xref: /openbmc/qemu/hw/timer/arm_mptimer.c (revision 47b43a1f)
1 /*
2  * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Copyright (c) 2011 Linaro Limited
6  * Written by Paul Brook, Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "hw/sysbus.h"
23 #include "qemu/timer.h"
24 
25 /* This device implements the per-cpu private timer and watchdog block
26  * which is used in both the ARM11MPCore and Cortex-A9MP.
27  */
28 
29 #define MAX_CPUS 4
30 
31 /* State of a single timer or watchdog block */
32 typedef struct {
33     uint32_t count;
34     uint32_t load;
35     uint32_t control;
36     uint32_t status;
37     int64_t tick;
38     QEMUTimer *timer;
39     qemu_irq irq;
40     MemoryRegion iomem;
41 } TimerBlock;
42 
43 typedef struct {
44     SysBusDevice busdev;
45     uint32_t num_cpu;
46     TimerBlock timerblock[MAX_CPUS];
47     MemoryRegion iomem;
48 } ARMMPTimerState;
49 
50 static inline int get_current_cpu(ARMMPTimerState *s)
51 {
52     CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
53 
54     if (cpu_single_cpu->cpu_index >= s->num_cpu) {
55         hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n",
56                  s->num_cpu, cpu_single_cpu->cpu_index);
57     }
58     return cpu_single_cpu->cpu_index;
59 }
60 
61 static inline void timerblock_update_irq(TimerBlock *tb)
62 {
63     qemu_set_irq(tb->irq, tb->status);
64 }
65 
66 /* Return conversion factor from mpcore timer ticks to qemu timer ticks.  */
67 static inline uint32_t timerblock_scale(TimerBlock *tb)
68 {
69     return (((tb->control >> 8) & 0xff) + 1) * 10;
70 }
71 
72 static void timerblock_reload(TimerBlock *tb, int restart)
73 {
74     if (tb->count == 0) {
75         return;
76     }
77     if (restart) {
78         tb->tick = qemu_get_clock_ns(vm_clock);
79     }
80     tb->tick += (int64_t)tb->count * timerblock_scale(tb);
81     qemu_mod_timer(tb->timer, tb->tick);
82 }
83 
84 static void timerblock_tick(void *opaque)
85 {
86     TimerBlock *tb = (TimerBlock *)opaque;
87     tb->status = 1;
88     if (tb->control & 2) {
89         tb->count = tb->load;
90         timerblock_reload(tb, 0);
91     } else {
92         tb->count = 0;
93     }
94     timerblock_update_irq(tb);
95 }
96 
97 static uint64_t timerblock_read(void *opaque, hwaddr addr,
98                                 unsigned size)
99 {
100     TimerBlock *tb = (TimerBlock *)opaque;
101     int64_t val;
102     switch (addr) {
103     case 0: /* Load */
104         return tb->load;
105     case 4: /* Counter.  */
106         if (((tb->control & 1) == 0) || (tb->count == 0)) {
107             return 0;
108         }
109         /* Slow and ugly, but hopefully won't happen too often.  */
110         val = tb->tick - qemu_get_clock_ns(vm_clock);
111         val /= timerblock_scale(tb);
112         if (val < 0) {
113             val = 0;
114         }
115         return val;
116     case 8: /* Control.  */
117         return tb->control;
118     case 12: /* Interrupt status.  */
119         return tb->status;
120     default:
121         return 0;
122     }
123 }
124 
125 static void timerblock_write(void *opaque, hwaddr addr,
126                              uint64_t value, unsigned size)
127 {
128     TimerBlock *tb = (TimerBlock *)opaque;
129     int64_t old;
130     switch (addr) {
131     case 0: /* Load */
132         tb->load = value;
133         /* Fall through.  */
134     case 4: /* Counter.  */
135         if ((tb->control & 1) && tb->count) {
136             /* Cancel the previous timer.  */
137             qemu_del_timer(tb->timer);
138         }
139         tb->count = value;
140         if (tb->control & 1) {
141             timerblock_reload(tb, 1);
142         }
143         break;
144     case 8: /* Control.  */
145         old = tb->control;
146         tb->control = value;
147         if (((old & 1) == 0) && (value & 1)) {
148             if (tb->count == 0 && (tb->control & 2)) {
149                 tb->count = tb->load;
150             }
151             timerblock_reload(tb, 1);
152         }
153         break;
154     case 12: /* Interrupt status.  */
155         tb->status &= ~value;
156         timerblock_update_irq(tb);
157         break;
158     }
159 }
160 
161 /* Wrapper functions to implement the "read timer/watchdog for
162  * the current CPU" memory regions.
163  */
164 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr,
165                                    unsigned size)
166 {
167     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
168     int id = get_current_cpu(s);
169     return timerblock_read(&s->timerblock[id], addr, size);
170 }
171 
172 static void arm_thistimer_write(void *opaque, hwaddr addr,
173                                 uint64_t value, unsigned size)
174 {
175     ARMMPTimerState *s = (ARMMPTimerState *)opaque;
176     int id = get_current_cpu(s);
177     timerblock_write(&s->timerblock[id], addr, value, size);
178 }
179 
180 static const MemoryRegionOps arm_thistimer_ops = {
181     .read = arm_thistimer_read,
182     .write = arm_thistimer_write,
183     .valid = {
184         .min_access_size = 4,
185         .max_access_size = 4,
186     },
187     .endianness = DEVICE_NATIVE_ENDIAN,
188 };
189 
190 static const MemoryRegionOps timerblock_ops = {
191     .read = timerblock_read,
192     .write = timerblock_write,
193     .valid = {
194         .min_access_size = 4,
195         .max_access_size = 4,
196     },
197     .endianness = DEVICE_NATIVE_ENDIAN,
198 };
199 
200 static void timerblock_reset(TimerBlock *tb)
201 {
202     tb->count = 0;
203     tb->load = 0;
204     tb->control = 0;
205     tb->status = 0;
206     tb->tick = 0;
207     if (tb->timer) {
208         qemu_del_timer(tb->timer);
209     }
210 }
211 
212 static void arm_mptimer_reset(DeviceState *dev)
213 {
214     ARMMPTimerState *s =
215         FROM_SYSBUS(ARMMPTimerState, SYS_BUS_DEVICE(dev));
216     int i;
217     for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) {
218         timerblock_reset(&s->timerblock[i]);
219     }
220 }
221 
222 static int arm_mptimer_init(SysBusDevice *dev)
223 {
224     ARMMPTimerState *s = FROM_SYSBUS(ARMMPTimerState, dev);
225     int i;
226     if (s->num_cpu < 1 || s->num_cpu > MAX_CPUS) {
227         hw_error("%s: num-cpu must be between 1 and %d\n", __func__, MAX_CPUS);
228     }
229     /* We implement one timer block per CPU, and expose multiple MMIO regions:
230      *  * region 0 is "timer for this core"
231      *  * region 1 is "timer for core 0"
232      *  * region 2 is "timer for core 1"
233      * and so on.
234      * The outgoing interrupt lines are
235      *  * timer for core 0
236      *  * timer for core 1
237      * and so on.
238      */
239     memory_region_init_io(&s->iomem, &arm_thistimer_ops, s,
240                           "arm_mptimer_timer", 0x20);
241     sysbus_init_mmio(dev, &s->iomem);
242     for (i = 0; i < s->num_cpu; i++) {
243         TimerBlock *tb = &s->timerblock[i];
244         tb->timer = qemu_new_timer_ns(vm_clock, timerblock_tick, tb);
245         sysbus_init_irq(dev, &tb->irq);
246         memory_region_init_io(&tb->iomem, &timerblock_ops, tb,
247                               "arm_mptimer_timerblock", 0x20);
248         sysbus_init_mmio(dev, &tb->iomem);
249     }
250 
251     return 0;
252 }
253 
254 static const VMStateDescription vmstate_timerblock = {
255     .name = "arm_mptimer_timerblock",
256     .version_id = 2,
257     .minimum_version_id = 2,
258     .fields = (VMStateField[]) {
259         VMSTATE_UINT32(count, TimerBlock),
260         VMSTATE_UINT32(load, TimerBlock),
261         VMSTATE_UINT32(control, TimerBlock),
262         VMSTATE_UINT32(status, TimerBlock),
263         VMSTATE_INT64(tick, TimerBlock),
264         VMSTATE_TIMER(timer, TimerBlock),
265         VMSTATE_END_OF_LIST()
266     }
267 };
268 
269 static const VMStateDescription vmstate_arm_mptimer = {
270     .name = "arm_mptimer",
271     .version_id = 2,
272     .minimum_version_id = 2,
273     .fields = (VMStateField[]) {
274         VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu,
275                                      2, vmstate_timerblock, TimerBlock),
276         VMSTATE_END_OF_LIST()
277     }
278 };
279 
280 static Property arm_mptimer_properties[] = {
281     DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0),
282     DEFINE_PROP_END_OF_LIST()
283 };
284 
285 static void arm_mptimer_class_init(ObjectClass *klass, void *data)
286 {
287     DeviceClass *dc = DEVICE_CLASS(klass);
288     SysBusDeviceClass *sbc = SYS_BUS_DEVICE_CLASS(klass);
289 
290     sbc->init = arm_mptimer_init;
291     dc->vmsd = &vmstate_arm_mptimer;
292     dc->reset = arm_mptimer_reset;
293     dc->no_user = 1;
294     dc->props = arm_mptimer_properties;
295 }
296 
297 static const TypeInfo arm_mptimer_info = {
298     .name          = "arm_mptimer",
299     .parent        = TYPE_SYS_BUS_DEVICE,
300     .instance_size = sizeof(ARMMPTimerState),
301     .class_init    = arm_mptimer_class_init,
302 };
303 
304 static void arm_mptimer_register_types(void)
305 {
306     type_register_static(&arm_mptimer_info);
307 }
308 
309 type_init(arm_mptimer_register_types)
310