1 /* 2 * Private peripheral timer/watchdog blocks for ARM 11MPCore and A9MP 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Copyright (c) 2011 Linaro Limited 6 * Written by Paul Brook, Peter Maydell 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public License 10 * as published by the Free Software Foundation; either version 11 * 2 of the License, or (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "hw/hw.h" 24 #include "hw/irq.h" 25 #include "hw/ptimer.h" 26 #include "hw/qdev-properties.h" 27 #include "hw/timer/arm_mptimer.h" 28 #include "migration/vmstate.h" 29 #include "qapi/error.h" 30 #include "qemu/main-loop.h" 31 #include "qemu/module.h" 32 #include "qom/cpu.h" 33 34 #define PTIMER_POLICY \ 35 (PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD | \ 36 PTIMER_POLICY_CONTINUOUS_TRIGGER | \ 37 PTIMER_POLICY_NO_IMMEDIATE_TRIGGER | \ 38 PTIMER_POLICY_NO_IMMEDIATE_RELOAD | \ 39 PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) 40 41 /* This device implements the per-cpu private timer and watchdog block 42 * which is used in both the ARM11MPCore and Cortex-A9MP. 43 */ 44 45 static inline int get_current_cpu(ARMMPTimerState *s) 46 { 47 int cpu_id = current_cpu ? current_cpu->cpu_index : 0; 48 49 if (cpu_id >= s->num_cpu) { 50 hw_error("arm_mptimer: num-cpu %d but this cpu is %d!\n", 51 s->num_cpu, cpu_id); 52 } 53 54 return cpu_id; 55 } 56 57 static inline void timerblock_update_irq(TimerBlock *tb) 58 { 59 qemu_set_irq(tb->irq, tb->status && (tb->control & 4)); 60 } 61 62 /* Return conversion factor from mpcore timer ticks to qemu timer ticks. */ 63 static inline uint32_t timerblock_scale(uint32_t control) 64 { 65 return (((control >> 8) & 0xff) + 1) * 10; 66 } 67 68 static inline void timerblock_set_count(struct ptimer_state *timer, 69 uint32_t control, uint64_t *count) 70 { 71 /* PTimer would trigger interrupt for periodic timer when counter set 72 * to 0, MPtimer under certain condition only. 73 */ 74 if ((control & 3) == 3 && (control & 0xff00) == 0 && *count == 0) { 75 *count = ptimer_get_limit(timer); 76 } 77 ptimer_set_count(timer, *count); 78 } 79 80 static inline void timerblock_run(struct ptimer_state *timer, 81 uint32_t control, uint32_t load) 82 { 83 if ((control & 1) && ((control & 0xff00) || load != 0)) { 84 ptimer_run(timer, !(control & 2)); 85 } 86 } 87 88 static void timerblock_tick(void *opaque) 89 { 90 TimerBlock *tb = (TimerBlock *)opaque; 91 /* Periodic timer with load = 0 and prescaler != 0 would re-trigger 92 * IRQ after one period, otherwise it either stops or wraps around. 93 */ 94 if ((tb->control & 2) && (tb->control & 0xff00) == 0 && 95 ptimer_get_limit(tb->timer) == 0) { 96 ptimer_stop(tb->timer); 97 } 98 tb->status = 1; 99 timerblock_update_irq(tb); 100 } 101 102 static uint64_t timerblock_read(void *opaque, hwaddr addr, 103 unsigned size) 104 { 105 TimerBlock *tb = (TimerBlock *)opaque; 106 switch (addr) { 107 case 0: /* Load */ 108 return ptimer_get_limit(tb->timer); 109 case 4: /* Counter. */ 110 return ptimer_get_count(tb->timer); 111 case 8: /* Control. */ 112 return tb->control; 113 case 12: /* Interrupt status. */ 114 return tb->status; 115 default: 116 return 0; 117 } 118 } 119 120 static void timerblock_write(void *opaque, hwaddr addr, 121 uint64_t value, unsigned size) 122 { 123 TimerBlock *tb = (TimerBlock *)opaque; 124 uint32_t control = tb->control; 125 switch (addr) { 126 case 0: /* Load */ 127 /* Setting load to 0 stops the timer without doing the tick if 128 * prescaler = 0. 129 */ 130 if ((control & 1) && (control & 0xff00) == 0 && value == 0) { 131 ptimer_stop(tb->timer); 132 } 133 ptimer_set_limit(tb->timer, value, 1); 134 timerblock_run(tb->timer, control, value); 135 break; 136 case 4: /* Counter. */ 137 /* Setting counter to 0 stops the one-shot timer, or periodic with 138 * load = 0, without doing the tick if prescaler = 0. 139 */ 140 if ((control & 1) && (control & 0xff00) == 0 && value == 0 && 141 (!(control & 2) || ptimer_get_limit(tb->timer) == 0)) { 142 ptimer_stop(tb->timer); 143 } 144 timerblock_set_count(tb->timer, control, &value); 145 timerblock_run(tb->timer, control, value); 146 break; 147 case 8: /* Control. */ 148 if ((control & 3) != (value & 3)) { 149 ptimer_stop(tb->timer); 150 } 151 if ((control & 0xff00) != (value & 0xff00)) { 152 ptimer_set_period(tb->timer, timerblock_scale(value)); 153 } 154 if (value & 1) { 155 uint64_t count = ptimer_get_count(tb->timer); 156 /* Re-load periodic timer counter if needed. */ 157 if ((value & 2) && count == 0) { 158 timerblock_set_count(tb->timer, value, &count); 159 } 160 timerblock_run(tb->timer, value, count); 161 } 162 tb->control = value; 163 break; 164 case 12: /* Interrupt status. */ 165 tb->status &= ~value; 166 timerblock_update_irq(tb); 167 break; 168 } 169 } 170 171 /* Wrapper functions to implement the "read timer/watchdog for 172 * the current CPU" memory regions. 173 */ 174 static uint64_t arm_thistimer_read(void *opaque, hwaddr addr, 175 unsigned size) 176 { 177 ARMMPTimerState *s = (ARMMPTimerState *)opaque; 178 int id = get_current_cpu(s); 179 return timerblock_read(&s->timerblock[id], addr, size); 180 } 181 182 static void arm_thistimer_write(void *opaque, hwaddr addr, 183 uint64_t value, unsigned size) 184 { 185 ARMMPTimerState *s = (ARMMPTimerState *)opaque; 186 int id = get_current_cpu(s); 187 timerblock_write(&s->timerblock[id], addr, value, size); 188 } 189 190 static const MemoryRegionOps arm_thistimer_ops = { 191 .read = arm_thistimer_read, 192 .write = arm_thistimer_write, 193 .valid = { 194 .min_access_size = 4, 195 .max_access_size = 4, 196 }, 197 .endianness = DEVICE_NATIVE_ENDIAN, 198 }; 199 200 static const MemoryRegionOps timerblock_ops = { 201 .read = timerblock_read, 202 .write = timerblock_write, 203 .valid = { 204 .min_access_size = 4, 205 .max_access_size = 4, 206 }, 207 .endianness = DEVICE_NATIVE_ENDIAN, 208 }; 209 210 static void timerblock_reset(TimerBlock *tb) 211 { 212 tb->control = 0; 213 tb->status = 0; 214 if (tb->timer) { 215 ptimer_stop(tb->timer); 216 ptimer_set_limit(tb->timer, 0, 1); 217 ptimer_set_period(tb->timer, timerblock_scale(0)); 218 } 219 } 220 221 static void arm_mptimer_reset(DeviceState *dev) 222 { 223 ARMMPTimerState *s = ARM_MPTIMER(dev); 224 int i; 225 226 for (i = 0; i < ARRAY_SIZE(s->timerblock); i++) { 227 timerblock_reset(&s->timerblock[i]); 228 } 229 } 230 231 static void arm_mptimer_init(Object *obj) 232 { 233 ARMMPTimerState *s = ARM_MPTIMER(obj); 234 235 memory_region_init_io(&s->iomem, obj, &arm_thistimer_ops, s, 236 "arm_mptimer_timer", 0x20); 237 sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); 238 } 239 240 static void arm_mptimer_realize(DeviceState *dev, Error **errp) 241 { 242 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 243 ARMMPTimerState *s = ARM_MPTIMER(dev); 244 int i; 245 246 if (s->num_cpu < 1 || s->num_cpu > ARM_MPTIMER_MAX_CPUS) { 247 error_setg(errp, "num-cpu must be between 1 and %d", 248 ARM_MPTIMER_MAX_CPUS); 249 return; 250 } 251 /* We implement one timer block per CPU, and expose multiple MMIO regions: 252 * * region 0 is "timer for this core" 253 * * region 1 is "timer for core 0" 254 * * region 2 is "timer for core 1" 255 * and so on. 256 * The outgoing interrupt lines are 257 * * timer for core 0 258 * * timer for core 1 259 * and so on. 260 */ 261 for (i = 0; i < s->num_cpu; i++) { 262 TimerBlock *tb = &s->timerblock[i]; 263 QEMUBH *bh = qemu_bh_new(timerblock_tick, tb); 264 tb->timer = ptimer_init(bh, PTIMER_POLICY); 265 sysbus_init_irq(sbd, &tb->irq); 266 memory_region_init_io(&tb->iomem, OBJECT(s), &timerblock_ops, tb, 267 "arm_mptimer_timerblock", 0x20); 268 sysbus_init_mmio(sbd, &tb->iomem); 269 } 270 } 271 272 static const VMStateDescription vmstate_timerblock = { 273 .name = "arm_mptimer_timerblock", 274 .version_id = 3, 275 .minimum_version_id = 3, 276 .fields = (VMStateField[]) { 277 VMSTATE_UINT32(control, TimerBlock), 278 VMSTATE_UINT32(status, TimerBlock), 279 VMSTATE_PTIMER(timer, TimerBlock), 280 VMSTATE_END_OF_LIST() 281 } 282 }; 283 284 static const VMStateDescription vmstate_arm_mptimer = { 285 .name = "arm_mptimer", 286 .version_id = 3, 287 .minimum_version_id = 3, 288 .fields = (VMStateField[]) { 289 VMSTATE_STRUCT_VARRAY_UINT32(timerblock, ARMMPTimerState, num_cpu, 290 3, vmstate_timerblock, TimerBlock), 291 VMSTATE_END_OF_LIST() 292 } 293 }; 294 295 static Property arm_mptimer_properties[] = { 296 DEFINE_PROP_UINT32("num-cpu", ARMMPTimerState, num_cpu, 0), 297 DEFINE_PROP_END_OF_LIST() 298 }; 299 300 static void arm_mptimer_class_init(ObjectClass *klass, void *data) 301 { 302 DeviceClass *dc = DEVICE_CLASS(klass); 303 304 dc->realize = arm_mptimer_realize; 305 dc->vmsd = &vmstate_arm_mptimer; 306 dc->reset = arm_mptimer_reset; 307 dc->props = arm_mptimer_properties; 308 } 309 310 static const TypeInfo arm_mptimer_info = { 311 .name = TYPE_ARM_MPTIMER, 312 .parent = TYPE_SYS_BUS_DEVICE, 313 .instance_size = sizeof(ARMMPTimerState), 314 .instance_init = arm_mptimer_init, 315 .class_init = arm_mptimer_class_init, 316 }; 317 318 static void arm_mptimer_register_types(void) 319 { 320 type_register_static(&arm_mptimer_info); 321 } 322 323 type_init(arm_mptimer_register_types) 324