xref: /openbmc/qemu/hw/timer/arm_mptimer.c (revision 56983463)
1 /*
2  * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Copyright (c) 2011 Linaro Limited
6  * Written by Paul Brook, Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "hw/sysbus.h"
23 #include "qemu/timer.h"
24 #include "qom/cpu.h"
25 
26 /* This device implements the per-cpu private timer and watchdog block
27  * which is used in both the ARM11MPCore and Cortex-A9MP.
28  */
29 
30 #define MAX_CPUS 4
31 
32 /* State of a single timer or watchdog block */
33 typedef struct {
34     uint32_t count;
35     uint32_t load;
36     uint32_t control;
37     uint32_t status;
38     int64_t tick;
39     QEMUTimer *timer;
40     qemu_irq irq;
41     MemoryRegion iomem;
42 } TimerBlock;
43 
44 typedef struct {
45     SysBusDevice busdev;
46     uint32_t num_cpu;
47     TimerBlock timerblock[MAX_CPUS];
48     MemoryRegion iomem;
49 } ARMMPTimerState;
50 
51 static inline int get_current_cpu(ARMMPTimerState *s)
52 {
53     if (current_cpu->cpu_index >= s->num_cpu) {
54         hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
55                  s->num_cpu, current_cpu->cpu_index);
56     }
57     return current_cpu->cpu_index;
58 }
59 
60 static inline void timerblock_update_irq(TimerBlock *tb)
61 {
62     qemu_set_irq(tb->irq, tb->status);
63 }
64 
65 /* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
66 static inline uint32_t timerblock_scale(TimerBlock *tb)
67 {
68     return (((tb->control >> 8) & 0xff) + 1) * 10;
69 }
70 
71 static void timerblock_reload(TimerBlock *tb, int restart)
72 {
73     if (tb->count == 0) {
74         return;
75     }
76     if (restart) {
77         tb->tick = qemu_get_clock_ns(vm_clock);
78     }
79     tb->tick += (int64_t)tb->count * timerblock_scale(tb);
80     qemu_mod_timer(tb->timer, tb->tick);
81 }
82 
83 static void timerblock_tick(void *opaque)
84 {
85     TimerBlock *tb = (TimerBlock *)opaque;
86     tb->status = 1;
87     if (tb->control & 2) {
88         tb->count = tb->load;
89         timerblock_reload(tb, 0);
90     } else {
91         tb->count = 0;
92     }
93     timerblock_update_irq(tb);
94 }
95 
96 static uint64_t timerblock_read(void *opaque, hwaddr addr,
97                                 unsigned size)
98 {
99     TimerBlock *tb = (TimerBlock *)opaque;
100     int64_t val;
101     switch (addr) {
102     case 0: /* Load */
103         return tb->load;
104     case 4: /* Counter.  */
105         if (((tb->control & 1) == 0) || (tb->count == 0)) {
106             return 0;
107         }
108         /* Slow and ugly, but hopefully won't happen too often.  */
109         val = tb->tick - qemu_get_clock_ns(vm_clock);
110         val /= timerblock_scale(tb);
111         if (val < 0) {
112             val = 0;
113         }
114         return val;
115     case 8: /* Control.  */
116         return tb->control;
117     case 12: /* Interrupt status.  */
118         return tb->status;
119     default:
120         return 0;
121     }
122 }
123 
124 static void timerblock_write(void *opaque, hwaddr addr,
125                              uint64_t value, unsigned size)
126 {
127     TimerBlock *tb = (TimerBlock *)opaque;
128     int64_t old;
129     switch (addr) {
130     case 0: /* Load */
131         tb->load = value;
132         /* Fall through.  */
133     case 4: /* Counter.  */
134         if ((tb->control & 1) && tb->count) {
135             /* Cancel the previous timer.  */
136             qemu_del_timer(tb->timer);
137         }
138         tb->count = value;
139         if (tb->control & 1) {
140             timerblock_reload(tb, 1);
141         }
142         break;
143     case 8: /* Control.  */
144         old = tb->control;
145         tb->control = value;
146         if (((old & 1) == 0) && (value & 1)) {
147             if (tb->count == 0 && (tb->control & 2)) {
148                 tb->count = tb->load;
149             }
150             timerblock_reload(tb, 1);
151         }
152         break;
153     case 12: /* Interrupt status.  */
154         tb->status &= ~value;
155         timerblock_update_irq(tb);
156         break;
157     }
158 }
159 
160 /* Wrapper functions to implement the "read timer/watchdog for
161  * the current CPU" memory regions.
162  */
163 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
164                                    unsigned size)
165 {
166     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
167     int id = get_current_cpu(s);
168     return timerblock_read(&s->timerblock[id], addr, size);
169 }
170 
171 static void arm_thistimer_write(void *opaque, hwaddr addr,
172                                 uint64_t value, unsigned size)
173 {
174     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
175     int id = get_current_cpu(s);
176     timerblock_write(&s->timerblock[id], addr, value, size);
177 }
178 
179 static const MemoryRegionOps arm_thistimer_ops = {
180     .read = arm_thistimer_read,
181     .write = arm_thistimer_write,
182     .valid = {
183         .min_access_size = 4,
184         .max_access_size = 4,
185     },
186     .endianness = DEVICE_NATIVE_ENDIAN,
187 };
188 
189 static const MemoryRegionOps timerblock_ops = {
190     .read = timerblock_read,
191     .write = timerblock_write,
192     .valid = {
193         .min_access_size = 4,
194         .max_access_size = 4,
195     },
196     .endianness = DEVICE_NATIVE_ENDIAN,
197 };
198 
199 static void timerblock_reset(TimerBlock *tb)
200 {
201     tb->count = 0;
202     tb->load = 0;
203     tb->control = 0;
204     tb->status = 0;
205     tb->tick = 0;
206     if (tb->timer) {
207         qemu_del_timer(tb->timer);
208     }
209 }
210 
211 static void arm_mptimer_reset(DeviceState *dev)
212 {
213     ARMMPTimerState *s =
214         FROM_SYSBUS(ARMMPTimerState, SYS_BUS_DEVICE(dev));
215     int i;
216     for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
217         timerblock_reset(&s->timerblock[i]);
218     }
219 }
220 
221 static int arm_mptimer_init(SysBusDevice *dev)
222 {
223     ARMMPTimerState *s = FROM_SYSBUS(ARMMPTimerState, dev);
224     int i;
225     if (s->num_cpu < 1 || s->num_cpu > MAX_CPUS) {
226         hw_error("%s: num-cpu must be between 1 and %d\n", __func__, MAX_CPUS);
227     }
228     /* We implement one timer block per CPU, and expose multiple MMIO regions:
229      *  * region 0 is "timer for this core"
230      *  * region 1 is "timer for core 0"
231      *  * region 2 is "timer for core 1"
232      * and so on.
233      * The outgoing interrupt lines are
234      *  * timer for core 0
235      *  * timer for core 1
236      * and so on.
237      */
238     memory_region_init_io(&s->iomem, OBJECT(s), &arm_thistimer_ops, s,
239                           "arm_mptimer_timer", 0x20);
240     sysbus_init_mmio(dev, &s->iomem);
241     for (i = 0; i < s->num_cpu; i++) {
242         TimerBlock *tb = &s->timerblock[i];
243         tb->timer = qemu_new_timer_ns(vm_clock, timerblock_tick, tb);
244         sysbus_init_irq(dev, &tb->irq);
245         memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb,
246                               "arm_mptimer_timerblock", 0x20);
247         sysbus_init_mmio(dev, &tb->iomem);
248     }
249 
250     return 0;
251 }
252 
253 static const VMStateDescription vmstate_timerblock = {
254     .name = "arm_mptimer_timerblock",
255     .version_id = 2,
256     .minimum_version_id = 2,
257     .fields = (VMStateField[]) {
258         VMSTATE_UINT32(count, TimerBlock),
259         VMSTATE_UINT32(load, TimerBlock),
260         VMSTATE_UINT32(control, TimerBlock),
261         VMSTATE_UINT32(status, TimerBlock),
262         VMSTATE_INT64(tick, TimerBlock),
263         VMSTATE_TIMER(timer, TimerBlock),
264         VMSTATE_END_OF_LIST()
265     }
266 };
267 
268 static const VMStateDescription vmstate_arm_mptimer = {
269     .name = "arm_mptimer",
270     .version_id = 2,
271     .minimum_version_id = 2,
272     .fields = (VMStateField[]) {
273         VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
274                                      2, vmstate_timerblock, TimerBlock),
275         VMSTATE_END_OF_LIST()
276     }
277 };
278 
279 static Property arm_mptimer_properties[] = {
280     DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
281     DEFINE_PROP_END_OF_LIST()
282 };
283 
284 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
285 {
286     DeviceClass *dc = DEVICE_CLASS(klass);
287     SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
288 
289     sbc->init = arm_mptimer_init;
290     dc->vmsd = &vmstate_arm_mptimer;
291     dc->reset = arm_mptimer_reset;
292     dc->no_user = 1;
293     dc->props = arm_mptimer_properties;
294 }
295 
296 static const TypeInfo arm_mptimer_info = {
297     .name          = "arm_mptimer",
298     .parent        = TYPE_SYS_BUS_DEVICE,
299     .instance_size = sizeof(ARMMPTimerState),
300     .class_init    = arm_mptimer_class_init,
301 };
302 
303 static void arm_mptimer_register_types(void)
304 {
305     type_register_static(&arm_mptimer_info);
306 }
307 
308 type_init(arm_mptimer_register_types)
309