_OF_LIST()
279     }
280 };
281 
282 static const VMStateDescription vmstate_arm_mptimer = {
283     .name = "arm_mptimer",
284     .version_id = 3,
285     .minimum_version_id = 3,
286     .fields = (VMStateField[]) {
287         VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
288                                      3, vmstate_timerblock, TimerBlock),
289         VMSTATE_END_OF_LIST()
290     }
291 };
292 
293 static Property arm_mptimer_properties[] = {
294     DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
295     DEFINE_PROP_END_OF_LIST()
296 };
297 
298 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
299 {
300     DeviceClass *dc = DEVICE_CLASS(klass);
301 
302     dc->realize = arm_mptimer_realize;
303     dc->vmsd = &vmstate_arm_mptimer;
304     dc->reset = arm_mptimer_reset;
305     dc->props = arm_mptimer_properties;
306 }
307 
308 static const TypeInfo arm_mptimer_info = {
309     .name          = TYPE_ARM_MPTIMER,
310     .parent        = TYPE_SYS_BUS_DEVICE,
311     .instance_size = sizeof(ARMMPTimerState),
312     .instance_init = arm_mptimer_init,
313     .class_init    = arm_mptimer_class_init,
314 };
315 
316 static void arm_mptimer_register_types(void)
317 {
318     type_register_static(&arm_mptimer_info);
319 }
320 
321 type_init(arm_mptimer_register_types)
322