1 /*
2 * QEMU model of Xilinx Versal's OSPI controller.
3 *
4 * Copyright (c) 2021 Xilinx Inc.
5 * Written by Francisco Iglesias <francisco.iglesias@xilinx.com>
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
13 *
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
24 */
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "hw/qdev-properties.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "hw/irq.h"
32 #include "hw/ssi/xlnx-versal-ospi.h"
33
34 #ifndef XILINX_VERSAL_OSPI_ERR_DEBUG
35 #define XILINX_VERSAL_OSPI_ERR_DEBUG 0
36 #endif
37
38 REG32(CONFIG_REG, 0x0)
39 FIELD(CONFIG_REG, IDLE_FLD, 31, 1)
40 FIELD(CONFIG_REG, DUAL_BYTE_OPCODE_EN_FLD, 30, 1)
41 FIELD(CONFIG_REG, CRC_ENABLE_FLD, 29, 1)
42 FIELD(CONFIG_REG, CONFIG_RESV2_FLD, 26, 3)
43 FIELD(CONFIG_REG, PIPELINE_PHY_FLD, 25, 1)
44 FIELD(CONFIG_REG, ENABLE_DTR_PROTOCOL_FLD, 24, 1)
45 FIELD(CONFIG_REG, ENABLE_AHB_DECODER_FLD, 23, 1)
46 FIELD(CONFIG_REG, MSTR_BAUD_DIV_FLD, 19, 4)
47 FIELD(CONFIG_REG, ENTER_XIP_MODE_IMM_FLD, 18, 1)
48 FIELD(CONFIG_REG, ENTER_XIP_MODE_FLD, 17, 1)
49 FIELD(CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD, 16, 1)
50 FIELD(CONFIG_REG, ENB_DMA_IF_FLD, 15, 1)
51 FIELD(CONFIG_REG, WR_PROT_FLASH_FLD, 14, 1)
52 FIELD(CONFIG_REG, PERIPH_CS_LINES_FLD, 10, 4)
53 FIELD(CONFIG_REG, PERIPH_SEL_DEC_FLD, 9, 1)
54 FIELD(CONFIG_REG, ENB_LEGACY_IP_MODE_FLD, 8, 1)
55 FIELD(CONFIG_REG, ENB_DIR_ACC_CTLR_FLD, 7, 1)
56 FIELD(CONFIG_REG, RESET_CFG_FLD, 6, 1)
57 FIELD(CONFIG_REG, RESET_PIN_FLD, 5, 1)
58 FIELD(CONFIG_REG, HOLD_PIN_FLD, 4, 1)
59 FIELD(CONFIG_REG, PHY_MODE_ENABLE_FLD, 3, 1)
60 FIELD(CONFIG_REG, SEL_CLK_PHASE_FLD, 2, 1)
61 FIELD(CONFIG_REG, SEL_CLK_POL_FLD, 1, 1)
62 FIELD(CONFIG_REG, ENB_SPI_FLD, 0, 1)
63 REG32(DEV_INSTR_RD_CONFIG_REG, 0x4)
64 FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV5_FLD, 29, 3)
65 FIELD(DEV_INSTR_RD_CONFIG_REG, DUMMY_RD_CLK_CYCLES_FLD, 24, 5)
66 FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV4_FLD, 21, 3)
67 FIELD(DEV_INSTR_RD_CONFIG_REG, MODE_BIT_ENABLE_FLD, 20, 1)
68 FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV3_FLD, 18, 2)
69 FIELD(DEV_INSTR_RD_CONFIG_REG, DATA_XFER_TYPE_EXT_MODE_FLD, 16, 2)
70 FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV2_FLD, 14, 2)
71 FIELD(DEV_INSTR_RD_CONFIG_REG, ADDR_XFER_TYPE_STD_MODE_FLD, 12, 2)
72 FIELD(DEV_INSTR_RD_CONFIG_REG, PRED_DIS_FLD, 11, 1)
73 FIELD(DEV_INSTR_RD_CONFIG_REG, DDR_EN_FLD, 10, 1)
74 FIELD(DEV_INSTR_RD_CONFIG_REG, INSTR_TYPE_FLD, 8, 2)
75 FIELD(DEV_INSTR_RD_CONFIG_REG, RD_OPCODE_NON_XIP_FLD, 0, 8)
76 REG32(DEV_INSTR_WR_CONFIG_REG, 0x8)
77 FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV4_FLD, 29, 3)
78 FIELD(DEV_INSTR_WR_CONFIG_REG, DUMMY_WR_CLK_CYCLES_FLD, 24, 5)
79 FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV3_FLD, 18, 6)
80 FIELD(DEV_INSTR_WR_CONFIG_REG, DATA_XFER_TYPE_EXT_MODE_FLD, 16, 2)
81 FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV2_FLD, 14, 2)
82 FIELD(DEV_INSTR_WR_CONFIG_REG, ADDR_XFER_TYPE_STD_MODE_FLD, 12, 2)
83 FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV1_FLD, 9, 3)
84 FIELD(DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD, 8, 1)
85 FIELD(DEV_INSTR_WR_CONFIG_REG, WR_OPCODE_FLD, 0, 8)
86 REG32(DEV_DELAY_REG, 0xc)
87 FIELD(DEV_DELAY_REG, D_NSS_FLD, 24, 8)
88 FIELD(DEV_DELAY_REG, D_BTWN_FLD, 16, 8)
89 FIELD(DEV_DELAY_REG, D_AFTER_FLD, 8, 8)
90 FIELD(DEV_DELAY_REG, D_INIT_FLD, 0, 8)
91 REG32(RD_DATA_CAPTURE_REG, 0x10)
92 FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV3_FLD, 20, 12)
93 FIELD(RD_DATA_CAPTURE_REG, DDR_READ_DELAY_FLD, 16, 4)
94 FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV2_FLD, 9, 7)
95 FIELD(RD_DATA_CAPTURE_REG, DQS_ENABLE_FLD, 8, 1)
96 FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV1_FLD, 6, 2)
97 FIELD(RD_DATA_CAPTURE_REG, SAMPLE_EDGE_SEL_FLD, 5, 1)
98 FIELD(RD_DATA_CAPTURE_REG, DELAY_FLD, 1, 4)
99 FIELD(RD_DATA_CAPTURE_REG, BYPASS_FLD, 0, 1)
100 REG32(DEV_SIZE_CONFIG_REG, 0x14)
101 FIELD(DEV_SIZE_CONFIG_REG, DEV_SIZE_RESV_FLD, 29, 3)
102 FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS3_FLD, 27, 2)
103 FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS2_FLD, 25, 2)
104 FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS1_FLD, 23, 2)
105 FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS0_FLD, 21, 2)
106 FIELD(DEV_SIZE_CONFIG_REG, BYTES_PER_SUBSECTOR_FLD, 16, 5)
107 FIELD(DEV_SIZE_CONFIG_REG, BYTES_PER_DEVICE_PAGE_FLD, 4, 12)
108 FIELD(DEV_SIZE_CONFIG_REG, NUM_ADDR_BYTES_FLD, 0, 4)
109 REG32(SRAM_PARTITION_CFG_REG, 0x18)
110 FIELD(SRAM_PARTITION_CFG_REG, SRAM_PARTITION_RESV_FLD, 8, 24)
111 FIELD(SRAM_PARTITION_CFG_REG, ADDR_FLD, 0, 8)
112 REG32(IND_AHB_ADDR_TRIGGER_REG, 0x1c)
113 REG32(DMA_PERIPH_CONFIG_REG, 0x20)
114 FIELD(DMA_PERIPH_CONFIG_REG, DMA_PERIPH_RESV2_FLD, 12, 20)
115 FIELD(DMA_PERIPH_CONFIG_REG, NUM_BURST_REQ_BYTES_FLD, 8, 4)
116 FIELD(DMA_PERIPH_CONFIG_REG, DMA_PERIPH_RESV1_FLD, 4, 4)
117 FIELD(DMA_PERIPH_CONFIG_REG, NUM_SINGLE_REQ_BYTES_FLD, 0, 4)
118 REG32(REMAP_ADDR_REG, 0x24)
119 REG32(MODE_BIT_CONFIG_REG, 0x28)
120 FIELD(MODE_BIT_CONFIG_REG, RX_CRC_DATA_LOW_FLD, 24, 8)
121 FIELD(MODE_BIT_CONFIG_REG, RX_CRC_DATA_UP_FLD, 16, 8)
122 FIELD(MODE_BIT_CONFIG_REG, CRC_OUT_ENABLE_FLD, 15, 1)
123 FIELD(MODE_BIT_CONFIG_REG, MODE_BIT_RESV1_FLD, 11, 4)
124 FIELD(MODE_BIT_CONFIG_REG, CHUNK_SIZE_FLD, 8, 3)
125 FIELD(MODE_BIT_CONFIG_REG, MODE_FLD, 0, 8)
126 REG32(SRAM_FILL_REG, 0x2c)
127 FIELD(SRAM_FILL_REG, SRAM_FILL_INDAC_WRITE_FLD, 16, 16)
128 FIELD(SRAM_FILL_REG, SRAM_FILL_INDAC_READ_FLD, 0, 16)
129 REG32(TX_THRESH_REG, 0x30)
130 FIELD(TX_THRESH_REG, TX_THRESH_RESV_FLD, 5, 27)
131 FIELD(TX_THRESH_REG, LEVEL_FLD, 0, 5)
132 REG32(RX_THRESH_REG, 0x34)
133 FIELD(RX_THRESH_REG, RX_THRESH_RESV_FLD, 5, 27)
134 FIELD(RX_THRESH_REG, LEVEL_FLD, 0, 5)
135 REG32(WRITE_COMPLETION_CTRL_REG, 0x38)
136 FIELD(WRITE_COMPLETION_CTRL_REG, POLL_REP_DELAY_FLD, 24, 8)
137 FIELD(WRITE_COMPLETION_CTRL_REG, POLL_COUNT_FLD, 16, 8)
138 FIELD(WRITE_COMPLETION_CTRL_REG, ENABLE_POLLING_EXP_FLD, 15, 1)
139 FIELD(WRITE_COMPLETION_CTRL_REG, DISABLE_POLLING_FLD, 14, 1)
140 FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_POLARITY_FLD, 13, 1)
141 FIELD(WRITE_COMPLETION_CTRL_REG, WR_COMP_CTRL_RESV1_FLD, 12, 1)
142 FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_ADDR_EN_FLD, 11, 1)
143 FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_BIT_INDEX_FLD, 8, 3)
144 FIELD(WRITE_COMPLETION_CTRL_REG, OPCODE_FLD, 0, 8)
145 REG32(NO_OF_POLLS_BEF_EXP_REG, 0x3c)
146 REG32(IRQ_STATUS_REG, 0x40)
147 FIELD(IRQ_STATUS_REG, IRQ_STAT_RESV_FLD, 20, 12)
148 FIELD(IRQ_STATUS_REG, ECC_FAIL_FLD, 19, 1)
149 FIELD(IRQ_STATUS_REG, TX_CRC_CHUNK_BRK_FLD, 18, 1)
150 FIELD(IRQ_STATUS_REG, RX_CRC_DATA_VAL_FLD, 17, 1)
151 FIELD(IRQ_STATUS_REG, RX_CRC_DATA_ERR_FLD, 16, 1)
152 FIELD(IRQ_STATUS_REG, IRQ_STAT_RESV1_FLD, 15, 1)
153 FIELD(IRQ_STATUS_REG, STIG_REQ_INT_FLD, 14, 1)
154 FIELD(IRQ_STATUS_REG, POLL_EXP_INT_FLD, 13, 1)
155 FIELD(IRQ_STATUS_REG, INDRD_SRAM_FULL_FLD, 12, 1)
156 FIELD(IRQ_STATUS_REG, RX_FIFO_FULL_FLD, 11, 1)
157 FIELD(IRQ_STATUS_REG, RX_FIFO_NOT_EMPTY_FLD, 10, 1)
158 FIELD(IRQ_STATUS_REG, TX_FIFO_FULL_FLD, 9, 1)
159 FIELD(IRQ_STATUS_REG, TX_FIFO_NOT_FULL_FLD, 8, 1)
160 FIELD(IRQ_STATUS_REG, RECV_OVERFLOW_FLD, 7, 1)
161 FIELD(IRQ_STATUS_REG, INDIRECT_XFER_LEVEL_BREACH_FLD, 6, 1)
162 FIELD(IRQ_STATUS_REG, ILLEGAL_ACCESS_DET_FLD, 5, 1)
163 FIELD(IRQ_STATUS_REG, PROT_WR_ATTEMPT_FLD, 4, 1)
164 FIELD(IRQ_STATUS_REG, INDIRECT_TRANSFER_REJECT_FLD, 3, 1)
165 FIELD(IRQ_STATUS_REG, INDIRECT_OP_DONE_FLD, 2, 1)
166 FIELD(IRQ_STATUS_REG, UNDERFLOW_DET_FLD, 1, 1)
167 FIELD(IRQ_STATUS_REG, MODE_M_FAIL_FLD, 0, 1)
168 REG32(IRQ_MASK_REG, 0x44)
169 FIELD(IRQ_MASK_REG, IRQ_MASK_RESV_FLD, 20, 12)
170 FIELD(IRQ_MASK_REG, ECC_FAIL_MASK_FLD, 19, 1)
171 FIELD(IRQ_MASK_REG, TX_CRC_CHUNK_BRK_MASK_FLD, 18, 1)
172 FIELD(IRQ_MASK_REG, RX_CRC_DATA_VAL_MASK_FLD, 17, 1)
173 FIELD(IRQ_MASK_REG, RX_CRC_DATA_ERR_MASK_FLD, 16, 1)
174 FIELD(IRQ_MASK_REG, IRQ_MASK_RESV1_FLD, 15, 1)
175 FIELD(IRQ_MASK_REG, STIG_REQ_MASK_FLD, 14, 1)
176 FIELD(IRQ_MASK_REG, POLL_EXP_INT_MASK_FLD, 13, 1)
177 FIELD(IRQ_MASK_REG, INDRD_SRAM_FULL_MASK_FLD, 12, 1)
178 FIELD(IRQ_MASK_REG, RX_FIFO_FULL_MASK_FLD, 11, 1)
179 FIELD(IRQ_MASK_REG, RX_FIFO_NOT_EMPTY_MASK_FLD, 10, 1)
180 FIELD(IRQ_MASK_REG, TX_FIFO_FULL_MASK_FLD, 9, 1)
181 FIELD(IRQ_MASK_REG, TX_FIFO_NOT_FULL_MASK_FLD, 8, 1)
182 FIELD(IRQ_MASK_REG, RECV_OVERFLOW_MASK_FLD, 7, 1)
183 FIELD(IRQ_MASK_REG, INDIRECT_XFER_LEVEL_BREACH_MASK_FLD, 6, 1)
184 FIELD(IRQ_MASK_REG, ILLEGAL_ACCESS_DET_MASK_FLD, 5, 1)
185 FIELD(IRQ_MASK_REG, PROT_WR_ATTEMPT_MASK_FLD, 4, 1)
186 FIELD(IRQ_MASK_REG, INDIRECT_TRANSFER_REJECT_MASK_FLD, 3, 1)
187 FIELD(IRQ_MASK_REG, INDIRECT_OP_DONE_MASK_FLD, 2, 1)
188 FIELD(IRQ_MASK_REG, UNDERFLOW_DET_MASK_FLD, 1, 1)
189 FIELD(IRQ_MASK_REG, MODE_M_FAIL_MASK_FLD, 0, 1)
190 REG32(LOWER_WR_PROT_REG, 0x50)
191 REG32(UPPER_WR_PROT_REG, 0x54)
192 REG32(WR_PROT_CTRL_REG, 0x58)
193 FIELD(WR_PROT_CTRL_REG, WR_PROT_CTRL_RESV_FLD, 2, 30)
194 FIELD(WR_PROT_CTRL_REG, ENB_FLD, 1, 1)
195 FIELD(WR_PROT_CTRL_REG, INV_FLD, 0, 1)
196 REG32(INDIRECT_READ_XFER_CTRL_REG, 0x60)
197 FIELD(INDIRECT_READ_XFER_CTRL_REG, INDIR_RD_XFER_RESV_FLD, 8, 24)
198 FIELD(INDIRECT_READ_XFER_CTRL_REG, NUM_IND_OPS_DONE_FLD, 6, 2)
199 FIELD(INDIRECT_READ_XFER_CTRL_REG, IND_OPS_DONE_STATUS_FLD, 5, 1)
200 FIELD(INDIRECT_READ_XFER_CTRL_REG, RD_QUEUED_FLD, 4, 1)
201 FIELD(INDIRECT_READ_XFER_CTRL_REG, SRAM_FULL_FLD, 3, 1)
202 FIELD(INDIRECT_READ_XFER_CTRL_REG, RD_STATUS_FLD, 2, 1)
203 FIELD(INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD, 1, 1)
204 FIELD(INDIRECT_READ_XFER_CTRL_REG, START_FLD, 0, 1)
205 REG32(INDIRECT_READ_XFER_WATERMARK_REG, 0x64)
206 REG32(INDIRECT_READ_XFER_START_REG, 0x68)
207 REG32(INDIRECT_READ_XFER_NUM_BYTES_REG, 0x6c)
208 REG32(INDIRECT_WRITE_XFER_CTRL_REG, 0x70)
209 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, INDIR_WR_XFER_RESV2_FLD, 8, 24)
210 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, NUM_IND_OPS_DONE_FLD, 6, 2)
211 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, IND_OPS_DONE_STATUS_FLD, 5, 1)
212 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, WR_QUEUED_FLD, 4, 1)
213 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, INDIR_WR_XFER_RESV1_FLD, 3, 1)
214 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, WR_STATUS_FLD, 2, 1)
215 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD, 1, 1)
216 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, START_FLD, 0, 1)
217 REG32(INDIRECT_WRITE_XFER_WATERMARK_REG, 0x74)
218 REG32(INDIRECT_WRITE_XFER_START_REG, 0x78)
219 REG32(INDIRECT_WRITE_XFER_NUM_BYTES_REG, 0x7c)
220 REG32(INDIRECT_TRIGGER_ADDR_RANGE_REG, 0x80)
221 FIELD(INDIRECT_TRIGGER_ADDR_RANGE_REG, IND_RANGE_RESV1_FLD, 4, 28)
222 FIELD(INDIRECT_TRIGGER_ADDR_RANGE_REG, IND_RANGE_WIDTH_FLD, 0, 4)
223 REG32(FLASH_COMMAND_CTRL_MEM_REG, 0x8c)
224 FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV1_FLD, 29, 3)
225 FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_ADDR_FLD, 20, 9)
226 FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV2_FLD, 19, 1)
227 FIELD(FLASH_COMMAND_CTRL_MEM_REG, NB_OF_STIG_READ_BYTES_FLD, 16, 3)
228 FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_READ_DATA_FLD, 8, 8)
229 FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV3_FLD, 2, 6)
230 FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_REQ_IN_PROGRESS_FLD, 1, 1)
231 FIELD(FLASH_COMMAND_CTRL_MEM_REG, TRIGGER_MEM_BANK_REQ_FLD, 0, 1)
232 REG32(FLASH_CMD_CTRL_REG, 0x90)
233 FIELD(FLASH_CMD_CTRL_REG, CMD_OPCODE_FLD, 24, 8)
234 FIELD(FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD, 23, 1)
235 FIELD(FLASH_CMD_CTRL_REG, NUM_RD_DATA_BYTES_FLD, 20, 3)
236 FIELD(FLASH_CMD_CTRL_REG, ENB_COMD_ADDR_FLD, 19, 1)
237 FIELD(FLASH_CMD_CTRL_REG, ENB_MODE_BIT_FLD, 18, 1)
238 FIELD(FLASH_CMD_CTRL_REG, NUM_ADDR_BYTES_FLD, 16, 2)
239 FIELD(FLASH_CMD_CTRL_REG, ENB_WRITE_DATA_FLD, 15, 1)
240 FIELD(FLASH_CMD_CTRL_REG, NUM_WR_DATA_BYTES_FLD, 12, 3)
241 FIELD(FLASH_CMD_CTRL_REG, NUM_DUMMY_CYCLES_FLD, 7, 5)
242 FIELD(FLASH_CMD_CTRL_REG, FLASH_CMD_CTRL_RESV1_FLD, 3, 4)
243 FIELD(FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD, 2, 1)
244 FIELD(FLASH_CMD_CTRL_REG, CMD_EXEC_STATUS_FLD, 1, 1)
245 FIELD(FLASH_CMD_CTRL_REG, CMD_EXEC_FLD, 0, 1)
246 REG32(FLASH_CMD_ADDR_REG, 0x94)
247 REG32(FLASH_RD_DATA_LOWER_REG, 0xa0)
248 REG32(FLASH_RD_DATA_UPPER_REG, 0xa4)
249 REG32(FLASH_WR_DATA_LOWER_REG, 0xa8)
250 REG32(FLASH_WR_DATA_UPPER_REG, 0xac)
251 REG32(POLLING_FLASH_STATUS_REG, 0xb0)
252 FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_RSVD_FLD2, 21, 11)
253 FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_NB_DUMMY, 16, 5)
254 FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_RSVD_FLD1, 9, 7)
255 FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_VALID_FLD, 8, 1)
256 FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_FLD, 0, 8)
257 REG32(PHY_CONFIGURATION_REG, 0xb4)
258 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESYNC_FLD, 31, 1)
259 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESET_FLD, 30, 1)
260 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RX_DLL_BYPASS_FLD, 29, 1)
261 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESV2_FLD, 23, 6)
262 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_TX_DLL_DELAY_FLD, 16, 7)
263 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESV1_FLD, 7, 9)
264 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RX_DLL_DELAY_FLD, 0, 7)
265 REG32(PHY_MASTER_CONTROL_REG, 0xb8)
266 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV3_FLD, 25, 7)
267 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_LOCK_MODE_FLD, 24, 1)
268 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_BYPASS_MODE_FLD, 23, 1)
269 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_PHASE_DETECT_SELECTOR_FLD, 20, 3)
270 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV2_FLD, 19, 1)
271 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_NB_INDICATIONS_FLD, 16, 3)
272 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV1_FLD, 7, 9)
273 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_INITIAL_DELAY_FLD, 0, 7)
274 REG32(DLL_OBSERVABLE_LOWER_REG, 0xbc)
275 FIELD(DLL_OBSERVABLE_LOWER_REG,
276 DLL_OBSERVABLE_LOWER_DLL_LOCK_INC_FLD, 24, 8)
277 FIELD(DLL_OBSERVABLE_LOWER_REG,
278 DLL_OBSERVABLE_LOWER_DLL_LOCK_DEC_FLD, 16, 8)
279 FIELD(DLL_OBSERVABLE_LOWER_REG,
280 DLL_OBSERVABLE_LOWER_LOOPBACK_LOCK_FLD, 15, 1)
281 FIELD(DLL_OBSERVABLE_LOWER_REG,
282 DLL_OBSERVABLE_LOWER_LOCK_VALUE_FLD, 8, 7)
283 FIELD(DLL_OBSERVABLE_LOWER_REG,
284 DLL_OBSERVABLE_LOWER_UNLOCK_COUNTER_FLD, 3, 5)
285 FIELD(DLL_OBSERVABLE_LOWER_REG,
286 DLL_OBSERVABLE_LOWER_LOCK_MODE_FLD, 1, 2)
287 FIELD(DLL_OBSERVABLE_LOWER_REG,
288 DLL_OBSERVABLE_LOWER_DLL_LOCK_FLD, 0, 1)
289 REG32(DLL_OBSERVABLE_UPPER_REG, 0xc0)
290 FIELD(DLL_OBSERVABLE_UPPER_REG,
291 DLL_OBSERVABLE_UPPER_RESV2_FLD, 23, 9)
292 FIELD(DLL_OBSERVABLE_UPPER_REG,
293 DLL_OBSERVABLE_UPPER_TX_DECODER_OUTPUT_FLD, 16, 7)
294 FIELD(DLL_OBSERVABLE_UPPER_REG,
295 DLL_OBSERVABLE_UPPER_RESV1_FLD, 7, 9)
296 FIELD(DLL_OBSERVABLE_UPPER_REG,
297 DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD, 0, 7)
298 REG32(OPCODE_EXT_LOWER_REG, 0xe0)
299 FIELD(OPCODE_EXT_LOWER_REG, EXT_READ_OPCODE_FLD, 24, 8)
300 FIELD(OPCODE_EXT_LOWER_REG, EXT_WRITE_OPCODE_FLD, 16, 8)
301 FIELD(OPCODE_EXT_LOWER_REG, EXT_POLL_OPCODE_FLD, 8, 8)
302 FIELD(OPCODE_EXT_LOWER_REG, EXT_STIG_OPCODE_FLD, 0, 8)
303 REG32(OPCODE_EXT_UPPER_REG, 0xe4)
304 FIELD(OPCODE_EXT_UPPER_REG, WEL_OPCODE_FLD, 24, 8)
305 FIELD(OPCODE_EXT_UPPER_REG, EXT_WEL_OPCODE_FLD, 16, 8)
306 FIELD(OPCODE_EXT_UPPER_REG, OPCODE_EXT_UPPER_RESV1_FLD, 0, 16)
307 REG32(MODULE_ID_REG, 0xfc)
308 FIELD(MODULE_ID_REG, FIX_PATCH_FLD, 24, 8)
309 FIELD(MODULE_ID_REG, MODULE_ID_FLD, 8, 16)
310 FIELD(MODULE_ID_REG, MODULE_ID_RESV_FLD, 2, 6)
311 FIELD(MODULE_ID_REG, CONF_FLD, 0, 2)
312
313 #define RXFF_SZ 1024
314 #define TXFF_SZ 1024
315
316 #define MAX_RX_DEC_OUT 8
317
318 #define SZ_512MBIT (512 * 1024 * 1024)
319 #define SZ_1GBIT (1024 * 1024 * 1024)
320 #define SZ_2GBIT (2ULL * SZ_1GBIT)
321 #define SZ_4GBIT (4ULL * SZ_1GBIT)
322
323 #define IS_IND_DMA_START(op) (op->done_bytes == 0)
324 /*
325 * Bit field size of R_INDIRECT_WRITE_XFER_CTRL_REG_NUM_IND_OPS_DONE_FLD
326 * is 2 bits, which can record max of 3 indac operations.
327 */
328 #define IND_OPS_DONE_MAX 3
329
330 typedef enum {
331 WREN = 0x6,
332 } FlashCMD;
333
ospi_stig_addr_len(XlnxVersalOspi * s)334 static unsigned int ospi_stig_addr_len(XlnxVersalOspi *s)
335 {
336 /* Num address bytes is NUM_ADDR_BYTES_FLD + 1 */
337 return ARRAY_FIELD_EX32(s->regs,
338 FLASH_CMD_CTRL_REG, NUM_ADDR_BYTES_FLD) + 1;
339 }
340
ospi_stig_wr_data_len(XlnxVersalOspi * s)341 static unsigned int ospi_stig_wr_data_len(XlnxVersalOspi *s)
342 {
343 /* Num write data bytes is NUM_WR_DATA_BYTES_FLD + 1 */
344 return ARRAY_FIELD_EX32(s->regs,
345 FLASH_CMD_CTRL_REG, NUM_WR_DATA_BYTES_FLD) + 1;
346 }
347
ospi_stig_rd_data_len(XlnxVersalOspi * s)348 static unsigned int ospi_stig_rd_data_len(XlnxVersalOspi *s)
349 {
350 /* Num read data bytes is NUM_RD_DATA_BYTES_FLD + 1 */
351 return ARRAY_FIELD_EX32(s->regs,
352 FLASH_CMD_CTRL_REG, NUM_RD_DATA_BYTES_FLD) + 1;
353 }
354
355 /*
356 * Status bits in R_IRQ_STATUS_REG are set when the event occurs and the
357 * interrupt is enabled in the mask register ([1] Section 2.3.17)
358 */
set_irq(XlnxVersalOspi * s,uint32_t set_mask)359 static void set_irq(XlnxVersalOspi *s, uint32_t set_mask)
360 {
361 s->regs[R_IRQ_STATUS_REG] |= s->regs[R_IRQ_MASK_REG] & set_mask;
362 }
363
ospi_update_irq_line(XlnxVersalOspi * s)364 static void ospi_update_irq_line(XlnxVersalOspi *s)
365 {
366 qemu_set_irq(s->irq, !!(s->regs[R_IRQ_STATUS_REG] &
367 s->regs[R_IRQ_MASK_REG]));
368 }
369
ospi_get_wr_opcode(XlnxVersalOspi * s)370 static uint8_t ospi_get_wr_opcode(XlnxVersalOspi *s)
371 {
372 return ARRAY_FIELD_EX32(s->regs,
373 DEV_INSTR_WR_CONFIG_REG, WR_OPCODE_FLD);
374 }
375
ospi_get_rd_opcode(XlnxVersalOspi * s)376 static uint8_t ospi_get_rd_opcode(XlnxVersalOspi *s)
377 {
378 return ARRAY_FIELD_EX32(s->regs,
379 DEV_INSTR_RD_CONFIG_REG, RD_OPCODE_NON_XIP_FLD);
380 }
381
ospi_get_num_addr_bytes(XlnxVersalOspi * s)382 static uint32_t ospi_get_num_addr_bytes(XlnxVersalOspi *s)
383 {
384 /* Num address bytes is NUM_ADDR_BYTES_FLD + 1 */
385 return ARRAY_FIELD_EX32(s->regs,
386 DEV_SIZE_CONFIG_REG, NUM_ADDR_BYTES_FLD) + 1;
387 }
388
ospi_stig_membank_req(XlnxVersalOspi * s)389 static void ospi_stig_membank_req(XlnxVersalOspi *s)
390 {
391 int idx = ARRAY_FIELD_EX32(s->regs,
392 FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_ADDR_FLD);
393
394 ARRAY_FIELD_DP32(s->regs, FLASH_COMMAND_CTRL_MEM_REG,
395 MEM_BANK_READ_DATA_FLD, s->stig_membank[idx]);
396 }
397
ospi_stig_membank_rd_bytes(XlnxVersalOspi * s)398 static int ospi_stig_membank_rd_bytes(XlnxVersalOspi *s)
399 {
400 int rd_data_fld = ARRAY_FIELD_EX32(s->regs, FLASH_COMMAND_CTRL_MEM_REG,
401 NB_OF_STIG_READ_BYTES_FLD);
402 static const int sizes[6] = { 16, 32, 64, 128, 256, 512 };
403 return (rd_data_fld < 6) ? sizes[rd_data_fld] : 0;
404 }
405
ospi_get_page_sz(XlnxVersalOspi * s)406 static uint32_t ospi_get_page_sz(XlnxVersalOspi *s)
407 {
408 return ARRAY_FIELD_EX32(s->regs,
409 DEV_SIZE_CONFIG_REG, BYTES_PER_DEVICE_PAGE_FLD);
410 }
411
ospi_ind_rd_watermark_enabled(XlnxVersalOspi * s)412 static bool ospi_ind_rd_watermark_enabled(XlnxVersalOspi *s)
413 {
414 return s->regs[R_INDIRECT_READ_XFER_WATERMARK_REG];
415 }
416
ind_op_advance(IndOp * op,unsigned int len)417 static void ind_op_advance(IndOp *op, unsigned int len)
418 {
419 op->done_bytes += len;
420 assert(op->done_bytes <= op->num_bytes);
421 if (op->done_bytes == op->num_bytes) {
422 op->completed = true;
423 }
424 }
425
ind_op_next_byte(IndOp * op)426 static uint32_t ind_op_next_byte(IndOp *op)
427 {
428 return op->flash_addr + op->done_bytes;
429 }
430
ind_op_end_byte(IndOp * op)431 static uint32_t ind_op_end_byte(IndOp *op)
432 {
433 return op->flash_addr + op->num_bytes;
434 }
435
ospi_ind_op_next(IndOp * op)436 static void ospi_ind_op_next(IndOp *op)
437 {
438 op[0] = op[1];
439 op[1].completed = true;
440 }
441
ind_op_setup(IndOp * op,uint32_t flash_addr,uint32_t num_bytes)442 static void ind_op_setup(IndOp *op, uint32_t flash_addr, uint32_t num_bytes)
443 {
444 if (num_bytes & 0x3) {
445 qemu_log_mask(LOG_GUEST_ERROR,
446 "OSPI indirect op num bytes not word aligned\n");
447 }
448 op->flash_addr = flash_addr;
449 op->num_bytes = num_bytes;
450 op->done_bytes = 0;
451 op->completed = false;
452 }
453
ospi_ind_op_completed(IndOp * op)454 static bool ospi_ind_op_completed(IndOp *op)
455 {
456 return op->completed;
457 }
458
ospi_ind_op_all_completed(XlnxVersalOspi * s)459 static bool ospi_ind_op_all_completed(XlnxVersalOspi *s)
460 {
461 return s->rd_ind_op[0].completed && s->wr_ind_op[0].completed;
462 }
463
ospi_ind_op_cancel(IndOp * op)464 static void ospi_ind_op_cancel(IndOp *op)
465 {
466 op[0].completed = true;
467 op[1].completed = true;
468 }
469
ospi_ind_op_add(IndOp * op,Fifo8 * fifo,uint32_t flash_addr,uint32_t num_bytes)470 static bool ospi_ind_op_add(IndOp *op, Fifo8 *fifo,
471 uint32_t flash_addr, uint32_t num_bytes)
472 {
473 /* Check if first indirect op has been completed */
474 if (op->completed) {
475 fifo8_reset(fifo);
476 ind_op_setup(op, flash_addr, num_bytes);
477 return false;
478 }
479
480 /* Check if second indirect op has been completed */
481 op++;
482 if (op->completed) {
483 ind_op_setup(op, flash_addr, num_bytes);
484 return false;
485 }
486 return true;
487 }
488
ospi_ind_op_queue_up_rd(XlnxVersalOspi * s)489 static void ospi_ind_op_queue_up_rd(XlnxVersalOspi *s)
490 {
491 uint32_t num_bytes = s->regs[R_INDIRECT_READ_XFER_NUM_BYTES_REG];
492 uint32_t flash_addr = s->regs[R_INDIRECT_READ_XFER_START_REG];
493 bool failed;
494
495 failed = ospi_ind_op_add(s->rd_ind_op, &s->rx_sram, flash_addr, num_bytes);
496 /* If two already queued set rd reject interrupt */
497 if (failed) {
498 set_irq(s, R_IRQ_STATUS_REG_INDIRECT_TRANSFER_REJECT_FLD_MASK);
499 }
500 }
501
ospi_ind_op_queue_up_wr(XlnxVersalOspi * s)502 static void ospi_ind_op_queue_up_wr(XlnxVersalOspi *s)
503 {
504 uint32_t num_bytes = s->regs[R_INDIRECT_WRITE_XFER_NUM_BYTES_REG];
505 uint32_t flash_addr = s->regs[R_INDIRECT_WRITE_XFER_START_REG];
506 bool failed;
507
508 failed = ospi_ind_op_add(s->wr_ind_op, &s->tx_sram, flash_addr, num_bytes);
509 /* If two already queued set rd reject interrupt */
510 if (failed) {
511 set_irq(s, R_IRQ_STATUS_REG_INDIRECT_TRANSFER_REJECT_FLD_MASK);
512 }
513 }
514
flash_sz(XlnxVersalOspi * s,unsigned int cs)515 static uint64_t flash_sz(XlnxVersalOspi *s, unsigned int cs)
516 {
517 /* Flash sizes in MB */
518 static const uint64_t sizes[4] = { SZ_512MBIT / 8, SZ_1GBIT / 8,
519 SZ_2GBIT / 8, SZ_4GBIT / 8 };
520 uint32_t v = s->regs[R_DEV_SIZE_CONFIG_REG];
521
522 v >>= cs * R_DEV_SIZE_CONFIG_REG_MEM_SIZE_ON_CS0_FLD_LENGTH;
523 return sizes[FIELD_EX32(v, DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS0_FLD)];
524 }
525
ospi_get_block_sz(XlnxVersalOspi * s)526 static unsigned int ospi_get_block_sz(XlnxVersalOspi *s)
527 {
528 unsigned int block_fld = ARRAY_FIELD_EX32(s->regs,
529 DEV_SIZE_CONFIG_REG,
530 BYTES_PER_SUBSECTOR_FLD);
531 return 1 << block_fld;
532 }
533
flash_blocks(XlnxVersalOspi * s,unsigned int cs)534 static unsigned int flash_blocks(XlnxVersalOspi *s, unsigned int cs)
535 {
536 unsigned int b_sz = ospi_get_block_sz(s);
537 unsigned int f_sz = flash_sz(s, cs);
538
539 return f_sz / b_sz;
540 }
541
ospi_ahb_decoder_cs(XlnxVersalOspi * s,hwaddr addr)542 static int ospi_ahb_decoder_cs(XlnxVersalOspi *s, hwaddr addr)
543 {
544 uint64_t end_addr = 0;
545 int cs;
546
547 for (cs = 0; cs < s->num_cs; cs++) {
548 end_addr += flash_sz(s, cs);
549 if (addr < end_addr) {
550 break;
551 }
552 }
553
554 if (cs == s->num_cs) {
555 /* Address is out of range */
556 qemu_log_mask(LOG_GUEST_ERROR,
557 "OSPI flash address does not fit in configuration\n");
558 return -1;
559 }
560 return cs;
561 }
562
ospi_ahb_decoder_enable_cs(XlnxVersalOspi * s,hwaddr addr)563 static void ospi_ahb_decoder_enable_cs(XlnxVersalOspi *s, hwaddr addr)
564 {
565 int cs = ospi_ahb_decoder_cs(s, addr);
566
567 if (cs >= 0) {
568 for (int i = 0; i < s->num_cs; i++) {
569 qemu_set_irq(s->cs_lines[i], cs != i);
570 }
571 }
572 }
573
single_cs(XlnxVersalOspi * s)574 static unsigned int single_cs(XlnxVersalOspi *s)
575 {
576 unsigned int field = ARRAY_FIELD_EX32(s->regs,
577 CONFIG_REG, PERIPH_CS_LINES_FLD);
578
579 /*
580 * Below one liner is a trick that finds the rightmost zero and makes sure
581 * all other bits are turned to 1. It is a variant of the 'Isolate the
582 * rightmost 0-bit' trick found below at the time of writing:
583 *
584 * https://emre.me/computer-science/bit-manipulation-tricks/
585 *
586 * 4'bXXX0 -> 4'b1110
587 * 4'bXX01 -> 4'b1101
588 * 4'bX011 -> 4'b1011
589 * 4'b0111 -> 4'b0111
590 * 4'b1111 -> 4'b1111
591 */
592 return (field | ~(field + 1)) & 0xf;
593 }
594
ospi_update_cs_lines(XlnxVersalOspi * s)595 static void ospi_update_cs_lines(XlnxVersalOspi *s)
596 {
597 unsigned int all_cs;
598 int i;
599
600 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, PERIPH_SEL_DEC_FLD)) {
601 all_cs = ARRAY_FIELD_EX32(s->regs, CONFIG_REG, PERIPH_CS_LINES_FLD);
602 } else {
603 all_cs = single_cs(s);
604 }
605
606 for (i = 0; i < s->num_cs; i++) {
607 bool cs = (all_cs >> i) & 1;
608
609 qemu_set_irq(s->cs_lines[i], cs);
610 }
611 }
612
ospi_dac_cs(XlnxVersalOspi * s,hwaddr addr)613 static void ospi_dac_cs(XlnxVersalOspi *s, hwaddr addr)
614 {
615 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENABLE_AHB_DECODER_FLD)) {
616 ospi_ahb_decoder_enable_cs(s, addr);
617 } else {
618 ospi_update_cs_lines(s);
619 }
620 }
621
ospi_disable_cs(XlnxVersalOspi * s)622 static void ospi_disable_cs(XlnxVersalOspi *s)
623 {
624 int i;
625
626 for (i = 0; i < s->num_cs; i++) {
627 qemu_set_irq(s->cs_lines[i], 1);
628 }
629 }
630
ospi_flush_txfifo(XlnxVersalOspi * s)631 static void ospi_flush_txfifo(XlnxVersalOspi *s)
632 {
633 while (!fifo8_is_empty(&s->tx_fifo)) {
634 uint32_t tx_rx = fifo8_pop(&s->tx_fifo);
635
636 tx_rx = ssi_transfer(s->spi, tx_rx);
637 fifo8_push(&s->rx_fifo, tx_rx);
638 }
639 }
640
ospi_tx_fifo_push_address_raw(XlnxVersalOspi * s,uint32_t flash_addr,unsigned int addr_bytes)641 static void ospi_tx_fifo_push_address_raw(XlnxVersalOspi *s,
642 uint32_t flash_addr,
643 unsigned int addr_bytes)
644 {
645 /* Push write address */
646 if (addr_bytes == 4) {
647 fifo8_push(&s->tx_fifo, flash_addr >> 24);
648 }
649 if (addr_bytes >= 3) {
650 fifo8_push(&s->tx_fifo, flash_addr >> 16);
651 }
652 if (addr_bytes >= 2) {
653 fifo8_push(&s->tx_fifo, flash_addr >> 8);
654 }
655 fifo8_push(&s->tx_fifo, flash_addr);
656 }
657
ospi_tx_fifo_push_address(XlnxVersalOspi * s,uint32_t flash_addr)658 static void ospi_tx_fifo_push_address(XlnxVersalOspi *s, uint32_t flash_addr)
659 {
660 /* Push write address */
661 int addr_bytes = ospi_get_num_addr_bytes(s);
662
663 ospi_tx_fifo_push_address_raw(s, flash_addr, addr_bytes);
664 }
665
ospi_tx_fifo_push_stig_addr(XlnxVersalOspi * s)666 static void ospi_tx_fifo_push_stig_addr(XlnxVersalOspi *s)
667 {
668 uint32_t flash_addr = s->regs[R_FLASH_CMD_ADDR_REG];
669 unsigned int addr_bytes = ospi_stig_addr_len(s);
670
671 ospi_tx_fifo_push_address_raw(s, flash_addr, addr_bytes);
672 }
673
ospi_tx_fifo_push_rd_op_addr(XlnxVersalOspi * s,uint32_t flash_addr)674 static void ospi_tx_fifo_push_rd_op_addr(XlnxVersalOspi *s, uint32_t flash_addr)
675 {
676 uint8_t inst_code = ospi_get_rd_opcode(s);
677
678 fifo8_reset(&s->tx_fifo);
679
680 /* Push read opcode */
681 fifo8_push(&s->tx_fifo, inst_code);
682
683 /* Push read address */
684 ospi_tx_fifo_push_address(s, flash_addr);
685 }
686
ospi_tx_fifo_push_stig_wr_data(XlnxVersalOspi * s)687 static void ospi_tx_fifo_push_stig_wr_data(XlnxVersalOspi *s)
688 {
689 uint64_t data = s->regs[R_FLASH_WR_DATA_LOWER_REG];
690 int wr_data_len = ospi_stig_wr_data_len(s);
691 int i;
692
693 data |= (uint64_t) s->regs[R_FLASH_WR_DATA_UPPER_REG] << 32;
694 for (i = 0; i < wr_data_len; i++) {
695 int shift = i * 8;
696 fifo8_push(&s->tx_fifo, data >> shift);
697 }
698 }
699
ospi_tx_fifo_push_stig_rd_data(XlnxVersalOspi * s)700 static void ospi_tx_fifo_push_stig_rd_data(XlnxVersalOspi *s)
701 {
702 int rd_data_len;
703 int i;
704
705 if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD)) {
706 rd_data_len = ospi_stig_membank_rd_bytes(s);
707 } else {
708 rd_data_len = ospi_stig_rd_data_len(s);
709 }
710
711 /* transmit second part (data) */
712 for (i = 0; i < rd_data_len; ++i) {
713 fifo8_push(&s->tx_fifo, 0);
714 }
715 }
716
ospi_rx_fifo_pop_stig_rd_data(XlnxVersalOspi * s)717 static void ospi_rx_fifo_pop_stig_rd_data(XlnxVersalOspi *s)
718 {
719 int size = ospi_stig_rd_data_len(s);
720 uint8_t bytes[8] = {};
721 int i;
722
723 size = MIN(fifo8_num_used(&s->rx_fifo), size);
724
725 assert(size <= 8);
726
727 for (i = 0; i < size; i++) {
728 bytes[i] = fifo8_pop(&s->rx_fifo);
729 }
730
731 s->regs[R_FLASH_RD_DATA_LOWER_REG] = ldl_le_p(bytes);
732 s->regs[R_FLASH_RD_DATA_UPPER_REG] = ldl_le_p(bytes + 4);
733 }
734
ospi_ind_read(XlnxVersalOspi * s,uint32_t flash_addr,uint32_t len)735 static void ospi_ind_read(XlnxVersalOspi *s, uint32_t flash_addr, uint32_t len)
736 {
737 int i;
738
739 /* Create first section of read cmd */
740 ospi_tx_fifo_push_rd_op_addr(s, flash_addr);
741
742 /* transmit first part */
743 ospi_update_cs_lines(s);
744 ospi_flush_txfifo(s);
745
746 fifo8_reset(&s->rx_fifo);
747
748 /* transmit second part (data) */
749 for (i = 0; i < len; ++i) {
750 fifo8_push(&s->tx_fifo, 0);
751 }
752 ospi_flush_txfifo(s);
753
754 for (i = 0; i < len; ++i) {
755 fifo8_push(&s->rx_sram, fifo8_pop(&s->rx_fifo));
756 }
757
758 /* done */
759 ospi_disable_cs(s);
760 }
761
ospi_dma_burst_size(XlnxVersalOspi * s)762 static unsigned int ospi_dma_burst_size(XlnxVersalOspi *s)
763 {
764 return 1 << ARRAY_FIELD_EX32(s->regs,
765 DMA_PERIPH_CONFIG_REG,
766 NUM_BURST_REQ_BYTES_FLD);
767 }
768
ospi_dma_single_size(XlnxVersalOspi * s)769 static unsigned int ospi_dma_single_size(XlnxVersalOspi *s)
770 {
771 return 1 << ARRAY_FIELD_EX32(s->regs,
772 DMA_PERIPH_CONFIG_REG,
773 NUM_SINGLE_REQ_BYTES_FLD);
774 }
775
ind_rd_inc_num_done(XlnxVersalOspi * s)776 static void ind_rd_inc_num_done(XlnxVersalOspi *s)
777 {
778 unsigned int done = ARRAY_FIELD_EX32(s->regs,
779 INDIRECT_READ_XFER_CTRL_REG,
780 NUM_IND_OPS_DONE_FLD);
781 if (done < IND_OPS_DONE_MAX) {
782 done++;
783 }
784 done &= 0x3;
785 ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG,
786 NUM_IND_OPS_DONE_FLD, done);
787 }
788
ospi_ind_rd_completed(XlnxVersalOspi * s)789 static void ospi_ind_rd_completed(XlnxVersalOspi *s)
790 {
791 ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG,
792 IND_OPS_DONE_STATUS_FLD, 1);
793
794 ind_rd_inc_num_done(s);
795 ospi_ind_op_next(s->rd_ind_op);
796 if (ospi_ind_op_all_completed(s)) {
797 set_irq(s, R_IRQ_STATUS_REG_INDIRECT_OP_DONE_FLD_MASK);
798 }
799 }
800
ospi_dma_read(XlnxVersalOspi * s)801 static void ospi_dma_read(XlnxVersalOspi *s)
802 {
803 IndOp *op = s->rd_ind_op;
804 uint32_t dma_len = op->num_bytes;
805 uint32_t burst_sz = ospi_dma_burst_size(s);
806 uint32_t single_sz = ospi_dma_single_size(s);
807 uint32_t ind_trig_range;
808 uint32_t remainder;
809 XlnxCSUDMAClass *xcdc = XLNX_CSU_DMA_GET_CLASS(s->dma_src);
810
811 ind_trig_range = (1 << ARRAY_FIELD_EX32(s->regs,
812 INDIRECT_TRIGGER_ADDR_RANGE_REG,
813 IND_RANGE_WIDTH_FLD));
814 remainder = dma_len % burst_sz;
815 remainder = remainder % single_sz;
816 if (burst_sz > ind_trig_range || single_sz > ind_trig_range ||
817 remainder != 0) {
818 qemu_log_mask(LOG_GUEST_ERROR,
819 "OSPI DMA burst size / single size config error\n");
820 }
821
822 s->src_dma_inprog = true;
823 if (xcdc->read(s->dma_src, 0, dma_len) != MEMTX_OK) {
824 qemu_log_mask(LOG_GUEST_ERROR, "OSPI DMA configuration error\n");
825 }
826 s->src_dma_inprog = false;
827 }
828
ospi_do_ind_read(XlnxVersalOspi * s)829 static void ospi_do_ind_read(XlnxVersalOspi *s)
830 {
831 IndOp *op = s->rd_ind_op;
832 uint32_t next_b;
833 uint32_t end_b;
834 uint32_t len;
835 bool start_dma = IS_IND_DMA_START(op) && !s->src_dma_inprog;
836
837 /* Continue to read flash until we run out of space in sram */
838 while (!ospi_ind_op_completed(op) &&
839 !fifo8_is_full(&s->rx_sram)) {
840 /* Read requested number of bytes, max bytes limited to size of sram */
841 next_b = ind_op_next_byte(op);
842 end_b = next_b + fifo8_num_free(&s->rx_sram);
843 end_b = MIN(end_b, ind_op_end_byte(op));
844
845 len = end_b - next_b;
846 ospi_ind_read(s, next_b, len);
847 ind_op_advance(op, len);
848
849 if (ospi_ind_rd_watermark_enabled(s)) {
850 ARRAY_FIELD_DP32(s->regs, IRQ_STATUS_REG,
851 INDIRECT_XFER_LEVEL_BREACH_FLD, 1);
852 set_irq(s,
853 R_IRQ_STATUS_REG_INDIRECT_XFER_LEVEL_BREACH_FLD_MASK);
854 }
855
856 if (!s->src_dma_inprog &&
857 ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD)) {
858 ospi_dma_read(s);
859 }
860 }
861
862 /* Set sram full */
863 if (fifo8_num_used(&s->rx_sram) == RXFF_SZ) {
864 ARRAY_FIELD_DP32(s->regs,
865 INDIRECT_READ_XFER_CTRL_REG, SRAM_FULL_FLD, 1);
866 set_irq(s, R_IRQ_STATUS_REG_INDRD_SRAM_FULL_FLD_MASK);
867 }
868
869 /* Signal completion if done, unless inside recursion via ospi_dma_read */
870 if (!ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD) || start_dma) {
871 if (ospi_ind_op_completed(op)) {
872 ospi_ind_rd_completed(s);
873 }
874 }
875 }
876
877 /* Transmit write enable instruction */
ospi_transmit_wel(XlnxVersalOspi * s,bool ahb_decoder_cs,hwaddr addr)878 static void ospi_transmit_wel(XlnxVersalOspi *s, bool ahb_decoder_cs,
879 hwaddr addr)
880 {
881 fifo8_reset(&s->tx_fifo);
882 fifo8_push(&s->tx_fifo, WREN);
883
884 if (ahb_decoder_cs) {
885 ospi_ahb_decoder_enable_cs(s, addr);
886 } else {
887 ospi_update_cs_lines(s);
888 }
889
890 ospi_flush_txfifo(s);
891 ospi_disable_cs(s);
892
893 fifo8_reset(&s->rx_fifo);
894 }
895
ospi_ind_write(XlnxVersalOspi * s,uint32_t flash_addr,uint32_t len)896 static void ospi_ind_write(XlnxVersalOspi *s, uint32_t flash_addr, uint32_t len)
897 {
898 bool ahb_decoder_cs = false;
899 uint8_t inst_code;
900 int i;
901
902 assert(fifo8_num_used(&s->tx_sram) >= len);
903
904 if (!ARRAY_FIELD_EX32(s->regs, DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD)) {
905 ospi_transmit_wel(s, ahb_decoder_cs, 0);
906 }
907
908 /* reset fifos */
909 fifo8_reset(&s->tx_fifo);
910 fifo8_reset(&s->rx_fifo);
911
912 /* Push write opcode */
913 inst_code = ospi_get_wr_opcode(s);
914 fifo8_push(&s->tx_fifo, inst_code);
915
916 /* Push write address */
917 ospi_tx_fifo_push_address(s, flash_addr);
918
919 /* data */
920 for (i = 0; i < len; i++) {
921 fifo8_push(&s->tx_fifo, fifo8_pop(&s->tx_sram));
922 }
923
924 /* transmit */
925 ospi_update_cs_lines(s);
926 ospi_flush_txfifo(s);
927
928 /* done */
929 ospi_disable_cs(s);
930 fifo8_reset(&s->rx_fifo);
931 }
932
ind_wr_inc_num_done(XlnxVersalOspi * s)933 static void ind_wr_inc_num_done(XlnxVersalOspi *s)
934 {
935 unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
936 NUM_IND_OPS_DONE_FLD);
937 if (done < IND_OPS_DONE_MAX) {
938 done++;
939 }
940 done &= 0x3;
941 ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
942 NUM_IND_OPS_DONE_FLD, done);
943 }
944
ospi_ind_wr_completed(XlnxVersalOspi * s)945 static void ospi_ind_wr_completed(XlnxVersalOspi *s)
946 {
947 ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
948 IND_OPS_DONE_STATUS_FLD, 1);
949 ind_wr_inc_num_done(s);
950 ospi_ind_op_next(s->wr_ind_op);
951 /* Set indirect op done interrupt if enabled */
952 if (ospi_ind_op_all_completed(s)) {
953 set_irq(s, R_IRQ_STATUS_REG_INDIRECT_OP_DONE_FLD_MASK);
954 }
955 }
956
ospi_do_indirect_write(XlnxVersalOspi * s)957 static void ospi_do_indirect_write(XlnxVersalOspi *s)
958 {
959 uint32_t write_watermark = s->regs[R_INDIRECT_WRITE_XFER_WATERMARK_REG];
960 uint32_t pagesz = ospi_get_page_sz(s);
961 uint32_t page_mask = ~(pagesz - 1);
962 IndOp *op = s->wr_ind_op;
963 uint32_t next_b;
964 uint32_t end_b;
965 uint32_t len;
966
967 /* Write out tx_fifo in maximum page sz chunks */
968 while (!ospi_ind_op_completed(op) && fifo8_num_used(&s->tx_sram) > 0) {
969 next_b = ind_op_next_byte(op);
970 end_b = next_b + MIN(fifo8_num_used(&s->tx_sram), pagesz);
971
972 /* Dont cross page boundary */
973 if ((end_b & page_mask) > next_b) {
974 end_b &= page_mask;
975 }
976
977 len = end_b - next_b;
978 len = MIN(len, op->num_bytes - op->done_bytes);
979 ospi_ind_write(s, next_b, len);
980 ind_op_advance(op, len);
981 }
982
983 /*
984 * Always set indirect transfer level breached interrupt if enabled
985 * (write watermark > 0) since the tx_sram always will be emptied
986 */
987 if (write_watermark > 0) {
988 set_irq(s, R_IRQ_STATUS_REG_INDIRECT_XFER_LEVEL_BREACH_FLD_MASK);
989 }
990
991 /* Signal completions if done */
992 if (ospi_ind_op_completed(op)) {
993 ospi_ind_wr_completed(s);
994 }
995 }
996
ospi_stig_fill_membank(XlnxVersalOspi * s)997 static void ospi_stig_fill_membank(XlnxVersalOspi *s)
998 {
999 int num_rd_bytes = ospi_stig_membank_rd_bytes(s);
1000 int idx = num_rd_bytes - 8; /* first of last 8 */
1001 int i;
1002
1003 for (i = 0; i < num_rd_bytes; i++) {
1004 s->stig_membank[i] = fifo8_pop(&s->rx_fifo);
1005 }
1006
1007 g_assert((idx + 4) < ARRAY_SIZE(s->stig_membank));
1008
1009 /* Fill in lower upper regs */
1010 s->regs[R_FLASH_RD_DATA_LOWER_REG] = ldl_le_p(&s->stig_membank[idx]);
1011 s->regs[R_FLASH_RD_DATA_UPPER_REG] = ldl_le_p(&s->stig_membank[idx + 4]);
1012 }
1013
ospi_stig_cmd_exec(XlnxVersalOspi * s)1014 static void ospi_stig_cmd_exec(XlnxVersalOspi *s)
1015 {
1016 uint8_t inst_code;
1017
1018 /* Reset fifos */
1019 fifo8_reset(&s->tx_fifo);
1020 fifo8_reset(&s->rx_fifo);
1021
1022 /* Push write opcode */
1023 inst_code = ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, CMD_OPCODE_FLD);
1024 fifo8_push(&s->tx_fifo, inst_code);
1025
1026 /* Push address if enabled */
1027 if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_COMD_ADDR_FLD)) {
1028 ospi_tx_fifo_push_stig_addr(s);
1029 }
1030
1031 /* Enable cs */
1032 ospi_update_cs_lines(s);
1033
1034 /* Data */
1035 if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_WRITE_DATA_FLD)) {
1036 ospi_tx_fifo_push_stig_wr_data(s);
1037 } else if (ARRAY_FIELD_EX32(s->regs,
1038 FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD)) {
1039 /* transmit first part */
1040 ospi_flush_txfifo(s);
1041 fifo8_reset(&s->rx_fifo);
1042 ospi_tx_fifo_push_stig_rd_data(s);
1043 }
1044
1045 /* Transmit */
1046 ospi_flush_txfifo(s);
1047 ospi_disable_cs(s);
1048
1049 if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD)) {
1050 if (ARRAY_FIELD_EX32(s->regs,
1051 FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD)) {
1052 ospi_stig_fill_membank(s);
1053 } else {
1054 ospi_rx_fifo_pop_stig_rd_data(s);
1055 }
1056 }
1057 }
1058
ospi_block_address(XlnxVersalOspi * s,unsigned int block)1059 static uint32_t ospi_block_address(XlnxVersalOspi *s, unsigned int block)
1060 {
1061 unsigned int block_sz = ospi_get_block_sz(s);
1062 unsigned int cs = 0;
1063 uint32_t addr = 0;
1064
1065 while (cs < s->num_cs && block >= flash_blocks(s, cs)) {
1066 block -= flash_blocks(s, 0);
1067 addr += flash_sz(s, cs);
1068 }
1069 addr += block * block_sz;
1070 return addr;
1071 }
1072
ospi_get_wr_prot_addr_low(XlnxVersalOspi * s)1073 static uint32_t ospi_get_wr_prot_addr_low(XlnxVersalOspi *s)
1074 {
1075 unsigned int block = s->regs[R_LOWER_WR_PROT_REG];
1076
1077 return ospi_block_address(s, block);
1078 }
1079
ospi_get_wr_prot_addr_upper(XlnxVersalOspi * s)1080 static uint32_t ospi_get_wr_prot_addr_upper(XlnxVersalOspi *s)
1081 {
1082 unsigned int block = s->regs[R_UPPER_WR_PROT_REG];
1083
1084 /* Get address of first block out of defined range */
1085 return ospi_block_address(s, block + 1);
1086 }
1087
ospi_is_write_protected(XlnxVersalOspi * s,hwaddr addr)1088 static bool ospi_is_write_protected(XlnxVersalOspi *s, hwaddr addr)
1089 {
1090 uint32_t wr_prot_addr_upper = ospi_get_wr_prot_addr_upper(s);
1091 uint32_t wr_prot_addr_low = ospi_get_wr_prot_addr_low(s);
1092 bool in_range = false;
1093
1094 if (addr >= wr_prot_addr_low && addr < wr_prot_addr_upper) {
1095 in_range = true;
1096 }
1097
1098 if (ARRAY_FIELD_EX32(s->regs, WR_PROT_CTRL_REG, INV_FLD)) {
1099 in_range = !in_range;
1100 }
1101 return in_range;
1102 }
1103
ospi_rx_sram_read(XlnxVersalOspi * s,unsigned int size)1104 static uint64_t ospi_rx_sram_read(XlnxVersalOspi *s, unsigned int size)
1105 {
1106 uint8_t bytes[8] = {};
1107 int i;
1108
1109 if (size < 4 && fifo8_num_used(&s->rx_sram) >= 4) {
1110 qemu_log_mask(LOG_GUEST_ERROR,
1111 "OSPI only last read of internal "
1112 "sram is allowed to be < 32 bits\n");
1113 }
1114
1115 size = MIN(fifo8_num_used(&s->rx_sram), size);
1116
1117 assert(size <= 8);
1118
1119 for (i = 0; i < size; i++) {
1120 bytes[i] = fifo8_pop(&s->rx_sram);
1121 }
1122
1123 return ldq_le_p(bytes);
1124 }
1125
ospi_tx_sram_write(XlnxVersalOspi * s,uint64_t value,unsigned int size)1126 static void ospi_tx_sram_write(XlnxVersalOspi *s, uint64_t value,
1127 unsigned int size)
1128 {
1129 int i;
1130 for (i = 0; i < size && !fifo8_is_full(&s->tx_sram); i++) {
1131 fifo8_push(&s->tx_sram, value >> 8 * i);
1132 }
1133 }
1134
ospi_do_dac_read(void * opaque,hwaddr addr,unsigned int size)1135 static uint64_t ospi_do_dac_read(void *opaque, hwaddr addr, unsigned int size)
1136 {
1137 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1138 uint8_t bytes[8] = {};
1139 int i;
1140
1141 /* Create first section of read cmd */
1142 ospi_tx_fifo_push_rd_op_addr(s, (uint32_t) addr);
1143
1144 /* Enable cs and transmit first part */
1145 ospi_dac_cs(s, addr);
1146 ospi_flush_txfifo(s);
1147
1148 fifo8_reset(&s->rx_fifo);
1149
1150 /* transmit second part (data) */
1151 for (i = 0; i < size; ++i) {
1152 fifo8_push(&s->tx_fifo, 0);
1153 }
1154 ospi_flush_txfifo(s);
1155
1156 /* fill in result */
1157 size = MIN(fifo8_num_used(&s->rx_fifo), size);
1158
1159 assert(size <= 8);
1160
1161 for (i = 0; i < size; i++) {
1162 bytes[i] = fifo8_pop(&s->rx_fifo);
1163 }
1164
1165 /* done */
1166 ospi_disable_cs(s);
1167
1168 return ldq_le_p(bytes);
1169 }
1170
ospi_do_dac_write(void * opaque,hwaddr addr,uint64_t value,unsigned int size)1171 static void ospi_do_dac_write(void *opaque,
1172 hwaddr addr,
1173 uint64_t value,
1174 unsigned int size)
1175 {
1176 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1177 bool ahb_decoder_cs = ARRAY_FIELD_EX32(s->regs, CONFIG_REG,
1178 ENABLE_AHB_DECODER_FLD);
1179 uint8_t inst_code;
1180 unsigned int i;
1181
1182 if (!ARRAY_FIELD_EX32(s->regs, DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD)) {
1183 ospi_transmit_wel(s, ahb_decoder_cs, addr);
1184 }
1185
1186 /* reset fifos */
1187 fifo8_reset(&s->tx_fifo);
1188 fifo8_reset(&s->rx_fifo);
1189
1190 /* Push write opcode */
1191 inst_code = ospi_get_wr_opcode(s);
1192 fifo8_push(&s->tx_fifo, inst_code);
1193
1194 /* Push write address */
1195 ospi_tx_fifo_push_address(s, addr);
1196
1197 /* data */
1198 for (i = 0; i < size; i++) {
1199 fifo8_push(&s->tx_fifo, value >> 8 * i);
1200 }
1201
1202 /* Enable cs and transmit */
1203 ospi_dac_cs(s, addr);
1204 ospi_flush_txfifo(s);
1205 ospi_disable_cs(s);
1206
1207 fifo8_reset(&s->rx_fifo);
1208 }
1209
flash_cmd_ctrl_mem_reg_post_write(RegisterInfo * reg,uint64_t val)1210 static void flash_cmd_ctrl_mem_reg_post_write(RegisterInfo *reg,
1211 uint64_t val)
1212 {
1213 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1214 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) {
1215 if (ARRAY_FIELD_EX32(s->regs,
1216 FLASH_COMMAND_CTRL_MEM_REG,
1217 TRIGGER_MEM_BANK_REQ_FLD)) {
1218 ospi_stig_membank_req(s);
1219 ARRAY_FIELD_DP32(s->regs, FLASH_COMMAND_CTRL_MEM_REG,
1220 TRIGGER_MEM_BANK_REQ_FLD, 0);
1221 }
1222 }
1223 }
1224
flash_cmd_ctrl_reg_post_write(RegisterInfo * reg,uint64_t val)1225 static void flash_cmd_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val)
1226 {
1227 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1228
1229 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD) &&
1230 ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, CMD_EXEC_FLD)) {
1231 ospi_stig_cmd_exec(s);
1232 set_irq(s, R_IRQ_STATUS_REG_STIG_REQ_INT_FLD_MASK);
1233 ARRAY_FIELD_DP32(s->regs, FLASH_CMD_CTRL_REG, CMD_EXEC_FLD, 0);
1234 }
1235 }
1236
ind_wr_dec_num_done(XlnxVersalOspi * s,uint64_t val)1237 static uint64_t ind_wr_dec_num_done(XlnxVersalOspi *s, uint64_t val)
1238 {
1239 unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
1240 NUM_IND_OPS_DONE_FLD);
1241 done--;
1242 done &= 0x3;
1243 val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG,
1244 NUM_IND_OPS_DONE_FLD, done);
1245 return val;
1246 }
1247
ind_wr_clearing_op_done(XlnxVersalOspi * s,uint64_t new_val)1248 static bool ind_wr_clearing_op_done(XlnxVersalOspi *s, uint64_t new_val)
1249 {
1250 bool set_in_reg = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
1251 IND_OPS_DONE_STATUS_FLD);
1252 bool set_in_new_val = FIELD_EX32(new_val, INDIRECT_WRITE_XFER_CTRL_REG,
1253 IND_OPS_DONE_STATUS_FLD);
1254 /* return true if clearing bit */
1255 return set_in_reg && !set_in_new_val;
1256 }
1257
ind_wr_xfer_ctrl_reg_pre_write(RegisterInfo * reg,uint64_t val)1258 static uint64_t ind_wr_xfer_ctrl_reg_pre_write(RegisterInfo *reg,
1259 uint64_t val)
1260 {
1261 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1262
1263 if (ind_wr_clearing_op_done(s, val)) {
1264 val = ind_wr_dec_num_done(s, val);
1265 }
1266 return val;
1267 }
1268
ind_wr_xfer_ctrl_reg_post_write(RegisterInfo * reg,uint64_t val)1269 static void ind_wr_xfer_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val)
1270 {
1271 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1272
1273 if (s->ind_write_disabled) {
1274 return;
1275 }
1276
1277 if (ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, START_FLD)) {
1278 ospi_ind_op_queue_up_wr(s);
1279 ospi_do_indirect_write(s);
1280 ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, START_FLD, 0);
1281 }
1282
1283 if (ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD)) {
1284 ospi_ind_op_cancel(s->wr_ind_op);
1285 fifo8_reset(&s->tx_sram);
1286 ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD, 0);
1287 }
1288 }
1289
ind_wr_xfer_ctrl_reg_post_read(RegisterInfo * reg,uint64_t val)1290 static uint64_t ind_wr_xfer_ctrl_reg_post_read(RegisterInfo *reg,
1291 uint64_t val)
1292 {
1293 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1294 IndOp *op = s->wr_ind_op;
1295
1296 /* Check if ind ops is ongoing */
1297 if (!ospi_ind_op_completed(&op[0])) {
1298 /* Check if two ind ops are queued */
1299 if (!ospi_ind_op_completed(&op[1])) {
1300 val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG,
1301 WR_QUEUED_FLD, 1);
1302 }
1303 val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG, WR_STATUS_FLD, 1);
1304 }
1305 return val;
1306 }
1307
ind_rd_dec_num_done(XlnxVersalOspi * s,uint64_t val)1308 static uint64_t ind_rd_dec_num_done(XlnxVersalOspi *s, uint64_t val)
1309 {
1310 unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG,
1311 NUM_IND_OPS_DONE_FLD);
1312 done--;
1313 done &= 0x3;
1314 val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG,
1315 NUM_IND_OPS_DONE_FLD, done);
1316 return val;
1317 }
1318
ind_rd_xfer_ctrl_reg_pre_write(RegisterInfo * reg,uint64_t val)1319 static uint64_t ind_rd_xfer_ctrl_reg_pre_write(RegisterInfo *reg,
1320 uint64_t val)
1321 {
1322 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1323
1324 if (FIELD_EX32(val, INDIRECT_READ_XFER_CTRL_REG,
1325 IND_OPS_DONE_STATUS_FLD)) {
1326 val = ind_rd_dec_num_done(s, val);
1327 val &= ~R_INDIRECT_READ_XFER_CTRL_REG_IND_OPS_DONE_STATUS_FLD_MASK;
1328 }
1329 return val;
1330 }
1331
ind_rd_xfer_ctrl_reg_post_write(RegisterInfo * reg,uint64_t val)1332 static void ind_rd_xfer_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val)
1333 {
1334 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1335
1336 if (ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG, START_FLD)) {
1337 ospi_ind_op_queue_up_rd(s);
1338 ospi_do_ind_read(s);
1339 ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG, START_FLD, 0);
1340 }
1341
1342 if (ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD)) {
1343 ospi_ind_op_cancel(s->rd_ind_op);
1344 fifo8_reset(&s->rx_sram);
1345 ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD, 0);
1346 }
1347 }
1348
ind_rd_xfer_ctrl_reg_post_read(RegisterInfo * reg,uint64_t val)1349 static uint64_t ind_rd_xfer_ctrl_reg_post_read(RegisterInfo *reg,
1350 uint64_t val)
1351 {
1352 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1353 IndOp *op = s->rd_ind_op;
1354
1355 /* Check if ind ops is ongoing */
1356 if (!ospi_ind_op_completed(&op[0])) {
1357 /* Check if two ind ops are queued */
1358 if (!ospi_ind_op_completed(&op[1])) {
1359 val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG,
1360 RD_QUEUED_FLD, 1);
1361 }
1362 val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG, RD_STATUS_FLD, 1);
1363 }
1364 return val;
1365 }
1366
sram_fill_reg_post_read(RegisterInfo * reg,uint64_t val)1367 static uint64_t sram_fill_reg_post_read(RegisterInfo *reg, uint64_t val)
1368 {
1369 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1370 val = ((fifo8_num_used(&s->tx_sram) & 0xFFFF) << 16) |
1371 (fifo8_num_used(&s->rx_sram) & 0xFFFF);
1372 return val;
1373 }
1374
dll_obs_upper_reg_post_read(RegisterInfo * reg,uint64_t val)1375 static uint64_t dll_obs_upper_reg_post_read(RegisterInfo *reg, uint64_t val)
1376 {
1377 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1378 uint32_t rx_dec_out;
1379
1380 rx_dec_out = FIELD_EX32(val, DLL_OBSERVABLE_UPPER_REG,
1381 DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD);
1382
1383 if (rx_dec_out < MAX_RX_DEC_OUT) {
1384 ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_UPPER_REG,
1385 DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD,
1386 rx_dec_out + 1);
1387 }
1388
1389 return val;
1390 }
1391
1392
xlnx_versal_ospi_reset(DeviceState * dev)1393 static void xlnx_versal_ospi_reset(DeviceState *dev)
1394 {
1395 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(dev);
1396 unsigned int i;
1397
1398 for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) {
1399 register_reset(&s->regs_info[i]);
1400 }
1401
1402 fifo8_reset(&s->rx_fifo);
1403 fifo8_reset(&s->tx_fifo);
1404 fifo8_reset(&s->rx_sram);
1405 fifo8_reset(&s->tx_sram);
1406
1407 s->rd_ind_op[0].completed = true;
1408 s->rd_ind_op[1].completed = true;
1409 s->wr_ind_op[0].completed = true;
1410 s->wr_ind_op[1].completed = true;
1411 ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_LOWER_REG,
1412 DLL_OBSERVABLE_LOWER_DLL_LOCK_FLD, 1);
1413 ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_LOWER_REG,
1414 DLL_OBSERVABLE_LOWER_LOOPBACK_LOCK_FLD, 1);
1415 }
1416
1417 static RegisterAccessInfo ospi_regs_info[] = {
1418 { .name = "CONFIG_REG",
1419 .addr = A_CONFIG_REG,
1420 .reset = 0x80780081,
1421 .ro = 0x9c000000,
1422 },{ .name = "DEV_INSTR_RD_CONFIG_REG",
1423 .addr = A_DEV_INSTR_RD_CONFIG_REG,
1424 .reset = 0x3,
1425 .ro = 0xe0ecc800,
1426 },{ .name = "DEV_INSTR_WR_CONFIG_REG",
1427 .addr = A_DEV_INSTR_WR_CONFIG_REG,
1428 .reset = 0x2,
1429 .ro = 0xe0fcce00,
1430 },{ .name = "DEV_DELAY_REG",
1431 .addr = A_DEV_DELAY_REG,
1432 },{ .name = "RD_DATA_CAPTURE_REG",
1433 .addr = A_RD_DATA_CAPTURE_REG,
1434 .reset = 0x1,
1435 .ro = 0xfff0fec0,
1436 },{ .name = "DEV_SIZE_CONFIG_REG",
1437 .addr = A_DEV_SIZE_CONFIG_REG,
1438 .reset = 0x101002,
1439 .ro = 0xe0000000,
1440 },{ .name = "SRAM_PARTITION_CFG_REG",
1441 .addr = A_SRAM_PARTITION_CFG_REG,
1442 .reset = 0x80,
1443 .ro = 0xffffff00,
1444 },{ .name = "IND_AHB_ADDR_TRIGGER_REG",
1445 .addr = A_IND_AHB_ADDR_TRIGGER_REG,
1446 },{ .name = "DMA_PERIPH_CONFIG_REG",
1447 .addr = A_DMA_PERIPH_CONFIG_REG,
1448 .ro = 0xfffff0f0,
1449 },{ .name = "REMAP_ADDR_REG",
1450 .addr = A_REMAP_ADDR_REG,
1451 },{ .name = "MODE_BIT_CONFIG_REG",
1452 .addr = A_MODE_BIT_CONFIG_REG,
1453 .reset = 0x200,
1454 .ro = 0xffff7800,
1455 },{ .name = "SRAM_FILL_REG",
1456 .addr = A_SRAM_FILL_REG,
1457 .ro = 0xffffffff,
1458 .post_read = sram_fill_reg_post_read,
1459 },{ .name = "TX_THRESH_REG",
1460 .addr = A_TX_THRESH_REG,
1461 .reset = 0x1,
1462 .ro = 0xffffffe0,
1463 },{ .name = "RX_THRESH_REG",
1464 .addr = A_RX_THRESH_REG,
1465 .reset = 0x1,
1466 .ro = 0xffffffe0,
1467 },{ .name = "WRITE_COMPLETION_CTRL_REG",
1468 .addr = A_WRITE_COMPLETION_CTRL_REG,
1469 .reset = 0x10005,
1470 .ro = 0x1800,
1471 },{ .name = "NO_OF_POLLS_BEF_EXP_REG",
1472 .addr = A_NO_OF_POLLS_BEF_EXP_REG,
1473 .reset = 0xffffffff,
1474 },{ .name = "IRQ_STATUS_REG",
1475 .addr = A_IRQ_STATUS_REG,
1476 .ro = 0xfff08000,
1477 .w1c = 0xf7fff,
1478 },{ .name = "IRQ_MASK_REG",
1479 .addr = A_IRQ_MASK_REG,
1480 .ro = 0xfff08000,
1481 },{ .name = "LOWER_WR_PROT_REG",
1482 .addr = A_LOWER_WR_PROT_REG,
1483 },{ .name = "UPPER_WR_PROT_REG",
1484 .addr = A_UPPER_WR_PROT_REG,
1485 },{ .name = "WR_PROT_CTRL_REG",
1486 .addr = A_WR_PROT_CTRL_REG,
1487 .ro = 0xfffffffc,
1488 },{ .name = "INDIRECT_READ_XFER_CTRL_REG",
1489 .addr = A_INDIRECT_READ_XFER_CTRL_REG,
1490 .ro = 0xffffffd4,
1491 .w1c = 0x08,
1492 .pre_write = ind_rd_xfer_ctrl_reg_pre_write,
1493 .post_write = ind_rd_xfer_ctrl_reg_post_write,
1494 .post_read = ind_rd_xfer_ctrl_reg_post_read,
1495 },{ .name = "INDIRECT_READ_XFER_WATERMARK_REG",
1496 .addr = A_INDIRECT_READ_XFER_WATERMARK_REG,
1497 },{ .name = "INDIRECT_READ_XFER_START_REG",
1498 .addr = A_INDIRECT_READ_XFER_START_REG,
1499 },{ .name = "INDIRECT_READ_XFER_NUM_BYTES_REG",
1500 .addr = A_INDIRECT_READ_XFER_NUM_BYTES_REG,
1501 },{ .name = "INDIRECT_WRITE_XFER_CTRL_REG",
1502 .addr = A_INDIRECT_WRITE_XFER_CTRL_REG,
1503 .ro = 0xffffffdc,
1504 .w1c = 0x20,
1505 .pre_write = ind_wr_xfer_ctrl_reg_pre_write,
1506 .post_write = ind_wr_xfer_ctrl_reg_post_write,
1507 .post_read = ind_wr_xfer_ctrl_reg_post_read,
1508 },{ .name = "INDIRECT_WRITE_XFER_WATERMARK_REG",
1509 .addr = A_INDIRECT_WRITE_XFER_WATERMARK_REG,
1510 .reset = 0xffffffff,
1511 },{ .name = "INDIRECT_WRITE_XFER_START_REG",
1512 .addr = A_INDIRECT_WRITE_XFER_START_REG,
1513 },{ .name = "INDIRECT_WRITE_XFER_NUM_BYTES_REG",
1514 .addr = A_INDIRECT_WRITE_XFER_NUM_BYTES_REG,
1515 },{ .name = "INDIRECT_TRIGGER_ADDR_RANGE_REG",
1516 .addr = A_INDIRECT_TRIGGER_ADDR_RANGE_REG,
1517 .reset = 0x4,
1518 .ro = 0xfffffff0,
1519 },{ .name = "FLASH_COMMAND_CTRL_MEM_REG",
1520 .addr = A_FLASH_COMMAND_CTRL_MEM_REG,
1521 .ro = 0xe008fffe,
1522 .post_write = flash_cmd_ctrl_mem_reg_post_write,
1523 },{ .name = "FLASH_CMD_CTRL_REG",
1524 .addr = A_FLASH_CMD_CTRL_REG,
1525 .ro = 0x7a,
1526 .post_write = flash_cmd_ctrl_reg_post_write,
1527 },{ .name = "FLASH_CMD_ADDR_REG",
1528 .addr = A_FLASH_CMD_ADDR_REG,
1529 },{ .name = "FLASH_RD_DATA_LOWER_REG",
1530 .addr = A_FLASH_RD_DATA_LOWER_REG,
1531 .ro = 0xffffffff,
1532 },{ .name = "FLASH_RD_DATA_UPPER_REG",
1533 .addr = A_FLASH_RD_DATA_UPPER_REG,
1534 .ro = 0xffffffff,
1535 },{ .name = "FLASH_WR_DATA_LOWER_REG",
1536 .addr = A_FLASH_WR_DATA_LOWER_REG,
1537 },{ .name = "FLASH_WR_DATA_UPPER_REG",
1538 .addr = A_FLASH_WR_DATA_UPPER_REG,
1539 },{ .name = "POLLING_FLASH_STATUS_REG",
1540 .addr = A_POLLING_FLASH_STATUS_REG,
1541 .ro = 0xfff0ffff,
1542 },{ .name = "PHY_CONFIGURATION_REG",
1543 .addr = A_PHY_CONFIGURATION_REG,
1544 .reset = 0x40000000,
1545 .ro = 0x1f80ff80,
1546 },{ .name = "PHY_MASTER_CONTROL_REG",
1547 .addr = A_PHY_MASTER_CONTROL_REG,
1548 .reset = 0x800000,
1549 .ro = 0xfe08ff80,
1550 },{ .name = "DLL_OBSERVABLE_LOWER_REG",
1551 .addr = A_DLL_OBSERVABLE_LOWER_REG,
1552 .ro = 0xffffffff,
1553 },{ .name = "DLL_OBSERVABLE_UPPER_REG",
1554 .addr = A_DLL_OBSERVABLE_UPPER_REG,
1555 .ro = 0xffffffff,
1556 .post_read = dll_obs_upper_reg_post_read,
1557 },{ .name = "OPCODE_EXT_LOWER_REG",
1558 .addr = A_OPCODE_EXT_LOWER_REG,
1559 .reset = 0x13edfa00,
1560 },{ .name = "OPCODE_EXT_UPPER_REG",
1561 .addr = A_OPCODE_EXT_UPPER_REG,
1562 .reset = 0x6f90000,
1563 .ro = 0xffff,
1564 },{ .name = "MODULE_ID_REG",
1565 .addr = A_MODULE_ID_REG,
1566 .reset = 0x300,
1567 .ro = 0xffffffff,
1568 }
1569 };
1570
1571 /* Return dev-obj from reg-region created by register_init_block32 */
xilinx_ospi_of_mr(void * mr_accessor)1572 static XlnxVersalOspi *xilinx_ospi_of_mr(void *mr_accessor)
1573 {
1574 RegisterInfoArray *reg_array = mr_accessor;
1575 Object *dev;
1576
1577 dev = reg_array->mem.owner;
1578 assert(dev);
1579
1580 return XILINX_VERSAL_OSPI(dev);
1581 }
1582
ospi_write(void * opaque,hwaddr addr,uint64_t value,unsigned int size)1583 static void ospi_write(void *opaque, hwaddr addr, uint64_t value,
1584 unsigned int size)
1585 {
1586 XlnxVersalOspi *s = xilinx_ospi_of_mr(opaque);
1587
1588 register_write_memory(opaque, addr, value, size);
1589 ospi_update_irq_line(s);
1590 }
1591
1592 static const MemoryRegionOps ospi_ops = {
1593 .read = register_read_memory,
1594 .write = ospi_write,
1595 .endianness = DEVICE_LITTLE_ENDIAN,
1596 .valid = {
1597 .min_access_size = 4,
1598 .max_access_size = 4,
1599 },
1600 };
1601
ospi_indac_read(void * opaque,unsigned int size)1602 static uint64_t ospi_indac_read(void *opaque, unsigned int size)
1603 {
1604 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1605 uint64_t ret = ospi_rx_sram_read(s, size);
1606
1607 if (!ospi_ind_op_completed(s->rd_ind_op)) {
1608 ospi_do_ind_read(s);
1609 }
1610 return ret;
1611 }
1612
ospi_indac_write(void * opaque,uint64_t value,unsigned int size)1613 static void ospi_indac_write(void *opaque, uint64_t value, unsigned int size)
1614 {
1615 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1616
1617 g_assert(!s->ind_write_disabled);
1618
1619 if (!ospi_ind_op_completed(s->wr_ind_op)) {
1620 ospi_tx_sram_write(s, value, size);
1621 ospi_do_indirect_write(s);
1622 } else {
1623 qemu_log_mask(LOG_GUEST_ERROR,
1624 "OSPI wr into indac area while no ongoing indac wr\n");
1625 }
1626 }
1627
is_inside_indac_range(XlnxVersalOspi * s,hwaddr addr)1628 static bool is_inside_indac_range(XlnxVersalOspi *s, hwaddr addr)
1629 {
1630 uint32_t range_start;
1631 uint32_t range_end;
1632
1633 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD)) {
1634 return true;
1635 }
1636
1637 range_start = s->regs[R_IND_AHB_ADDR_TRIGGER_REG];
1638 range_end = range_start +
1639 (1 << ARRAY_FIELD_EX32(s->regs,
1640 INDIRECT_TRIGGER_ADDR_RANGE_REG,
1641 IND_RANGE_WIDTH_FLD));
1642
1643 addr += s->regs[R_IND_AHB_ADDR_TRIGGER_REG] & 0xF0000000;
1644
1645 return addr >= range_start && addr < range_end;
1646 }
1647
ospi_is_indac_active(XlnxVersalOspi * s)1648 static bool ospi_is_indac_active(XlnxVersalOspi *s)
1649 {
1650 /*
1651 * When dac and indac cannot be active at the same time,
1652 * return true when dac is disabled.
1653 */
1654 return s->dac_with_indac || !s->dac_enable;
1655 }
1656
ospi_dac_read(void * opaque,hwaddr addr,unsigned int size)1657 static uint64_t ospi_dac_read(void *opaque, hwaddr addr, unsigned int size)
1658 {
1659 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1660
1661 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) {
1662 if (ospi_is_indac_active(s) &&
1663 is_inside_indac_range(s, addr)) {
1664 return ospi_indac_read(s, size);
1665 }
1666 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DIR_ACC_CTLR_FLD)
1667 && s->dac_enable) {
1668 if (ARRAY_FIELD_EX32(s->regs,
1669 CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD)) {
1670 addr += s->regs[R_REMAP_ADDR_REG];
1671 }
1672 return ospi_do_dac_read(opaque, addr, size);
1673 } else {
1674 qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB rd while DAC disabled\n");
1675 }
1676 } else {
1677 qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB rd while OSPI disabled\n");
1678 }
1679
1680 return 0;
1681 }
1682
ospi_dac_write(void * opaque,hwaddr addr,uint64_t value,unsigned int size)1683 static void ospi_dac_write(void *opaque, hwaddr addr, uint64_t value,
1684 unsigned int size)
1685 {
1686 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1687
1688 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) {
1689 if (ospi_is_indac_active(s) &&
1690 !s->ind_write_disabled &&
1691 is_inside_indac_range(s, addr)) {
1692 return ospi_indac_write(s, value, size);
1693 }
1694 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DIR_ACC_CTLR_FLD) &&
1695 s->dac_enable) {
1696 if (ARRAY_FIELD_EX32(s->regs,
1697 CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD)) {
1698 addr += s->regs[R_REMAP_ADDR_REG];
1699 }
1700 /* Check if addr is write protected */
1701 if (ARRAY_FIELD_EX32(s->regs, WR_PROT_CTRL_REG, ENB_FLD) &&
1702 ospi_is_write_protected(s, addr)) {
1703 set_irq(s, R_IRQ_STATUS_REG_PROT_WR_ATTEMPT_FLD_MASK);
1704 ospi_update_irq_line(s);
1705 qemu_log_mask(LOG_GUEST_ERROR,
1706 "OSPI writing into write protected area\n");
1707 return;
1708 }
1709 ospi_do_dac_write(opaque, addr, value, size);
1710 } else {
1711 qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB wr while DAC disabled\n");
1712 }
1713 } else {
1714 qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB wr while OSPI disabled\n");
1715 }
1716 }
1717
1718 static const MemoryRegionOps ospi_dac_ops = {
1719 .read = ospi_dac_read,
1720 .write = ospi_dac_write,
1721 .endianness = DEVICE_LITTLE_ENDIAN,
1722 .valid = {
1723 .min_access_size = 4,
1724 .max_access_size = 4,
1725 },
1726 };
1727
ospi_update_dac_status(void * opaque,int n,int level)1728 static void ospi_update_dac_status(void *opaque, int n, int level)
1729 {
1730 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1731
1732 s->dac_enable = level;
1733 }
1734
xlnx_versal_ospi_realize(DeviceState * dev,Error ** errp)1735 static void xlnx_versal_ospi_realize(DeviceState *dev, Error **errp)
1736 {
1737 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(dev);
1738 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1739
1740 s->num_cs = 4;
1741 s->spi = ssi_create_bus(dev, "spi0");
1742 s->cs_lines = g_new0(qemu_irq, s->num_cs);
1743 for (int i = 0; i < s->num_cs; ++i) {
1744 sysbus_init_irq(sbd, &s->cs_lines[i]);
1745 }
1746
1747 fifo8_create(&s->rx_fifo, RXFF_SZ);
1748 fifo8_create(&s->tx_fifo, TXFF_SZ);
1749 fifo8_create(&s->rx_sram, RXFF_SZ);
1750 fifo8_create(&s->tx_sram, TXFF_SZ);
1751 }
1752
xlnx_versal_ospi_init(Object * obj)1753 static void xlnx_versal_ospi_init(Object *obj)
1754 {
1755 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(obj);
1756 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1757 DeviceState *dev = DEVICE(obj);
1758 RegisterInfoArray *reg_array;
1759
1760 memory_region_init(&s->iomem, obj, TYPE_XILINX_VERSAL_OSPI,
1761 XILINX_VERSAL_OSPI_R_MAX * 4);
1762 reg_array =
1763 register_init_block32(DEVICE(obj), ospi_regs_info,
1764 ARRAY_SIZE(ospi_regs_info),
1765 s->regs_info, s->regs,
1766 &ospi_ops,
1767 XILINX_VERSAL_OSPI_ERR_DEBUG,
1768 XILINX_VERSAL_OSPI_R_MAX * 4);
1769 memory_region_add_subregion(&s->iomem, 0x0, ®_array->mem);
1770 sysbus_init_mmio(sbd, &s->iomem);
1771
1772 memory_region_init_io(&s->iomem_dac, obj, &ospi_dac_ops, s,
1773 TYPE_XILINX_VERSAL_OSPI "-dac", 0x20000000);
1774 sysbus_init_mmio(sbd, &s->iomem_dac);
1775 /*
1776 * The OSPI DMA reads flash data through the OSPI linear address space (the
1777 * iomem_dac region), because of this the reentrancy guard needs to be
1778 * disabled.
1779 */
1780 s->iomem_dac.disable_reentrancy_guard = true;
1781
1782 sysbus_init_irq(sbd, &s->irq);
1783
1784 object_property_add_link(obj, "dma-src", TYPE_XLNX_CSU_DMA,
1785 (Object **)&s->dma_src,
1786 object_property_allow_set_link,
1787 OBJ_PROP_LINK_STRONG);
1788
1789 qdev_init_gpio_in_named(dev, ospi_update_dac_status, "ospi-mux-sel", 1);
1790 }
1791
1792 static const VMStateDescription vmstate_ind_op = {
1793 .name = "OSPIIndOp",
1794 .version_id = 1,
1795 .minimum_version_id = 1,
1796 .fields = (const VMStateField[]) {
1797 VMSTATE_UINT32(flash_addr, IndOp),
1798 VMSTATE_UINT32(num_bytes, IndOp),
1799 VMSTATE_UINT32(done_bytes, IndOp),
1800 VMSTATE_BOOL(completed, IndOp),
1801 VMSTATE_END_OF_LIST()
1802 }
1803 };
1804
1805 static const VMStateDescription vmstate_xlnx_versal_ospi = {
1806 .name = TYPE_XILINX_VERSAL_OSPI,
1807 .version_id = 1,
1808 .minimum_version_id = 1,
1809 .fields = (const VMStateField[]) {
1810 VMSTATE_FIFO8(rx_fifo, XlnxVersalOspi),
1811 VMSTATE_FIFO8(tx_fifo, XlnxVersalOspi),
1812 VMSTATE_FIFO8(rx_sram, XlnxVersalOspi),
1813 VMSTATE_FIFO8(tx_sram, XlnxVersalOspi),
1814 VMSTATE_BOOL(ind_write_disabled, XlnxVersalOspi),
1815 VMSTATE_BOOL(dac_with_indac, XlnxVersalOspi),
1816 VMSTATE_BOOL(dac_enable, XlnxVersalOspi),
1817 VMSTATE_BOOL(src_dma_inprog, XlnxVersalOspi),
1818 VMSTATE_STRUCT_ARRAY(rd_ind_op, XlnxVersalOspi, 2, 1,
1819 vmstate_ind_op, IndOp),
1820 VMSTATE_STRUCT_ARRAY(wr_ind_op, XlnxVersalOspi, 2, 1,
1821 vmstate_ind_op, IndOp),
1822 VMSTATE_UINT32_ARRAY(regs, XlnxVersalOspi, XILINX_VERSAL_OSPI_R_MAX),
1823 VMSTATE_UINT8_ARRAY(stig_membank, XlnxVersalOspi, 512),
1824 VMSTATE_END_OF_LIST(),
1825 }
1826 };
1827
1828 static Property xlnx_versal_ospi_properties[] = {
1829 DEFINE_PROP_BOOL("dac-with-indac", XlnxVersalOspi, dac_with_indac, false),
1830 DEFINE_PROP_BOOL("indac-write-disabled", XlnxVersalOspi,
1831 ind_write_disabled, false),
1832 DEFINE_PROP_END_OF_LIST(),
1833 };
1834
xlnx_versal_ospi_class_init(ObjectClass * klass,void * data)1835 static void xlnx_versal_ospi_class_init(ObjectClass *klass, void *data)
1836 {
1837 DeviceClass *dc = DEVICE_CLASS(klass);
1838
1839 device_class_set_legacy_reset(dc, xlnx_versal_ospi_reset);
1840 dc->realize = xlnx_versal_ospi_realize;
1841 dc->vmsd = &vmstate_xlnx_versal_ospi;
1842 device_class_set_props(dc, xlnx_versal_ospi_properties);
1843 }
1844
1845 static const TypeInfo xlnx_versal_ospi_info = {
1846 .name = TYPE_XILINX_VERSAL_OSPI,
1847 .parent = TYPE_SYS_BUS_DEVICE,
1848 .instance_size = sizeof(XlnxVersalOspi),
1849 .class_init = xlnx_versal_ospi_class_init,
1850 .instance_init = xlnx_versal_ospi_init,
1851 };
1852
xlnx_versal_ospi_register_types(void)1853 static void xlnx_versal_ospi_register_types(void)
1854 {
1855 type_register_static(&xlnx_versal_ospi_info);
1856 }
1857
1858 type_init(xlnx_versal_ospi_register_types)
1859