1 /* 2 * QEMU model of Xilinx Versal's OSPI controller. 3 * 4 * Copyright (c) 2021 Xilinx Inc. 5 * Written by Francisco Iglesias <francisco.iglesias@xilinx.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 #include "qemu/osdep.h" 26 #include "hw/sysbus.h" 27 #include "migration/vmstate.h" 28 #include "hw/qdev-properties.h" 29 #include "qemu/bitops.h" 30 #include "qemu/log.h" 31 #include "hw/irq.h" 32 #include "hw/ssi/xlnx-versal-ospi.h" 33 34 #ifndef XILINX_VERSAL_OSPI_ERR_DEBUG 35 #define XILINX_VERSAL_OSPI_ERR_DEBUG 0 36 #endif 37 38 REG32(CONFIG_REG, 0x0) 39 FIELD(CONFIG_REG, IDLE_FLD, 31, 1) 40 FIELD(CONFIG_REG, DUAL_BYTE_OPCODE_EN_FLD, 30, 1) 41 FIELD(CONFIG_REG, CRC_ENABLE_FLD, 29, 1) 42 FIELD(CONFIG_REG, CONFIG_RESV2_FLD, 26, 3) 43 FIELD(CONFIG_REG, PIPELINE_PHY_FLD, 25, 1) 44 FIELD(CONFIG_REG, ENABLE_DTR_PROTOCOL_FLD, 24, 1) 45 FIELD(CONFIG_REG, ENABLE_AHB_DECODER_FLD, 23, 1) 46 FIELD(CONFIG_REG, MSTR_BAUD_DIV_FLD, 19, 4) 47 FIELD(CONFIG_REG, ENTER_XIP_MODE_IMM_FLD, 18, 1) 48 FIELD(CONFIG_REG, ENTER_XIP_MODE_FLD, 17, 1) 49 FIELD(CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD, 16, 1) 50 FIELD(CONFIG_REG, ENB_DMA_IF_FLD, 15, 1) 51 FIELD(CONFIG_REG, WR_PROT_FLASH_FLD, 14, 1) 52 FIELD(CONFIG_REG, PERIPH_CS_LINES_FLD, 10, 4) 53 FIELD(CONFIG_REG, PERIPH_SEL_DEC_FLD, 9, 1) 54 FIELD(CONFIG_REG, ENB_LEGACY_IP_MODE_FLD, 8, 1) 55 FIELD(CONFIG_REG, ENB_DIR_ACC_CTLR_FLD, 7, 1) 56 FIELD(CONFIG_REG, RESET_CFG_FLD, 6, 1) 57 FIELD(CONFIG_REG, RESET_PIN_FLD, 5, 1) 58 FIELD(CONFIG_REG, HOLD_PIN_FLD, 4, 1) 59 FIELD(CONFIG_REG, PHY_MODE_ENABLE_FLD, 3, 1) 60 FIELD(CONFIG_REG, SEL_CLK_PHASE_FLD, 2, 1) 61 FIELD(CONFIG_REG, SEL_CLK_POL_FLD, 1, 1) 62 FIELD(CONFIG_REG, ENB_SPI_FLD, 0, 1) 63 REG32(DEV_INSTR_RD_CONFIG_REG, 0x4) 64 FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV5_FLD, 29, 3) 65 FIELD(DEV_INSTR_RD_CONFIG_REG, DUMMY_RD_CLK_CYCLES_FLD, 24, 5) 66 FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV4_FLD, 21, 3) 67 FIELD(DEV_INSTR_RD_CONFIG_REG, MODE_BIT_ENABLE_FLD, 20, 1) 68 FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV3_FLD, 18, 2) 69 FIELD(DEV_INSTR_RD_CONFIG_REG, DATA_XFER_TYPE_EXT_MODE_FLD, 16, 2) 70 FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV2_FLD, 14, 2) 71 FIELD(DEV_INSTR_RD_CONFIG_REG, ADDR_XFER_TYPE_STD_MODE_FLD, 12, 2) 72 FIELD(DEV_INSTR_RD_CONFIG_REG, PRED_DIS_FLD, 11, 1) 73 FIELD(DEV_INSTR_RD_CONFIG_REG, DDR_EN_FLD, 10, 1) 74 FIELD(DEV_INSTR_RD_CONFIG_REG, INSTR_TYPE_FLD, 8, 2) 75 FIELD(DEV_INSTR_RD_CONFIG_REG, RD_OPCODE_NON_XIP_FLD, 0, 8) 76 REG32(DEV_INSTR_WR_CONFIG_REG, 0x8) 77 FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV4_FLD, 29, 3) 78 FIELD(DEV_INSTR_WR_CONFIG_REG, DUMMY_WR_CLK_CYCLES_FLD, 24, 5) 79 FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV3_FLD, 18, 6) 80 FIELD(DEV_INSTR_WR_CONFIG_REG, DATA_XFER_TYPE_EXT_MODE_FLD, 16, 2) 81 FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV2_FLD, 14, 2) 82 FIELD(DEV_INSTR_WR_CONFIG_REG, ADDR_XFER_TYPE_STD_MODE_FLD, 12, 2) 83 FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV1_FLD, 9, 3) 84 FIELD(DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD, 8, 1) 85 FIELD(DEV_INSTR_WR_CONFIG_REG, WR_OPCODE_FLD, 0, 8) 86 REG32(DEV_DELAY_REG, 0xc) 87 FIELD(DEV_DELAY_REG, D_NSS_FLD, 24, 8) 88 FIELD(DEV_DELAY_REG, D_BTWN_FLD, 16, 8) 89 FIELD(DEV_DELAY_REG, D_AFTER_FLD, 8, 8) 90 FIELD(DEV_DELAY_REG, D_INIT_FLD, 0, 8) 91 REG32(RD_DATA_CAPTURE_REG, 0x10) 92 FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV3_FLD, 20, 12) 93 FIELD(RD_DATA_CAPTURE_REG, DDR_READ_DELAY_FLD, 16, 4) 94 FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV2_FLD, 9, 7) 95 FIELD(RD_DATA_CAPTURE_REG, DQS_ENABLE_FLD, 8, 1) 96 FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV1_FLD, 6, 2) 97 FIELD(RD_DATA_CAPTURE_REG, SAMPLE_EDGE_SEL_FLD, 5, 1) 98 FIELD(RD_DATA_CAPTURE_REG, DELAY_FLD, 1, 4) 99 FIELD(RD_DATA_CAPTURE_REG, BYPASS_FLD, 0, 1) 100 REG32(DEV_SIZE_CONFIG_REG, 0x14) 101 FIELD(DEV_SIZE_CONFIG_REG, DEV_SIZE_RESV_FLD, 29, 3) 102 FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS3_FLD, 27, 2) 103 FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS2_FLD, 25, 2) 104 FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS1_FLD, 23, 2) 105 FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS0_FLD, 21, 2) 106 FIELD(DEV_SIZE_CONFIG_REG, BYTES_PER_SUBSECTOR_FLD, 16, 5) 107 FIELD(DEV_SIZE_CONFIG_REG, BYTES_PER_DEVICE_PAGE_FLD, 4, 12) 108 FIELD(DEV_SIZE_CONFIG_REG, NUM_ADDR_BYTES_FLD, 0, 4) 109 REG32(SRAM_PARTITION_CFG_REG, 0x18) 110 FIELD(SRAM_PARTITION_CFG_REG, SRAM_PARTITION_RESV_FLD, 8, 24) 111 FIELD(SRAM_PARTITION_CFG_REG, ADDR_FLD, 0, 8) 112 REG32(IND_AHB_ADDR_TRIGGER_REG, 0x1c) 113 REG32(DMA_PERIPH_CONFIG_REG, 0x20) 114 FIELD(DMA_PERIPH_CONFIG_REG, DMA_PERIPH_RESV2_FLD, 12, 20) 115 FIELD(DMA_PERIPH_CONFIG_REG, NUM_BURST_REQ_BYTES_FLD, 8, 4) 116 FIELD(DMA_PERIPH_CONFIG_REG, DMA_PERIPH_RESV1_FLD, 4, 4) 117 FIELD(DMA_PERIPH_CONFIG_REG, NUM_SINGLE_REQ_BYTES_FLD, 0, 4) 118 REG32(REMAP_ADDR_REG, 0x24) 119 REG32(MODE_BIT_CONFIG_REG, 0x28) 120 FIELD(MODE_BIT_CONFIG_REG, RX_CRC_DATA_LOW_FLD, 24, 8) 121 FIELD(MODE_BIT_CONFIG_REG, RX_CRC_DATA_UP_FLD, 16, 8) 122 FIELD(MODE_BIT_CONFIG_REG, CRC_OUT_ENABLE_FLD, 15, 1) 123 FIELD(MODE_BIT_CONFIG_REG, MODE_BIT_RESV1_FLD, 11, 4) 124 FIELD(MODE_BIT_CONFIG_REG, CHUNK_SIZE_FLD, 8, 3) 125 FIELD(MODE_BIT_CONFIG_REG, MODE_FLD, 0, 8) 126 REG32(SRAM_FILL_REG, 0x2c) 127 FIELD(SRAM_FILL_REG, SRAM_FILL_INDAC_WRITE_FLD, 16, 16) 128 FIELD(SRAM_FILL_REG, SRAM_FILL_INDAC_READ_FLD, 0, 16) 129 REG32(TX_THRESH_REG, 0x30) 130 FIELD(TX_THRESH_REG, TX_THRESH_RESV_FLD, 5, 27) 131 FIELD(TX_THRESH_REG, LEVEL_FLD, 0, 5) 132 REG32(RX_THRESH_REG, 0x34) 133 FIELD(RX_THRESH_REG, RX_THRESH_RESV_FLD, 5, 27) 134 FIELD(RX_THRESH_REG, LEVEL_FLD, 0, 5) 135 REG32(WRITE_COMPLETION_CTRL_REG, 0x38) 136 FIELD(WRITE_COMPLETION_CTRL_REG, POLL_REP_DELAY_FLD, 24, 8) 137 FIELD(WRITE_COMPLETION_CTRL_REG, POLL_COUNT_FLD, 16, 8) 138 FIELD(WRITE_COMPLETION_CTRL_REG, ENABLE_POLLING_EXP_FLD, 15, 1) 139 FIELD(WRITE_COMPLETION_CTRL_REG, DISABLE_POLLING_FLD, 14, 1) 140 FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_POLARITY_FLD, 13, 1) 141 FIELD(WRITE_COMPLETION_CTRL_REG, WR_COMP_CTRL_RESV1_FLD, 12, 1) 142 FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_ADDR_EN_FLD, 11, 1) 143 FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_BIT_INDEX_FLD, 8, 3) 144 FIELD(WRITE_COMPLETION_CTRL_REG, OPCODE_FLD, 0, 8) 145 REG32(NO_OF_POLLS_BEF_EXP_REG, 0x3c) 146 REG32(IRQ_STATUS_REG, 0x40) 147 FIELD(IRQ_STATUS_REG, IRQ_STAT_RESV_FLD, 20, 12) 148 FIELD(IRQ_STATUS_REG, ECC_FAIL_FLD, 19, 1) 149 FIELD(IRQ_STATUS_REG, TX_CRC_CHUNK_BRK_FLD, 18, 1) 150 FIELD(IRQ_STATUS_REG, RX_CRC_DATA_VAL_FLD, 17, 1) 151 FIELD(IRQ_STATUS_REG, RX_CRC_DATA_ERR_FLD, 16, 1) 152 FIELD(IRQ_STATUS_REG, IRQ_STAT_RESV1_FLD, 15, 1) 153 FIELD(IRQ_STATUS_REG, STIG_REQ_INT_FLD, 14, 1) 154 FIELD(IRQ_STATUS_REG, POLL_EXP_INT_FLD, 13, 1) 155 FIELD(IRQ_STATUS_REG, INDRD_SRAM_FULL_FLD, 12, 1) 156 FIELD(IRQ_STATUS_REG, RX_FIFO_FULL_FLD, 11, 1) 157 FIELD(IRQ_STATUS_REG, RX_FIFO_NOT_EMPTY_FLD, 10, 1) 158 FIELD(IRQ_STATUS_REG, TX_FIFO_FULL_FLD, 9, 1) 159 FIELD(IRQ_STATUS_REG, TX_FIFO_NOT_FULL_FLD, 8, 1) 160 FIELD(IRQ_STATUS_REG, RECV_OVERFLOW_FLD, 7, 1) 161 FIELD(IRQ_STATUS_REG, INDIRECT_XFER_LEVEL_BREACH_FLD, 6, 1) 162 FIELD(IRQ_STATUS_REG, ILLEGAL_ACCESS_DET_FLD, 5, 1) 163 FIELD(IRQ_STATUS_REG, PROT_WR_ATTEMPT_FLD, 4, 1) 164 FIELD(IRQ_STATUS_REG, INDIRECT_TRANSFER_REJECT_FLD, 3, 1) 165 FIELD(IRQ_STATUS_REG, INDIRECT_OP_DONE_FLD, 2, 1) 166 FIELD(IRQ_STATUS_REG, UNDERFLOW_DET_FLD, 1, 1) 167 FIELD(IRQ_STATUS_REG, MODE_M_FAIL_FLD, 0, 1) 168 REG32(IRQ_MASK_REG, 0x44) 169 FIELD(IRQ_MASK_REG, IRQ_MASK_RESV_FLD, 20, 12) 170 FIELD(IRQ_MASK_REG, ECC_FAIL_MASK_FLD, 19, 1) 171 FIELD(IRQ_MASK_REG, TX_CRC_CHUNK_BRK_MASK_FLD, 18, 1) 172 FIELD(IRQ_MASK_REG, RX_CRC_DATA_VAL_MASK_FLD, 17, 1) 173 FIELD(IRQ_MASK_REG, RX_CRC_DATA_ERR_MASK_FLD, 16, 1) 174 FIELD(IRQ_MASK_REG, IRQ_MASK_RESV1_FLD, 15, 1) 175 FIELD(IRQ_MASK_REG, STIG_REQ_MASK_FLD, 14, 1) 176 FIELD(IRQ_MASK_REG, POLL_EXP_INT_MASK_FLD, 13, 1) 177 FIELD(IRQ_MASK_REG, INDRD_SRAM_FULL_MASK_FLD, 12, 1) 178 FIELD(IRQ_MASK_REG, RX_FIFO_FULL_MASK_FLD, 11, 1) 179 FIELD(IRQ_MASK_REG, RX_FIFO_NOT_EMPTY_MASK_FLD, 10, 1) 180 FIELD(IRQ_MASK_REG, TX_FIFO_FULL_MASK_FLD, 9, 1) 181 FIELD(IRQ_MASK_REG, TX_FIFO_NOT_FULL_MASK_FLD, 8, 1) 182 FIELD(IRQ_MASK_REG, RECV_OVERFLOW_MASK_FLD, 7, 1) 183 FIELD(IRQ_MASK_REG, INDIRECT_XFER_LEVEL_BREACH_MASK_FLD, 6, 1) 184 FIELD(IRQ_MASK_REG, ILLEGAL_ACCESS_DET_MASK_FLD, 5, 1) 185 FIELD(IRQ_MASK_REG, PROT_WR_ATTEMPT_MASK_FLD, 4, 1) 186 FIELD(IRQ_MASK_REG, INDIRECT_TRANSFER_REJECT_MASK_FLD, 3, 1) 187 FIELD(IRQ_MASK_REG, INDIRECT_OP_DONE_MASK_FLD, 2, 1) 188 FIELD(IRQ_MASK_REG, UNDERFLOW_DET_MASK_FLD, 1, 1) 189 FIELD(IRQ_MASK_REG, MODE_M_FAIL_MASK_FLD, 0, 1) 190 REG32(LOWER_WR_PROT_REG, 0x50) 191 REG32(UPPER_WR_PROT_REG, 0x54) 192 REG32(WR_PROT_CTRL_REG, 0x58) 193 FIELD(WR_PROT_CTRL_REG, WR_PROT_CTRL_RESV_FLD, 2, 30) 194 FIELD(WR_PROT_CTRL_REG, ENB_FLD, 1, 1) 195 FIELD(WR_PROT_CTRL_REG, INV_FLD, 0, 1) 196 REG32(INDIRECT_READ_XFER_CTRL_REG, 0x60) 197 FIELD(INDIRECT_READ_XFER_CTRL_REG, INDIR_RD_XFER_RESV_FLD, 8, 24) 198 FIELD(INDIRECT_READ_XFER_CTRL_REG, NUM_IND_OPS_DONE_FLD, 6, 2) 199 FIELD(INDIRECT_READ_XFER_CTRL_REG, IND_OPS_DONE_STATUS_FLD, 5, 1) 200 FIELD(INDIRECT_READ_XFER_CTRL_REG, RD_QUEUED_FLD, 4, 1) 201 FIELD(INDIRECT_READ_XFER_CTRL_REG, SRAM_FULL_FLD, 3, 1) 202 FIELD(INDIRECT_READ_XFER_CTRL_REG, RD_STATUS_FLD, 2, 1) 203 FIELD(INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD, 1, 1) 204 FIELD(INDIRECT_READ_XFER_CTRL_REG, START_FLD, 0, 1) 205 REG32(INDIRECT_READ_XFER_WATERMARK_REG, 0x64) 206 REG32(INDIRECT_READ_XFER_START_REG, 0x68) 207 REG32(INDIRECT_READ_XFER_NUM_BYTES_REG, 0x6c) 208 REG32(INDIRECT_WRITE_XFER_CTRL_REG, 0x70) 209 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, INDIR_WR_XFER_RESV2_FLD, 8, 24) 210 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, NUM_IND_OPS_DONE_FLD, 6, 2) 211 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, IND_OPS_DONE_STATUS_FLD, 5, 1) 212 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, WR_QUEUED_FLD, 4, 1) 213 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, INDIR_WR_XFER_RESV1_FLD, 3, 1) 214 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, WR_STATUS_FLD, 2, 1) 215 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD, 1, 1) 216 FIELD(INDIRECT_WRITE_XFER_CTRL_REG, START_FLD, 0, 1) 217 REG32(INDIRECT_WRITE_XFER_WATERMARK_REG, 0x74) 218 REG32(INDIRECT_WRITE_XFER_START_REG, 0x78) 219 REG32(INDIRECT_WRITE_XFER_NUM_BYTES_REG, 0x7c) 220 REG32(INDIRECT_TRIGGER_ADDR_RANGE_REG, 0x80) 221 FIELD(INDIRECT_TRIGGER_ADDR_RANGE_REG, IND_RANGE_RESV1_FLD, 4, 28) 222 FIELD(INDIRECT_TRIGGER_ADDR_RANGE_REG, IND_RANGE_WIDTH_FLD, 0, 4) 223 REG32(FLASH_COMMAND_CTRL_MEM_REG, 0x8c) 224 FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV1_FLD, 29, 3) 225 FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_ADDR_FLD, 20, 9) 226 FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV2_FLD, 19, 1) 227 FIELD(FLASH_COMMAND_CTRL_MEM_REG, NB_OF_STIG_READ_BYTES_FLD, 16, 3) 228 FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_READ_DATA_FLD, 8, 8) 229 FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV3_FLD, 2, 6) 230 FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_REQ_IN_PROGRESS_FLD, 1, 1) 231 FIELD(FLASH_COMMAND_CTRL_MEM_REG, TRIGGER_MEM_BANK_REQ_FLD, 0, 1) 232 REG32(FLASH_CMD_CTRL_REG, 0x90) 233 FIELD(FLASH_CMD_CTRL_REG, CMD_OPCODE_FLD, 24, 8) 234 FIELD(FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD, 23, 1) 235 FIELD(FLASH_CMD_CTRL_REG, NUM_RD_DATA_BYTES_FLD, 20, 3) 236 FIELD(FLASH_CMD_CTRL_REG, ENB_COMD_ADDR_FLD, 19, 1) 237 FIELD(FLASH_CMD_CTRL_REG, ENB_MODE_BIT_FLD, 18, 1) 238 FIELD(FLASH_CMD_CTRL_REG, NUM_ADDR_BYTES_FLD, 16, 2) 239 FIELD(FLASH_CMD_CTRL_REG, ENB_WRITE_DATA_FLD, 15, 1) 240 FIELD(FLASH_CMD_CTRL_REG, NUM_WR_DATA_BYTES_FLD, 12, 3) 241 FIELD(FLASH_CMD_CTRL_REG, NUM_DUMMY_CYCLES_FLD, 7, 5) 242 FIELD(FLASH_CMD_CTRL_REG, FLASH_CMD_CTRL_RESV1_FLD, 3, 4) 243 FIELD(FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD, 2, 1) 244 FIELD(FLASH_CMD_CTRL_REG, CMD_EXEC_STATUS_FLD, 1, 1) 245 FIELD(FLASH_CMD_CTRL_REG, CMD_EXEC_FLD, 0, 1) 246 REG32(FLASH_CMD_ADDR_REG, 0x94) 247 REG32(FLASH_RD_DATA_LOWER_REG, 0xa0) 248 REG32(FLASH_RD_DATA_UPPER_REG, 0xa4) 249 REG32(FLASH_WR_DATA_LOWER_REG, 0xa8) 250 REG32(FLASH_WR_DATA_UPPER_REG, 0xac) 251 REG32(POLLING_FLASH_STATUS_REG, 0xb0) 252 FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_RSVD_FLD2, 21, 11) 253 FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_NB_DUMMY, 16, 5) 254 FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_RSVD_FLD1, 9, 7) 255 FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_VALID_FLD, 8, 1) 256 FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_FLD, 0, 8) 257 REG32(PHY_CONFIGURATION_REG, 0xb4) 258 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESYNC_FLD, 31, 1) 259 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESET_FLD, 30, 1) 260 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RX_DLL_BYPASS_FLD, 29, 1) 261 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESV2_FLD, 23, 6) 262 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_TX_DLL_DELAY_FLD, 16, 7) 263 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESV1_FLD, 7, 9) 264 FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RX_DLL_DELAY_FLD, 0, 7) 265 REG32(PHY_MASTER_CONTROL_REG, 0xb8) 266 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV3_FLD, 25, 7) 267 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_LOCK_MODE_FLD, 24, 1) 268 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_BYPASS_MODE_FLD, 23, 1) 269 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_PHASE_DETECT_SELECTOR_FLD, 20, 3) 270 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV2_FLD, 19, 1) 271 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_NB_INDICATIONS_FLD, 16, 3) 272 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV1_FLD, 7, 9) 273 FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_INITIAL_DELAY_FLD, 0, 7) 274 REG32(DLL_OBSERVABLE_LOWER_REG, 0xbc) 275 FIELD(DLL_OBSERVABLE_LOWER_REG, 276 DLL_OBSERVABLE_LOWER_DLL_LOCK_INC_FLD, 24, 8) 277 FIELD(DLL_OBSERVABLE_LOWER_REG, 278 DLL_OBSERVABLE_LOWER_DLL_LOCK_DEC_FLD, 16, 8) 279 FIELD(DLL_OBSERVABLE_LOWER_REG, 280 DLL_OBSERVABLE_LOWER_LOOPBACK_LOCK_FLD, 15, 1) 281 FIELD(DLL_OBSERVABLE_LOWER_REG, 282 DLL_OBSERVABLE_LOWER_LOCK_VALUE_FLD, 8, 7) 283 FIELD(DLL_OBSERVABLE_LOWER_REG, 284 DLL_OBSERVABLE_LOWER_UNLOCK_COUNTER_FLD, 3, 5) 285 FIELD(DLL_OBSERVABLE_LOWER_REG, 286 DLL_OBSERVABLE_LOWER_LOCK_MODE_FLD, 1, 2) 287 FIELD(DLL_OBSERVABLE_LOWER_REG, 288 DLL_OBSERVABLE_LOWER_DLL_LOCK_FLD, 0, 1) 289 REG32(DLL_OBSERVABLE_UPPER_REG, 0xc0) 290 FIELD(DLL_OBSERVABLE_UPPER_REG, 291 DLL_OBSERVABLE_UPPER_RESV2_FLD, 23, 9) 292 FIELD(DLL_OBSERVABLE_UPPER_REG, 293 DLL_OBSERVABLE_UPPER_TX_DECODER_OUTPUT_FLD, 16, 7) 294 FIELD(DLL_OBSERVABLE_UPPER_REG, 295 DLL_OBSERVABLE_UPPER_RESV1_FLD, 7, 9) 296 FIELD(DLL_OBSERVABLE_UPPER_REG, 297 DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD, 0, 7) 298 REG32(OPCODE_EXT_LOWER_REG, 0xe0) 299 FIELD(OPCODE_EXT_LOWER_REG, EXT_READ_OPCODE_FLD, 24, 8) 300 FIELD(OPCODE_EXT_LOWER_REG, EXT_WRITE_OPCODE_FLD, 16, 8) 301 FIELD(OPCODE_EXT_LOWER_REG, EXT_POLL_OPCODE_FLD, 8, 8) 302 FIELD(OPCODE_EXT_LOWER_REG, EXT_STIG_OPCODE_FLD, 0, 8) 303 REG32(OPCODE_EXT_UPPER_REG, 0xe4) 304 FIELD(OPCODE_EXT_UPPER_REG, WEL_OPCODE_FLD, 24, 8) 305 FIELD(OPCODE_EXT_UPPER_REG, EXT_WEL_OPCODE_FLD, 16, 8) 306 FIELD(OPCODE_EXT_UPPER_REG, OPCODE_EXT_UPPER_RESV1_FLD, 0, 16) 307 REG32(MODULE_ID_REG, 0xfc) 308 FIELD(MODULE_ID_REG, FIX_PATCH_FLD, 24, 8) 309 FIELD(MODULE_ID_REG, MODULE_ID_FLD, 8, 16) 310 FIELD(MODULE_ID_REG, MODULE_ID_RESV_FLD, 2, 6) 311 FIELD(MODULE_ID_REG, CONF_FLD, 0, 2) 312 313 #define RXFF_SZ 1024 314 #define TXFF_SZ 1024 315 316 #define MAX_RX_DEC_OUT 8 317 318 #define SZ_512MBIT (512 * 1024 * 1024) 319 #define SZ_1GBIT (1024 * 1024 * 1024) 320 #define SZ_2GBIT (2ULL * SZ_1GBIT) 321 #define SZ_4GBIT (4ULL * SZ_1GBIT) 322 323 #define IS_IND_DMA_START(op) (op->done_bytes == 0) 324 /* 325 * Bit field size of R_INDIRECT_WRITE_XFER_CTRL_REG_NUM_IND_OPS_DONE_FLD 326 * is 2 bits, which can record max of 3 indac operations. 327 */ 328 #define IND_OPS_DONE_MAX 3 329 330 typedef enum { 331 WREN = 0x6, 332 } FlashCMD; 333 334 static unsigned int ospi_stig_addr_len(XlnxVersalOspi *s) 335 { 336 /* Num address bytes is NUM_ADDR_BYTES_FLD + 1 */ 337 return ARRAY_FIELD_EX32(s->regs, 338 FLASH_CMD_CTRL_REG, NUM_ADDR_BYTES_FLD) + 1; 339 } 340 341 static unsigned int ospi_stig_wr_data_len(XlnxVersalOspi *s) 342 { 343 /* Num write data bytes is NUM_WR_DATA_BYTES_FLD + 1 */ 344 return ARRAY_FIELD_EX32(s->regs, 345 FLASH_CMD_CTRL_REG, NUM_WR_DATA_BYTES_FLD) + 1; 346 } 347 348 static unsigned int ospi_stig_rd_data_len(XlnxVersalOspi *s) 349 { 350 /* Num read data bytes is NUM_RD_DATA_BYTES_FLD + 1 */ 351 return ARRAY_FIELD_EX32(s->regs, 352 FLASH_CMD_CTRL_REG, NUM_RD_DATA_BYTES_FLD) + 1; 353 } 354 355 /* 356 * Status bits in R_IRQ_STATUS_REG are set when the event occurs and the 357 * interrupt is enabled in the mask register ([1] Section 2.3.17) 358 */ 359 static void set_irq(XlnxVersalOspi *s, uint32_t set_mask) 360 { 361 s->regs[R_IRQ_STATUS_REG] |= s->regs[R_IRQ_MASK_REG] & set_mask; 362 } 363 364 static void ospi_update_irq_line(XlnxVersalOspi *s) 365 { 366 qemu_set_irq(s->irq, !!(s->regs[R_IRQ_STATUS_REG] & 367 s->regs[R_IRQ_MASK_REG])); 368 } 369 370 static uint8_t ospi_get_wr_opcode(XlnxVersalOspi *s) 371 { 372 return ARRAY_FIELD_EX32(s->regs, 373 DEV_INSTR_WR_CONFIG_REG, WR_OPCODE_FLD); 374 } 375 376 static uint8_t ospi_get_rd_opcode(XlnxVersalOspi *s) 377 { 378 return ARRAY_FIELD_EX32(s->regs, 379 DEV_INSTR_RD_CONFIG_REG, RD_OPCODE_NON_XIP_FLD); 380 } 381 382 static uint32_t ospi_get_num_addr_bytes(XlnxVersalOspi *s) 383 { 384 /* Num address bytes is NUM_ADDR_BYTES_FLD + 1 */ 385 return ARRAY_FIELD_EX32(s->regs, 386 DEV_SIZE_CONFIG_REG, NUM_ADDR_BYTES_FLD) + 1; 387 } 388 389 static void ospi_stig_membank_req(XlnxVersalOspi *s) 390 { 391 int idx = ARRAY_FIELD_EX32(s->regs, 392 FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_ADDR_FLD); 393 394 ARRAY_FIELD_DP32(s->regs, FLASH_COMMAND_CTRL_MEM_REG, 395 MEM_BANK_READ_DATA_FLD, s->stig_membank[idx]); 396 } 397 398 static int ospi_stig_membank_rd_bytes(XlnxVersalOspi *s) 399 { 400 int rd_data_fld = ARRAY_FIELD_EX32(s->regs, FLASH_COMMAND_CTRL_MEM_REG, 401 NB_OF_STIG_READ_BYTES_FLD); 402 static const int sizes[6] = { 16, 32, 64, 128, 256, 512 }; 403 return (rd_data_fld < 6) ? sizes[rd_data_fld] : 0; 404 } 405 406 static uint32_t ospi_get_page_sz(XlnxVersalOspi *s) 407 { 408 return ARRAY_FIELD_EX32(s->regs, 409 DEV_SIZE_CONFIG_REG, BYTES_PER_DEVICE_PAGE_FLD); 410 } 411 412 static bool ospi_ind_rd_watermark_enabled(XlnxVersalOspi *s) 413 { 414 return s->regs[R_INDIRECT_READ_XFER_WATERMARK_REG]; 415 } 416 417 static void ind_op_advance(IndOp *op, unsigned int len) 418 { 419 op->done_bytes += len; 420 assert(op->done_bytes <= op->num_bytes); 421 if (op->done_bytes == op->num_bytes) { 422 op->completed = true; 423 } 424 } 425 426 static uint32_t ind_op_next_byte(IndOp *op) 427 { 428 return op->flash_addr + op->done_bytes; 429 } 430 431 static uint32_t ind_op_end_byte(IndOp *op) 432 { 433 return op->flash_addr + op->num_bytes; 434 } 435 436 static void ospi_ind_op_next(IndOp *op) 437 { 438 op[0] = op[1]; 439 op[1].completed = true; 440 } 441 442 static void ind_op_setup(IndOp *op, uint32_t flash_addr, uint32_t num_bytes) 443 { 444 if (num_bytes & 0x3) { 445 qemu_log_mask(LOG_GUEST_ERROR, 446 "OSPI indirect op num bytes not word aligned\n"); 447 } 448 op->flash_addr = flash_addr; 449 op->num_bytes = num_bytes; 450 op->done_bytes = 0; 451 op->completed = false; 452 } 453 454 static bool ospi_ind_op_completed(IndOp *op) 455 { 456 return op->completed; 457 } 458 459 static bool ospi_ind_op_all_completed(XlnxVersalOspi *s) 460 { 461 return s->rd_ind_op[0].completed && s->wr_ind_op[0].completed; 462 } 463 464 static void ospi_ind_op_cancel(IndOp *op) 465 { 466 op[0].completed = true; 467 op[1].completed = true; 468 } 469 470 static bool ospi_ind_op_add(IndOp *op, Fifo8 *fifo, 471 uint32_t flash_addr, uint32_t num_bytes) 472 { 473 /* Check if first indirect op has been completed */ 474 if (op->completed) { 475 fifo8_reset(fifo); 476 ind_op_setup(op, flash_addr, num_bytes); 477 return false; 478 } 479 480 /* Check if second indirect op has been completed */ 481 op++; 482 if (op->completed) { 483 ind_op_setup(op, flash_addr, num_bytes); 484 return false; 485 } 486 return true; 487 } 488 489 static void ospi_ind_op_queue_up_rd(XlnxVersalOspi *s) 490 { 491 uint32_t num_bytes = s->regs[R_INDIRECT_READ_XFER_NUM_BYTES_REG]; 492 uint32_t flash_addr = s->regs[R_INDIRECT_READ_XFER_START_REG]; 493 bool failed; 494 495 failed = ospi_ind_op_add(s->rd_ind_op, &s->rx_sram, flash_addr, num_bytes); 496 /* If two already queued set rd reject interrupt */ 497 if (failed) { 498 set_irq(s, R_IRQ_STATUS_REG_INDIRECT_TRANSFER_REJECT_FLD_MASK); 499 } 500 } 501 502 static void ospi_ind_op_queue_up_wr(XlnxVersalOspi *s) 503 { 504 uint32_t num_bytes = s->regs[R_INDIRECT_WRITE_XFER_NUM_BYTES_REG]; 505 uint32_t flash_addr = s->regs[R_INDIRECT_WRITE_XFER_START_REG]; 506 bool failed; 507 508 failed = ospi_ind_op_add(s->wr_ind_op, &s->tx_sram, flash_addr, num_bytes); 509 /* If two already queued set rd reject interrupt */ 510 if (failed) { 511 set_irq(s, R_IRQ_STATUS_REG_INDIRECT_TRANSFER_REJECT_FLD_MASK); 512 } 513 } 514 515 static uint64_t flash_sz(XlnxVersalOspi *s, unsigned int cs) 516 { 517 /* Flash sizes in MB */ 518 static const uint64_t sizes[4] = { SZ_512MBIT / 8, SZ_1GBIT / 8, 519 SZ_2GBIT / 8, SZ_4GBIT / 8 }; 520 uint32_t v = s->regs[R_DEV_SIZE_CONFIG_REG]; 521 522 v >>= cs * R_DEV_SIZE_CONFIG_REG_MEM_SIZE_ON_CS0_FLD_LENGTH; 523 return sizes[FIELD_EX32(v, DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS0_FLD)]; 524 } 525 526 static unsigned int ospi_get_block_sz(XlnxVersalOspi *s) 527 { 528 unsigned int block_fld = ARRAY_FIELD_EX32(s->regs, 529 DEV_SIZE_CONFIG_REG, 530 BYTES_PER_SUBSECTOR_FLD); 531 return 1 << block_fld; 532 } 533 534 static unsigned int flash_blocks(XlnxVersalOspi *s, unsigned int cs) 535 { 536 unsigned int b_sz = ospi_get_block_sz(s); 537 unsigned int f_sz = flash_sz(s, cs); 538 539 return f_sz / b_sz; 540 } 541 542 static int ospi_ahb_decoder_cs(XlnxVersalOspi *s, hwaddr addr) 543 { 544 uint64_t end_addr = 0; 545 int cs; 546 547 for (cs = 0; cs < s->num_cs; cs++) { 548 end_addr += flash_sz(s, cs); 549 if (addr < end_addr) { 550 break; 551 } 552 } 553 554 if (cs == s->num_cs) { 555 /* Address is out of range */ 556 qemu_log_mask(LOG_GUEST_ERROR, 557 "OSPI flash address does not fit in configuration\n"); 558 return -1; 559 } 560 return cs; 561 } 562 563 static void ospi_ahb_decoder_enable_cs(XlnxVersalOspi *s, hwaddr addr) 564 { 565 int cs = ospi_ahb_decoder_cs(s, addr); 566 567 if (cs >= 0) { 568 for (int i = 0; i < s->num_cs; i++) { 569 qemu_set_irq(s->cs_lines[i], cs != i); 570 } 571 } 572 } 573 574 static unsigned int single_cs(XlnxVersalOspi *s) 575 { 576 unsigned int field = ARRAY_FIELD_EX32(s->regs, 577 CONFIG_REG, PERIPH_CS_LINES_FLD); 578 579 /* 580 * Below one liner is a trick that finds the rightmost zero and makes sure 581 * all other bits are turned to 1. It is a variant of the 'Isolate the 582 * rightmost 0-bit' trick found below at the time of writing: 583 * 584 * https://emre.me/computer-science/bit-manipulation-tricks/ 585 * 586 * 4'bXXX0 -> 4'b1110 587 * 4'bXX01 -> 4'b1101 588 * 4'bX011 -> 4'b1011 589 * 4'b0111 -> 4'b0111 590 * 4'b1111 -> 4'b1111 591 */ 592 return (field | ~(field + 1)) & 0xf; 593 } 594 595 static void ospi_update_cs_lines(XlnxVersalOspi *s) 596 { 597 unsigned int all_cs; 598 int i; 599 600 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, PERIPH_SEL_DEC_FLD)) { 601 all_cs = ARRAY_FIELD_EX32(s->regs, CONFIG_REG, PERIPH_CS_LINES_FLD); 602 } else { 603 all_cs = single_cs(s); 604 } 605 606 for (i = 0; i < s->num_cs; i++) { 607 bool cs = (all_cs >> i) & 1; 608 609 qemu_set_irq(s->cs_lines[i], cs); 610 } 611 } 612 613 static void ospi_dac_cs(XlnxVersalOspi *s, hwaddr addr) 614 { 615 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENABLE_AHB_DECODER_FLD)) { 616 ospi_ahb_decoder_enable_cs(s, addr); 617 } else { 618 ospi_update_cs_lines(s); 619 } 620 } 621 622 static void ospi_disable_cs(XlnxVersalOspi *s) 623 { 624 int i; 625 626 for (i = 0; i < s->num_cs; i++) { 627 qemu_set_irq(s->cs_lines[i], 1); 628 } 629 } 630 631 static void ospi_flush_txfifo(XlnxVersalOspi *s) 632 { 633 while (!fifo8_is_empty(&s->tx_fifo)) { 634 uint32_t tx_rx = fifo8_pop(&s->tx_fifo); 635 636 tx_rx = ssi_transfer(s->spi, tx_rx); 637 fifo8_push(&s->rx_fifo, tx_rx); 638 } 639 } 640 641 static void ospi_tx_fifo_push_address_raw(XlnxVersalOspi *s, 642 uint32_t flash_addr, 643 unsigned int addr_bytes) 644 { 645 /* Push write address */ 646 if (addr_bytes == 4) { 647 fifo8_push(&s->tx_fifo, flash_addr >> 24); 648 } 649 if (addr_bytes >= 3) { 650 fifo8_push(&s->tx_fifo, flash_addr >> 16); 651 } 652 if (addr_bytes >= 2) { 653 fifo8_push(&s->tx_fifo, flash_addr >> 8); 654 } 655 fifo8_push(&s->tx_fifo, flash_addr); 656 } 657 658 static void ospi_tx_fifo_push_address(XlnxVersalOspi *s, uint32_t flash_addr) 659 { 660 /* Push write address */ 661 int addr_bytes = ospi_get_num_addr_bytes(s); 662 663 ospi_tx_fifo_push_address_raw(s, flash_addr, addr_bytes); 664 } 665 666 static void ospi_tx_fifo_push_stig_addr(XlnxVersalOspi *s) 667 { 668 uint32_t flash_addr = s->regs[R_FLASH_CMD_ADDR_REG]; 669 unsigned int addr_bytes = ospi_stig_addr_len(s); 670 671 ospi_tx_fifo_push_address_raw(s, flash_addr, addr_bytes); 672 } 673 674 static void ospi_tx_fifo_push_rd_op_addr(XlnxVersalOspi *s, uint32_t flash_addr) 675 { 676 uint8_t inst_code = ospi_get_rd_opcode(s); 677 678 fifo8_reset(&s->tx_fifo); 679 680 /* Push read opcode */ 681 fifo8_push(&s->tx_fifo, inst_code); 682 683 /* Push read address */ 684 ospi_tx_fifo_push_address(s, flash_addr); 685 } 686 687 static void ospi_tx_fifo_push_stig_wr_data(XlnxVersalOspi *s) 688 { 689 uint64_t data = s->regs[R_FLASH_WR_DATA_LOWER_REG]; 690 int wr_data_len = ospi_stig_wr_data_len(s); 691 int i; 692 693 data |= (uint64_t) s->regs[R_FLASH_WR_DATA_UPPER_REG] << 32; 694 for (i = 0; i < wr_data_len; i++) { 695 int shift = i * 8; 696 fifo8_push(&s->tx_fifo, data >> shift); 697 } 698 } 699 700 static void ospi_tx_fifo_push_stig_rd_data(XlnxVersalOspi *s) 701 { 702 int rd_data_len; 703 int i; 704 705 if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD)) { 706 rd_data_len = ospi_stig_membank_rd_bytes(s); 707 } else { 708 rd_data_len = ospi_stig_rd_data_len(s); 709 } 710 711 /* transmit second part (data) */ 712 for (i = 0; i < rd_data_len; ++i) { 713 fifo8_push(&s->tx_fifo, 0); 714 } 715 } 716 717 static void ospi_rx_fifo_pop_stig_rd_data(XlnxVersalOspi *s) 718 { 719 int size = ospi_stig_rd_data_len(s); 720 uint8_t bytes[8] = {}; 721 int i; 722 723 size = MIN(fifo8_num_used(&s->rx_fifo), size); 724 725 assert(size <= 8); 726 727 for (i = 0; i < size; i++) { 728 bytes[i] = fifo8_pop(&s->rx_fifo); 729 } 730 731 s->regs[R_FLASH_RD_DATA_LOWER_REG] = ldl_le_p(bytes); 732 s->regs[R_FLASH_RD_DATA_UPPER_REG] = ldl_le_p(bytes + 4); 733 } 734 735 static void ospi_ind_read(XlnxVersalOspi *s, uint32_t flash_addr, uint32_t len) 736 { 737 int i; 738 739 /* Create first section of read cmd */ 740 ospi_tx_fifo_push_rd_op_addr(s, flash_addr); 741 742 /* transmit first part */ 743 ospi_update_cs_lines(s); 744 ospi_flush_txfifo(s); 745 746 fifo8_reset(&s->rx_fifo); 747 748 /* transmit second part (data) */ 749 for (i = 0; i < len; ++i) { 750 fifo8_push(&s->tx_fifo, 0); 751 } 752 ospi_flush_txfifo(s); 753 754 for (i = 0; i < len; ++i) { 755 fifo8_push(&s->rx_sram, fifo8_pop(&s->rx_fifo)); 756 } 757 758 /* done */ 759 ospi_disable_cs(s); 760 } 761 762 static unsigned int ospi_dma_burst_size(XlnxVersalOspi *s) 763 { 764 return 1 << ARRAY_FIELD_EX32(s->regs, 765 DMA_PERIPH_CONFIG_REG, 766 NUM_BURST_REQ_BYTES_FLD); 767 } 768 769 static unsigned int ospi_dma_single_size(XlnxVersalOspi *s) 770 { 771 return 1 << ARRAY_FIELD_EX32(s->regs, 772 DMA_PERIPH_CONFIG_REG, 773 NUM_SINGLE_REQ_BYTES_FLD); 774 } 775 776 static void ind_rd_inc_num_done(XlnxVersalOspi *s) 777 { 778 unsigned int done = ARRAY_FIELD_EX32(s->regs, 779 INDIRECT_READ_XFER_CTRL_REG, 780 NUM_IND_OPS_DONE_FLD); 781 if (done < IND_OPS_DONE_MAX) { 782 done++; 783 } 784 done &= 0x3; 785 ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG, 786 NUM_IND_OPS_DONE_FLD, done); 787 } 788 789 static void ospi_ind_rd_completed(XlnxVersalOspi *s) 790 { 791 ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG, 792 IND_OPS_DONE_STATUS_FLD, 1); 793 794 ind_rd_inc_num_done(s); 795 ospi_ind_op_next(s->rd_ind_op); 796 if (ospi_ind_op_all_completed(s)) { 797 set_irq(s, R_IRQ_STATUS_REG_INDIRECT_OP_DONE_FLD_MASK); 798 } 799 } 800 801 static void ospi_dma_read(XlnxVersalOspi *s) 802 { 803 IndOp *op = s->rd_ind_op; 804 uint32_t dma_len = op->num_bytes; 805 uint32_t burst_sz = ospi_dma_burst_size(s); 806 uint32_t single_sz = ospi_dma_single_size(s); 807 uint32_t ind_trig_range; 808 uint32_t remainder; 809 XlnxCSUDMAClass *xcdc = XLNX_CSU_DMA_GET_CLASS(s->dma_src); 810 811 ind_trig_range = (1 << ARRAY_FIELD_EX32(s->regs, 812 INDIRECT_TRIGGER_ADDR_RANGE_REG, 813 IND_RANGE_WIDTH_FLD)); 814 remainder = dma_len % burst_sz; 815 remainder = remainder % single_sz; 816 if (burst_sz > ind_trig_range || single_sz > ind_trig_range || 817 remainder != 0) { 818 qemu_log_mask(LOG_GUEST_ERROR, 819 "OSPI DMA burst size / single size config error\n"); 820 } 821 822 s->src_dma_inprog = true; 823 if (xcdc->read(s->dma_src, 0, dma_len) != MEMTX_OK) { 824 qemu_log_mask(LOG_GUEST_ERROR, "OSPI DMA configuration error\n"); 825 } 826 s->src_dma_inprog = false; 827 } 828 829 static void ospi_do_ind_read(XlnxVersalOspi *s) 830 { 831 IndOp *op = s->rd_ind_op; 832 uint32_t next_b; 833 uint32_t end_b; 834 uint32_t len; 835 bool start_dma = IS_IND_DMA_START(op) && !s->src_dma_inprog; 836 837 /* Continue to read flash until we run out of space in sram */ 838 while (!ospi_ind_op_completed(op) && 839 !fifo8_is_full(&s->rx_sram)) { 840 /* Read requested number of bytes, max bytes limited to size of sram */ 841 next_b = ind_op_next_byte(op); 842 end_b = next_b + fifo8_num_free(&s->rx_sram); 843 end_b = MIN(end_b, ind_op_end_byte(op)); 844 845 len = end_b - next_b; 846 ospi_ind_read(s, next_b, len); 847 ind_op_advance(op, len); 848 849 if (ospi_ind_rd_watermark_enabled(s)) { 850 ARRAY_FIELD_DP32(s->regs, IRQ_STATUS_REG, 851 INDIRECT_XFER_LEVEL_BREACH_FLD, 1); 852 set_irq(s, 853 R_IRQ_STATUS_REG_INDIRECT_XFER_LEVEL_BREACH_FLD_MASK); 854 } 855 856 if (!s->src_dma_inprog && 857 ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD)) { 858 ospi_dma_read(s); 859 } 860 } 861 862 /* Set sram full */ 863 if (fifo8_num_used(&s->rx_sram) == RXFF_SZ) { 864 ARRAY_FIELD_DP32(s->regs, 865 INDIRECT_READ_XFER_CTRL_REG, SRAM_FULL_FLD, 1); 866 set_irq(s, R_IRQ_STATUS_REG_INDRD_SRAM_FULL_FLD_MASK); 867 } 868 869 /* Signal completion if done, unless inside recursion via ospi_dma_read */ 870 if (!ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD) || start_dma) { 871 if (ospi_ind_op_completed(op)) { 872 ospi_ind_rd_completed(s); 873 } 874 } 875 } 876 877 /* Transmit write enable instruction */ 878 static void ospi_transmit_wel(XlnxVersalOspi *s, bool ahb_decoder_cs, 879 hwaddr addr) 880 { 881 fifo8_reset(&s->tx_fifo); 882 fifo8_push(&s->tx_fifo, WREN); 883 884 if (ahb_decoder_cs) { 885 ospi_ahb_decoder_enable_cs(s, addr); 886 } else { 887 ospi_update_cs_lines(s); 888 } 889 890 ospi_flush_txfifo(s); 891 ospi_disable_cs(s); 892 893 fifo8_reset(&s->rx_fifo); 894 } 895 896 static void ospi_ind_write(XlnxVersalOspi *s, uint32_t flash_addr, uint32_t len) 897 { 898 bool ahb_decoder_cs = false; 899 uint8_t inst_code; 900 int i; 901 902 assert(fifo8_num_used(&s->tx_sram) >= len); 903 904 if (!ARRAY_FIELD_EX32(s->regs, DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD)) { 905 ospi_transmit_wel(s, ahb_decoder_cs, 0); 906 } 907 908 /* reset fifos */ 909 fifo8_reset(&s->tx_fifo); 910 fifo8_reset(&s->rx_fifo); 911 912 /* Push write opcode */ 913 inst_code = ospi_get_wr_opcode(s); 914 fifo8_push(&s->tx_fifo, inst_code); 915 916 /* Push write address */ 917 ospi_tx_fifo_push_address(s, flash_addr); 918 919 /* data */ 920 for (i = 0; i < len; i++) { 921 fifo8_push(&s->tx_fifo, fifo8_pop(&s->tx_sram)); 922 } 923 924 /* transmit */ 925 ospi_update_cs_lines(s); 926 ospi_flush_txfifo(s); 927 928 /* done */ 929 ospi_disable_cs(s); 930 fifo8_reset(&s->rx_fifo); 931 } 932 933 static void ind_wr_inc_num_done(XlnxVersalOspi *s) 934 { 935 unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, 936 NUM_IND_OPS_DONE_FLD); 937 if (done < IND_OPS_DONE_MAX) { 938 done++; 939 } 940 done &= 0x3; 941 ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, 942 NUM_IND_OPS_DONE_FLD, done); 943 } 944 945 static void ospi_ind_wr_completed(XlnxVersalOspi *s) 946 { 947 ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, 948 IND_OPS_DONE_STATUS_FLD, 1); 949 ind_wr_inc_num_done(s); 950 ospi_ind_op_next(s->wr_ind_op); 951 /* Set indirect op done interrupt if enabled */ 952 if (ospi_ind_op_all_completed(s)) { 953 set_irq(s, R_IRQ_STATUS_REG_INDIRECT_OP_DONE_FLD_MASK); 954 } 955 } 956 957 static void ospi_do_indirect_write(XlnxVersalOspi *s) 958 { 959 uint32_t write_watermark = s->regs[R_INDIRECT_WRITE_XFER_WATERMARK_REG]; 960 uint32_t pagesz = ospi_get_page_sz(s); 961 uint32_t page_mask = ~(pagesz - 1); 962 IndOp *op = s->wr_ind_op; 963 uint32_t next_b; 964 uint32_t end_b; 965 uint32_t len; 966 967 /* Write out tx_fifo in maximum page sz chunks */ 968 while (!ospi_ind_op_completed(op) && fifo8_num_used(&s->tx_sram) > 0) { 969 next_b = ind_op_next_byte(op); 970 end_b = next_b + MIN(fifo8_num_used(&s->tx_sram), pagesz); 971 972 /* Dont cross page boundary */ 973 if ((end_b & page_mask) > next_b) { 974 end_b &= page_mask; 975 } 976 977 len = end_b - next_b; 978 len = MIN(len, op->num_bytes - op->done_bytes); 979 ospi_ind_write(s, next_b, len); 980 ind_op_advance(op, len); 981 } 982 983 /* 984 * Always set indirect transfer level breached interrupt if enabled 985 * (write watermark > 0) since the tx_sram always will be emptied 986 */ 987 if (write_watermark > 0) { 988 set_irq(s, R_IRQ_STATUS_REG_INDIRECT_XFER_LEVEL_BREACH_FLD_MASK); 989 } 990 991 /* Signal completions if done */ 992 if (ospi_ind_op_completed(op)) { 993 ospi_ind_wr_completed(s); 994 } 995 } 996 997 static void ospi_stig_fill_membank(XlnxVersalOspi *s) 998 { 999 int num_rd_bytes = ospi_stig_membank_rd_bytes(s); 1000 int idx = num_rd_bytes - 8; /* first of last 8 */ 1001 int i; 1002 1003 for (i = 0; i < num_rd_bytes; i++) { 1004 s->stig_membank[i] = fifo8_pop(&s->rx_fifo); 1005 } 1006 1007 g_assert((idx + 4) < ARRAY_SIZE(s->stig_membank)); 1008 1009 /* Fill in lower upper regs */ 1010 s->regs[R_FLASH_RD_DATA_LOWER_REG] = ldl_le_p(&s->stig_membank[idx]); 1011 s->regs[R_FLASH_RD_DATA_UPPER_REG] = ldl_le_p(&s->stig_membank[idx + 4]); 1012 } 1013 1014 static void ospi_stig_cmd_exec(XlnxVersalOspi *s) 1015 { 1016 uint8_t inst_code; 1017 1018 /* Reset fifos */ 1019 fifo8_reset(&s->tx_fifo); 1020 fifo8_reset(&s->rx_fifo); 1021 1022 /* Push write opcode */ 1023 inst_code = ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, CMD_OPCODE_FLD); 1024 fifo8_push(&s->tx_fifo, inst_code); 1025 1026 /* Push address if enabled */ 1027 if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_COMD_ADDR_FLD)) { 1028 ospi_tx_fifo_push_stig_addr(s); 1029 } 1030 1031 /* Enable cs */ 1032 ospi_update_cs_lines(s); 1033 1034 /* Data */ 1035 if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_WRITE_DATA_FLD)) { 1036 ospi_tx_fifo_push_stig_wr_data(s); 1037 } else if (ARRAY_FIELD_EX32(s->regs, 1038 FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD)) { 1039 /* transmit first part */ 1040 ospi_flush_txfifo(s); 1041 fifo8_reset(&s->rx_fifo); 1042 ospi_tx_fifo_push_stig_rd_data(s); 1043 } 1044 1045 /* Transmit */ 1046 ospi_flush_txfifo(s); 1047 ospi_disable_cs(s); 1048 1049 if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD)) { 1050 if (ARRAY_FIELD_EX32(s->regs, 1051 FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD)) { 1052 ospi_stig_fill_membank(s); 1053 } else { 1054 ospi_rx_fifo_pop_stig_rd_data(s); 1055 } 1056 } 1057 } 1058 1059 static uint32_t ospi_block_address(XlnxVersalOspi *s, unsigned int block) 1060 { 1061 unsigned int block_sz = ospi_get_block_sz(s); 1062 unsigned int cs = 0; 1063 uint32_t addr = 0; 1064 1065 while (cs < s->num_cs && block >= flash_blocks(s, cs)) { 1066 block -= flash_blocks(s, 0); 1067 addr += flash_sz(s, cs); 1068 } 1069 addr += block * block_sz; 1070 return addr; 1071 } 1072 1073 static uint32_t ospi_get_wr_prot_addr_low(XlnxVersalOspi *s) 1074 { 1075 unsigned int block = s->regs[R_LOWER_WR_PROT_REG]; 1076 1077 return ospi_block_address(s, block); 1078 } 1079 1080 static uint32_t ospi_get_wr_prot_addr_upper(XlnxVersalOspi *s) 1081 { 1082 unsigned int block = s->regs[R_UPPER_WR_PROT_REG]; 1083 1084 /* Get address of first block out of defined range */ 1085 return ospi_block_address(s, block + 1); 1086 } 1087 1088 static bool ospi_is_write_protected(XlnxVersalOspi *s, hwaddr addr) 1089 { 1090 uint32_t wr_prot_addr_upper = ospi_get_wr_prot_addr_upper(s); 1091 uint32_t wr_prot_addr_low = ospi_get_wr_prot_addr_low(s); 1092 bool in_range = false; 1093 1094 if (addr >= wr_prot_addr_low && addr < wr_prot_addr_upper) { 1095 in_range = true; 1096 } 1097 1098 if (ARRAY_FIELD_EX32(s->regs, WR_PROT_CTRL_REG, INV_FLD)) { 1099 in_range = !in_range; 1100 } 1101 return in_range; 1102 } 1103 1104 static uint64_t ospi_rx_sram_read(XlnxVersalOspi *s, unsigned int size) 1105 { 1106 uint8_t bytes[8] = {}; 1107 int i; 1108 1109 if (size < 4 && fifo8_num_used(&s->rx_sram) >= 4) { 1110 qemu_log_mask(LOG_GUEST_ERROR, 1111 "OSPI only last read of internal " 1112 "sram is allowed to be < 32 bits\n"); 1113 } 1114 1115 size = MIN(fifo8_num_used(&s->rx_sram), size); 1116 1117 assert(size <= 8); 1118 1119 for (i = 0; i < size; i++) { 1120 bytes[i] = fifo8_pop(&s->rx_sram); 1121 } 1122 1123 return ldq_le_p(bytes); 1124 } 1125 1126 static void ospi_tx_sram_write(XlnxVersalOspi *s, uint64_t value, 1127 unsigned int size) 1128 { 1129 int i; 1130 for (i = 0; i < size && !fifo8_is_full(&s->tx_sram); i++) { 1131 fifo8_push(&s->tx_sram, value >> 8 * i); 1132 } 1133 } 1134 1135 static uint64_t ospi_do_dac_read(void *opaque, hwaddr addr, unsigned int size) 1136 { 1137 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque); 1138 uint8_t bytes[8] = {}; 1139 int i; 1140 1141 /* Create first section of read cmd */ 1142 ospi_tx_fifo_push_rd_op_addr(s, (uint32_t) addr); 1143 1144 /* Enable cs and transmit first part */ 1145 ospi_dac_cs(s, addr); 1146 ospi_flush_txfifo(s); 1147 1148 fifo8_reset(&s->rx_fifo); 1149 1150 /* transmit second part (data) */ 1151 for (i = 0; i < size; ++i) { 1152 fifo8_push(&s->tx_fifo, 0); 1153 } 1154 ospi_flush_txfifo(s); 1155 1156 /* fill in result */ 1157 size = MIN(fifo8_num_used(&s->rx_fifo), size); 1158 1159 assert(size <= 8); 1160 1161 for (i = 0; i < size; i++) { 1162 bytes[i] = fifo8_pop(&s->rx_fifo); 1163 } 1164 1165 /* done */ 1166 ospi_disable_cs(s); 1167 1168 return ldq_le_p(bytes); 1169 } 1170 1171 static void ospi_do_dac_write(void *opaque, 1172 hwaddr addr, 1173 uint64_t value, 1174 unsigned int size) 1175 { 1176 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque); 1177 bool ahb_decoder_cs = ARRAY_FIELD_EX32(s->regs, CONFIG_REG, 1178 ENABLE_AHB_DECODER_FLD); 1179 uint8_t inst_code; 1180 unsigned int i; 1181 1182 if (!ARRAY_FIELD_EX32(s->regs, DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD)) { 1183 ospi_transmit_wel(s, ahb_decoder_cs, addr); 1184 } 1185 1186 /* reset fifos */ 1187 fifo8_reset(&s->tx_fifo); 1188 fifo8_reset(&s->rx_fifo); 1189 1190 /* Push write opcode */ 1191 inst_code = ospi_get_wr_opcode(s); 1192 fifo8_push(&s->tx_fifo, inst_code); 1193 1194 /* Push write address */ 1195 ospi_tx_fifo_push_address(s, addr); 1196 1197 /* data */ 1198 for (i = 0; i < size; i++) { 1199 fifo8_push(&s->tx_fifo, value >> 8 * i); 1200 } 1201 1202 /* Enable cs and transmit */ 1203 ospi_dac_cs(s, addr); 1204 ospi_flush_txfifo(s); 1205 ospi_disable_cs(s); 1206 1207 fifo8_reset(&s->rx_fifo); 1208 } 1209 1210 static void flash_cmd_ctrl_mem_reg_post_write(RegisterInfo *reg, 1211 uint64_t val) 1212 { 1213 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque); 1214 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) { 1215 if (ARRAY_FIELD_EX32(s->regs, 1216 FLASH_COMMAND_CTRL_MEM_REG, 1217 TRIGGER_MEM_BANK_REQ_FLD)) { 1218 ospi_stig_membank_req(s); 1219 ARRAY_FIELD_DP32(s->regs, FLASH_COMMAND_CTRL_MEM_REG, 1220 TRIGGER_MEM_BANK_REQ_FLD, 0); 1221 } 1222 } 1223 } 1224 1225 static void flash_cmd_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val) 1226 { 1227 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque); 1228 1229 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD) && 1230 ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, CMD_EXEC_FLD)) { 1231 ospi_stig_cmd_exec(s); 1232 set_irq(s, R_IRQ_STATUS_REG_STIG_REQ_INT_FLD_MASK); 1233 ARRAY_FIELD_DP32(s->regs, FLASH_CMD_CTRL_REG, CMD_EXEC_FLD, 0); 1234 } 1235 } 1236 1237 static uint64_t ind_wr_dec_num_done(XlnxVersalOspi *s, uint64_t val) 1238 { 1239 unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, 1240 NUM_IND_OPS_DONE_FLD); 1241 done--; 1242 done &= 0x3; 1243 val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG, 1244 NUM_IND_OPS_DONE_FLD, done); 1245 return val; 1246 } 1247 1248 static bool ind_wr_clearing_op_done(XlnxVersalOspi *s, uint64_t new_val) 1249 { 1250 bool set_in_reg = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, 1251 IND_OPS_DONE_STATUS_FLD); 1252 bool set_in_new_val = FIELD_EX32(new_val, INDIRECT_WRITE_XFER_CTRL_REG, 1253 IND_OPS_DONE_STATUS_FLD); 1254 /* return true if clearing bit */ 1255 return set_in_reg && !set_in_new_val; 1256 } 1257 1258 static uint64_t ind_wr_xfer_ctrl_reg_pre_write(RegisterInfo *reg, 1259 uint64_t val) 1260 { 1261 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque); 1262 1263 if (ind_wr_clearing_op_done(s, val)) { 1264 val = ind_wr_dec_num_done(s, val); 1265 } 1266 return val; 1267 } 1268 1269 static void ind_wr_xfer_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val) 1270 { 1271 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque); 1272 1273 if (s->ind_write_disabled) { 1274 return; 1275 } 1276 1277 if (ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, START_FLD)) { 1278 ospi_ind_op_queue_up_wr(s); 1279 ospi_do_indirect_write(s); 1280 ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, START_FLD, 0); 1281 } 1282 1283 if (ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD)) { 1284 ospi_ind_op_cancel(s->wr_ind_op); 1285 fifo8_reset(&s->tx_sram); 1286 ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD, 0); 1287 } 1288 } 1289 1290 static uint64_t ind_wr_xfer_ctrl_reg_post_read(RegisterInfo *reg, 1291 uint64_t val) 1292 { 1293 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque); 1294 IndOp *op = s->wr_ind_op; 1295 1296 /* Check if ind ops is ongoing */ 1297 if (!ospi_ind_op_completed(&op[0])) { 1298 /* Check if two ind ops are queued */ 1299 if (!ospi_ind_op_completed(&op[1])) { 1300 val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG, 1301 WR_QUEUED_FLD, 1); 1302 } 1303 val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG, WR_STATUS_FLD, 1); 1304 } 1305 return val; 1306 } 1307 1308 static uint64_t ind_rd_dec_num_done(XlnxVersalOspi *s, uint64_t val) 1309 { 1310 unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG, 1311 NUM_IND_OPS_DONE_FLD); 1312 done--; 1313 done &= 0x3; 1314 val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG, 1315 NUM_IND_OPS_DONE_FLD, done); 1316 return val; 1317 } 1318 1319 static uint64_t ind_rd_xfer_ctrl_reg_pre_write(RegisterInfo *reg, 1320 uint64_t val) 1321 { 1322 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque); 1323 1324 if (FIELD_EX32(val, INDIRECT_READ_XFER_CTRL_REG, 1325 IND_OPS_DONE_STATUS_FLD)) { 1326 val = ind_rd_dec_num_done(s, val); 1327 val &= ~R_INDIRECT_READ_XFER_CTRL_REG_IND_OPS_DONE_STATUS_FLD_MASK; 1328 } 1329 return val; 1330 } 1331 1332 static void ind_rd_xfer_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val) 1333 { 1334 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque); 1335 1336 if (ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG, START_FLD)) { 1337 ospi_ind_op_queue_up_rd(s); 1338 ospi_do_ind_read(s); 1339 ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG, START_FLD, 0); 1340 } 1341 1342 if (ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD)) { 1343 ospi_ind_op_cancel(s->rd_ind_op); 1344 fifo8_reset(&s->rx_sram); 1345 ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD, 0); 1346 } 1347 } 1348 1349 static uint64_t ind_rd_xfer_ctrl_reg_post_read(RegisterInfo *reg, 1350 uint64_t val) 1351 { 1352 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque); 1353 IndOp *op = s->rd_ind_op; 1354 1355 /* Check if ind ops is ongoing */ 1356 if (!ospi_ind_op_completed(&op[0])) { 1357 /* Check if two ind ops are queued */ 1358 if (!ospi_ind_op_completed(&op[1])) { 1359 val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG, 1360 RD_QUEUED_FLD, 1); 1361 } 1362 val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG, RD_STATUS_FLD, 1); 1363 } 1364 return val; 1365 } 1366 1367 static uint64_t sram_fill_reg_post_read(RegisterInfo *reg, uint64_t val) 1368 { 1369 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque); 1370 val = ((fifo8_num_used(&s->tx_sram) & 0xFFFF) << 16) | 1371 (fifo8_num_used(&s->rx_sram) & 0xFFFF); 1372 return val; 1373 } 1374 1375 static uint64_t dll_obs_upper_reg_post_read(RegisterInfo *reg, uint64_t val) 1376 { 1377 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque); 1378 uint32_t rx_dec_out; 1379 1380 rx_dec_out = FIELD_EX32(val, DLL_OBSERVABLE_UPPER_REG, 1381 DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD); 1382 1383 if (rx_dec_out < MAX_RX_DEC_OUT) { 1384 ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_UPPER_REG, 1385 DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD, 1386 rx_dec_out + 1); 1387 } 1388 1389 return val; 1390 } 1391 1392 1393 static void xlnx_versal_ospi_reset(DeviceState *dev) 1394 { 1395 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(dev); 1396 unsigned int i; 1397 1398 for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) { 1399 register_reset(&s->regs_info[i]); 1400 } 1401 1402 fifo8_reset(&s->rx_fifo); 1403 fifo8_reset(&s->tx_fifo); 1404 fifo8_reset(&s->rx_sram); 1405 fifo8_reset(&s->tx_sram); 1406 1407 s->rd_ind_op[0].completed = true; 1408 s->rd_ind_op[1].completed = true; 1409 s->wr_ind_op[0].completed = true; 1410 s->wr_ind_op[1].completed = true; 1411 ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_LOWER_REG, 1412 DLL_OBSERVABLE_LOWER_DLL_LOCK_FLD, 1); 1413 ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_LOWER_REG, 1414 DLL_OBSERVABLE_LOWER_LOOPBACK_LOCK_FLD, 1); 1415 } 1416 1417 static RegisterAccessInfo ospi_regs_info[] = { 1418 { .name = "CONFIG_REG", 1419 .addr = A_CONFIG_REG, 1420 .reset = 0x80780081, 1421 .ro = 0x9c000000, 1422 },{ .name = "DEV_INSTR_RD_CONFIG_REG", 1423 .addr = A_DEV_INSTR_RD_CONFIG_REG, 1424 .reset = 0x3, 1425 .ro = 0xe0ecc800, 1426 },{ .name = "DEV_INSTR_WR_CONFIG_REG", 1427 .addr = A_DEV_INSTR_WR_CONFIG_REG, 1428 .reset = 0x2, 1429 .ro = 0xe0fcce00, 1430 },{ .name = "DEV_DELAY_REG", 1431 .addr = A_DEV_DELAY_REG, 1432 },{ .name = "RD_DATA_CAPTURE_REG", 1433 .addr = A_RD_DATA_CAPTURE_REG, 1434 .reset = 0x1, 1435 .ro = 0xfff0fec0, 1436 },{ .name = "DEV_SIZE_CONFIG_REG", 1437 .addr = A_DEV_SIZE_CONFIG_REG, 1438 .reset = 0x101002, 1439 .ro = 0xe0000000, 1440 },{ .name = "SRAM_PARTITION_CFG_REG", 1441 .addr = A_SRAM_PARTITION_CFG_REG, 1442 .reset = 0x80, 1443 .ro = 0xffffff00, 1444 },{ .name = "IND_AHB_ADDR_TRIGGER_REG", 1445 .addr = A_IND_AHB_ADDR_TRIGGER_REG, 1446 },{ .name = "DMA_PERIPH_CONFIG_REG", 1447 .addr = A_DMA_PERIPH_CONFIG_REG, 1448 .ro = 0xfffff0f0, 1449 },{ .name = "REMAP_ADDR_REG", 1450 .addr = A_REMAP_ADDR_REG, 1451 },{ .name = "MODE_BIT_CONFIG_REG", 1452 .addr = A_MODE_BIT_CONFIG_REG, 1453 .reset = 0x200, 1454 .ro = 0xffff7800, 1455 },{ .name = "SRAM_FILL_REG", 1456 .addr = A_SRAM_FILL_REG, 1457 .ro = 0xffffffff, 1458 .post_read = sram_fill_reg_post_read, 1459 },{ .name = "TX_THRESH_REG", 1460 .addr = A_TX_THRESH_REG, 1461 .reset = 0x1, 1462 .ro = 0xffffffe0, 1463 },{ .name = "RX_THRESH_REG", 1464 .addr = A_RX_THRESH_REG, 1465 .reset = 0x1, 1466 .ro = 0xffffffe0, 1467 },{ .name = "WRITE_COMPLETION_CTRL_REG", 1468 .addr = A_WRITE_COMPLETION_CTRL_REG, 1469 .reset = 0x10005, 1470 .ro = 0x1800, 1471 },{ .name = "NO_OF_POLLS_BEF_EXP_REG", 1472 .addr = A_NO_OF_POLLS_BEF_EXP_REG, 1473 .reset = 0xffffffff, 1474 },{ .name = "IRQ_STATUS_REG", 1475 .addr = A_IRQ_STATUS_REG, 1476 .ro = 0xfff08000, 1477 .w1c = 0xf7fff, 1478 },{ .name = "IRQ_MASK_REG", 1479 .addr = A_IRQ_MASK_REG, 1480 .ro = 0xfff08000, 1481 },{ .name = "LOWER_WR_PROT_REG", 1482 .addr = A_LOWER_WR_PROT_REG, 1483 },{ .name = "UPPER_WR_PROT_REG", 1484 .addr = A_UPPER_WR_PROT_REG, 1485 },{ .name = "WR_PROT_CTRL_REG", 1486 .addr = A_WR_PROT_CTRL_REG, 1487 .ro = 0xfffffffc, 1488 },{ .name = "INDIRECT_READ_XFER_CTRL_REG", 1489 .addr = A_INDIRECT_READ_XFER_CTRL_REG, 1490 .ro = 0xffffffd4, 1491 .w1c = 0x08, 1492 .pre_write = ind_rd_xfer_ctrl_reg_pre_write, 1493 .post_write = ind_rd_xfer_ctrl_reg_post_write, 1494 .post_read = ind_rd_xfer_ctrl_reg_post_read, 1495 },{ .name = "INDIRECT_READ_XFER_WATERMARK_REG", 1496 .addr = A_INDIRECT_READ_XFER_WATERMARK_REG, 1497 },{ .name = "INDIRECT_READ_XFER_START_REG", 1498 .addr = A_INDIRECT_READ_XFER_START_REG, 1499 },{ .name = "INDIRECT_READ_XFER_NUM_BYTES_REG", 1500 .addr = A_INDIRECT_READ_XFER_NUM_BYTES_REG, 1501 },{ .name = "INDIRECT_WRITE_XFER_CTRL_REG", 1502 .addr = A_INDIRECT_WRITE_XFER_CTRL_REG, 1503 .ro = 0xffffffdc, 1504 .w1c = 0x20, 1505 .pre_write = ind_wr_xfer_ctrl_reg_pre_write, 1506 .post_write = ind_wr_xfer_ctrl_reg_post_write, 1507 .post_read = ind_wr_xfer_ctrl_reg_post_read, 1508 },{ .name = "INDIRECT_WRITE_XFER_WATERMARK_REG", 1509 .addr = A_INDIRECT_WRITE_XFER_WATERMARK_REG, 1510 .reset = 0xffffffff, 1511 },{ .name = "INDIRECT_WRITE_XFER_START_REG", 1512 .addr = A_INDIRECT_WRITE_XFER_START_REG, 1513 },{ .name = "INDIRECT_WRITE_XFER_NUM_BYTES_REG", 1514 .addr = A_INDIRECT_WRITE_XFER_NUM_BYTES_REG, 1515 },{ .name = "INDIRECT_TRIGGER_ADDR_RANGE_REG", 1516 .addr = A_INDIRECT_TRIGGER_ADDR_RANGE_REG, 1517 .reset = 0x4, 1518 .ro = 0xfffffff0, 1519 },{ .name = "FLASH_COMMAND_CTRL_MEM_REG", 1520 .addr = A_FLASH_COMMAND_CTRL_MEM_REG, 1521 .ro = 0xe008fffe, 1522 .post_write = flash_cmd_ctrl_mem_reg_post_write, 1523 },{ .name = "FLASH_CMD_CTRL_REG", 1524 .addr = A_FLASH_CMD_CTRL_REG, 1525 .ro = 0x7a, 1526 .post_write = flash_cmd_ctrl_reg_post_write, 1527 },{ .name = "FLASH_CMD_ADDR_REG", 1528 .addr = A_FLASH_CMD_ADDR_REG, 1529 },{ .name = "FLASH_RD_DATA_LOWER_REG", 1530 .addr = A_FLASH_RD_DATA_LOWER_REG, 1531 .ro = 0xffffffff, 1532 },{ .name = "FLASH_RD_DATA_UPPER_REG", 1533 .addr = A_FLASH_RD_DATA_UPPER_REG, 1534 .ro = 0xffffffff, 1535 },{ .name = "FLASH_WR_DATA_LOWER_REG", 1536 .addr = A_FLASH_WR_DATA_LOWER_REG, 1537 },{ .name = "FLASH_WR_DATA_UPPER_REG", 1538 .addr = A_FLASH_WR_DATA_UPPER_REG, 1539 },{ .name = "POLLING_FLASH_STATUS_REG", 1540 .addr = A_POLLING_FLASH_STATUS_REG, 1541 .ro = 0xfff0ffff, 1542 },{ .name = "PHY_CONFIGURATION_REG", 1543 .addr = A_PHY_CONFIGURATION_REG, 1544 .reset = 0x40000000, 1545 .ro = 0x1f80ff80, 1546 },{ .name = "PHY_MASTER_CONTROL_REG", 1547 .addr = A_PHY_MASTER_CONTROL_REG, 1548 .reset = 0x800000, 1549 .ro = 0xfe08ff80, 1550 },{ .name = "DLL_OBSERVABLE_LOWER_REG", 1551 .addr = A_DLL_OBSERVABLE_LOWER_REG, 1552 .ro = 0xffffffff, 1553 },{ .name = "DLL_OBSERVABLE_UPPER_REG", 1554 .addr = A_DLL_OBSERVABLE_UPPER_REG, 1555 .ro = 0xffffffff, 1556 .post_read = dll_obs_upper_reg_post_read, 1557 },{ .name = "OPCODE_EXT_LOWER_REG", 1558 .addr = A_OPCODE_EXT_LOWER_REG, 1559 .reset = 0x13edfa00, 1560 },{ .name = "OPCODE_EXT_UPPER_REG", 1561 .addr = A_OPCODE_EXT_UPPER_REG, 1562 .reset = 0x6f90000, 1563 .ro = 0xffff, 1564 },{ .name = "MODULE_ID_REG", 1565 .addr = A_MODULE_ID_REG, 1566 .reset = 0x300, 1567 .ro = 0xffffffff, 1568 } 1569 }; 1570 1571 /* Return dev-obj from reg-region created by register_init_block32 */ 1572 static XlnxVersalOspi *xilinx_ospi_of_mr(void *mr_accessor) 1573 { 1574 RegisterInfoArray *reg_array = mr_accessor; 1575 Object *dev; 1576 1577 dev = reg_array->mem.owner; 1578 assert(dev); 1579 1580 return XILINX_VERSAL_OSPI(dev); 1581 } 1582 1583 static void ospi_write(void *opaque, hwaddr addr, uint64_t value, 1584 unsigned int size) 1585 { 1586 XlnxVersalOspi *s = xilinx_ospi_of_mr(opaque); 1587 1588 register_write_memory(opaque, addr, value, size); 1589 ospi_update_irq_line(s); 1590 } 1591 1592 static const MemoryRegionOps ospi_ops = { 1593 .read = register_read_memory, 1594 .write = ospi_write, 1595 .endianness = DEVICE_LITTLE_ENDIAN, 1596 .valid = { 1597 .min_access_size = 4, 1598 .max_access_size = 4, 1599 }, 1600 }; 1601 1602 static uint64_t ospi_indac_read(void *opaque, unsigned int size) 1603 { 1604 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque); 1605 uint64_t ret = ospi_rx_sram_read(s, size); 1606 1607 if (!ospi_ind_op_completed(s->rd_ind_op)) { 1608 ospi_do_ind_read(s); 1609 } 1610 return ret; 1611 } 1612 1613 static void ospi_indac_write(void *opaque, uint64_t value, unsigned int size) 1614 { 1615 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque); 1616 1617 g_assert(!s->ind_write_disabled); 1618 1619 if (!ospi_ind_op_completed(s->wr_ind_op)) { 1620 ospi_tx_sram_write(s, value, size); 1621 ospi_do_indirect_write(s); 1622 } else { 1623 qemu_log_mask(LOG_GUEST_ERROR, 1624 "OSPI wr into indac area while no ongoing indac wr\n"); 1625 } 1626 } 1627 1628 static bool is_inside_indac_range(XlnxVersalOspi *s, hwaddr addr) 1629 { 1630 uint32_t range_start; 1631 uint32_t range_end; 1632 1633 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD)) { 1634 return true; 1635 } 1636 1637 range_start = s->regs[R_IND_AHB_ADDR_TRIGGER_REG]; 1638 range_end = range_start + 1639 (1 << ARRAY_FIELD_EX32(s->regs, 1640 INDIRECT_TRIGGER_ADDR_RANGE_REG, 1641 IND_RANGE_WIDTH_FLD)); 1642 1643 addr += s->regs[R_IND_AHB_ADDR_TRIGGER_REG] & 0xF0000000; 1644 1645 return addr >= range_start && addr < range_end; 1646 } 1647 1648 static bool ospi_is_indac_active(XlnxVersalOspi *s) 1649 { 1650 /* 1651 * When dac and indac cannot be active at the same time, 1652 * return true when dac is disabled. 1653 */ 1654 return s->dac_with_indac || !s->dac_enable; 1655 } 1656 1657 static uint64_t ospi_dac_read(void *opaque, hwaddr addr, unsigned int size) 1658 { 1659 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque); 1660 1661 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) { 1662 if (ospi_is_indac_active(s) && 1663 is_inside_indac_range(s, addr)) { 1664 return ospi_indac_read(s, size); 1665 } 1666 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DIR_ACC_CTLR_FLD) 1667 && s->dac_enable) { 1668 if (ARRAY_FIELD_EX32(s->regs, 1669 CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD)) { 1670 addr += s->regs[R_REMAP_ADDR_REG]; 1671 } 1672 return ospi_do_dac_read(opaque, addr, size); 1673 } else { 1674 qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB rd while DAC disabled\n"); 1675 } 1676 } else { 1677 qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB rd while OSPI disabled\n"); 1678 } 1679 1680 return 0; 1681 } 1682 1683 static void ospi_dac_write(void *opaque, hwaddr addr, uint64_t value, 1684 unsigned int size) 1685 { 1686 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque); 1687 1688 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) { 1689 if (ospi_is_indac_active(s) && 1690 !s->ind_write_disabled && 1691 is_inside_indac_range(s, addr)) { 1692 return ospi_indac_write(s, value, size); 1693 } 1694 if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DIR_ACC_CTLR_FLD) && 1695 s->dac_enable) { 1696 if (ARRAY_FIELD_EX32(s->regs, 1697 CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD)) { 1698 addr += s->regs[R_REMAP_ADDR_REG]; 1699 } 1700 /* Check if addr is write protected */ 1701 if (ARRAY_FIELD_EX32(s->regs, WR_PROT_CTRL_REG, ENB_FLD) && 1702 ospi_is_write_protected(s, addr)) { 1703 set_irq(s, R_IRQ_STATUS_REG_PROT_WR_ATTEMPT_FLD_MASK); 1704 ospi_update_irq_line(s); 1705 qemu_log_mask(LOG_GUEST_ERROR, 1706 "OSPI writing into write protected area\n"); 1707 return; 1708 } 1709 ospi_do_dac_write(opaque, addr, value, size); 1710 } else { 1711 qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB wr while DAC disabled\n"); 1712 } 1713 } else { 1714 qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB wr while OSPI disabled\n"); 1715 } 1716 } 1717 1718 static const MemoryRegionOps ospi_dac_ops = { 1719 .read = ospi_dac_read, 1720 .write = ospi_dac_write, 1721 .endianness = DEVICE_LITTLE_ENDIAN, 1722 .valid = { 1723 .min_access_size = 4, 1724 .max_access_size = 4, 1725 }, 1726 }; 1727 1728 static void ospi_update_dac_status(void *opaque, int n, int level) 1729 { 1730 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque); 1731 1732 s->dac_enable = level; 1733 } 1734 1735 static void xlnx_versal_ospi_realize(DeviceState *dev, Error **errp) 1736 { 1737 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(dev); 1738 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1739 1740 s->num_cs = 4; 1741 s->spi = ssi_create_bus(dev, "spi0"); 1742 s->cs_lines = g_new0(qemu_irq, s->num_cs); 1743 for (int i = 0; i < s->num_cs; ++i) { 1744 sysbus_init_irq(sbd, &s->cs_lines[i]); 1745 } 1746 1747 fifo8_create(&s->rx_fifo, RXFF_SZ); 1748 fifo8_create(&s->tx_fifo, TXFF_SZ); 1749 fifo8_create(&s->rx_sram, RXFF_SZ); 1750 fifo8_create(&s->tx_sram, TXFF_SZ); 1751 } 1752 1753 static void xlnx_versal_ospi_init(Object *obj) 1754 { 1755 XlnxVersalOspi *s = XILINX_VERSAL_OSPI(obj); 1756 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1757 DeviceState *dev = DEVICE(obj); 1758 RegisterInfoArray *reg_array; 1759 1760 memory_region_init(&s->iomem, obj, TYPE_XILINX_VERSAL_OSPI, 1761 XILINX_VERSAL_OSPI_R_MAX * 4); 1762 reg_array = 1763 register_init_block32(DEVICE(obj), ospi_regs_info, 1764 ARRAY_SIZE(ospi_regs_info), 1765 s->regs_info, s->regs, 1766 &ospi_ops, 1767 XILINX_VERSAL_OSPI_ERR_DEBUG, 1768 XILINX_VERSAL_OSPI_R_MAX * 4); 1769 memory_region_add_subregion(&s->iomem, 0x0, ®_array->mem); 1770 sysbus_init_mmio(sbd, &s->iomem); 1771 1772 memory_region_init_io(&s->iomem_dac, obj, &ospi_dac_ops, s, 1773 TYPE_XILINX_VERSAL_OSPI "-dac", 0x20000000); 1774 sysbus_init_mmio(sbd, &s->iomem_dac); 1775 /* 1776 * The OSPI DMA reads flash data through the OSPI linear address space (the 1777 * iomem_dac region), because of this the reentrancy guard needs to be 1778 * disabled. 1779 */ 1780 s->iomem_dac.disable_reentrancy_guard = true; 1781 1782 sysbus_init_irq(sbd, &s->irq); 1783 1784 object_property_add_link(obj, "dma-src", TYPE_XLNX_CSU_DMA, 1785 (Object **)&s->dma_src, 1786 object_property_allow_set_link, 1787 OBJ_PROP_LINK_STRONG); 1788 1789 qdev_init_gpio_in_named(dev, ospi_update_dac_status, "ospi-mux-sel", 1); 1790 } 1791 1792 static const VMStateDescription vmstate_ind_op = { 1793 .name = "OSPIIndOp", 1794 .version_id = 1, 1795 .minimum_version_id = 1, 1796 .fields = (const VMStateField[]) { 1797 VMSTATE_UINT32(flash_addr, IndOp), 1798 VMSTATE_UINT32(num_bytes, IndOp), 1799 VMSTATE_UINT32(done_bytes, IndOp), 1800 VMSTATE_BOOL(completed, IndOp), 1801 VMSTATE_END_OF_LIST() 1802 } 1803 }; 1804 1805 static const VMStateDescription vmstate_xlnx_versal_ospi = { 1806 .name = TYPE_XILINX_VERSAL_OSPI, 1807 .version_id = 1, 1808 .minimum_version_id = 1, 1809 .fields = (const VMStateField[]) { 1810 VMSTATE_FIFO8(rx_fifo, XlnxVersalOspi), 1811 VMSTATE_FIFO8(tx_fifo, XlnxVersalOspi), 1812 VMSTATE_FIFO8(rx_sram, XlnxVersalOspi), 1813 VMSTATE_FIFO8(tx_sram, XlnxVersalOspi), 1814 VMSTATE_BOOL(ind_write_disabled, XlnxVersalOspi), 1815 VMSTATE_BOOL(dac_with_indac, XlnxVersalOspi), 1816 VMSTATE_BOOL(dac_enable, XlnxVersalOspi), 1817 VMSTATE_BOOL(src_dma_inprog, XlnxVersalOspi), 1818 VMSTATE_STRUCT_ARRAY(rd_ind_op, XlnxVersalOspi, 2, 1, 1819 vmstate_ind_op, IndOp), 1820 VMSTATE_STRUCT_ARRAY(wr_ind_op, XlnxVersalOspi, 2, 1, 1821 vmstate_ind_op, IndOp), 1822 VMSTATE_UINT32_ARRAY(regs, XlnxVersalOspi, XILINX_VERSAL_OSPI_R_MAX), 1823 VMSTATE_UINT8_ARRAY(stig_membank, XlnxVersalOspi, 512), 1824 VMSTATE_END_OF_LIST(), 1825 } 1826 }; 1827 1828 static Property xlnx_versal_ospi_properties[] = { 1829 DEFINE_PROP_BOOL("dac-with-indac", XlnxVersalOspi, dac_with_indac, false), 1830 DEFINE_PROP_BOOL("indac-write-disabled", XlnxVersalOspi, 1831 ind_write_disabled, false), 1832 DEFINE_PROP_END_OF_LIST(), 1833 }; 1834 1835 static void xlnx_versal_ospi_class_init(ObjectClass *klass, void *data) 1836 { 1837 DeviceClass *dc = DEVICE_CLASS(klass); 1838 1839 dc->reset = xlnx_versal_ospi_reset; 1840 dc->realize = xlnx_versal_ospi_realize; 1841 dc->vmsd = &vmstate_xlnx_versal_ospi; 1842 device_class_set_props(dc, xlnx_versal_ospi_properties); 1843 } 1844 1845 static const TypeInfo xlnx_versal_ospi_info = { 1846 .name = TYPE_XILINX_VERSAL_OSPI, 1847 .parent = TYPE_SYS_BUS_DEVICE, 1848 .instance_size = sizeof(XlnxVersalOspi), 1849 .class_init = xlnx_versal_ospi_class_init, 1850 .instance_init = xlnx_versal_ospi_init, 1851 }; 1852 1853 static void xlnx_versal_ospi_register_types(void) 1854 { 1855 type_register_static(&xlnx_versal_ospi_info); 1856 } 1857 1858 type_init(xlnx_versal_ospi_register_types) 1859