xref: /openbmc/qemu/hw/ssi/xlnx-versal-ospi.c (revision 05caa062)
1 /*
2  * QEMU model of Xilinx Versal's OSPI controller.
3  *
4  * Copyright (c) 2021 Xilinx Inc.
5  * Written by Francisco Iglesias <francisco.iglesias@xilinx.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "hw/qdev-properties.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
31 #include "hw/irq.h"
32 #include "hw/ssi/xlnx-versal-ospi.h"
33 
34 #ifndef XILINX_VERSAL_OSPI_ERR_DEBUG
35 #define XILINX_VERSAL_OSPI_ERR_DEBUG 0
36 #endif
37 
38 REG32(CONFIG_REG, 0x0)
39     FIELD(CONFIG_REG, IDLE_FLD, 31, 1)
40     FIELD(CONFIG_REG, DUAL_BYTE_OPCODE_EN_FLD, 30, 1)
41     FIELD(CONFIG_REG, CRC_ENABLE_FLD, 29, 1)
42     FIELD(CONFIG_REG, CONFIG_RESV2_FLD, 26, 3)
43     FIELD(CONFIG_REG, PIPELINE_PHY_FLD, 25, 1)
44     FIELD(CONFIG_REG, ENABLE_DTR_PROTOCOL_FLD, 24, 1)
45     FIELD(CONFIG_REG, ENABLE_AHB_DECODER_FLD, 23, 1)
46     FIELD(CONFIG_REG, MSTR_BAUD_DIV_FLD, 19, 4)
47     FIELD(CONFIG_REG, ENTER_XIP_MODE_IMM_FLD, 18, 1)
48     FIELD(CONFIG_REG, ENTER_XIP_MODE_FLD, 17, 1)
49     FIELD(CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD, 16, 1)
50     FIELD(CONFIG_REG, ENB_DMA_IF_FLD, 15, 1)
51     FIELD(CONFIG_REG, WR_PROT_FLASH_FLD, 14, 1)
52     FIELD(CONFIG_REG, PERIPH_CS_LINES_FLD, 10, 4)
53     FIELD(CONFIG_REG, PERIPH_SEL_DEC_FLD, 9, 1)
54     FIELD(CONFIG_REG, ENB_LEGACY_IP_MODE_FLD, 8, 1)
55     FIELD(CONFIG_REG, ENB_DIR_ACC_CTLR_FLD, 7, 1)
56     FIELD(CONFIG_REG, RESET_CFG_FLD, 6, 1)
57     FIELD(CONFIG_REG, RESET_PIN_FLD, 5, 1)
58     FIELD(CONFIG_REG, HOLD_PIN_FLD, 4, 1)
59     FIELD(CONFIG_REG, PHY_MODE_ENABLE_FLD, 3, 1)
60     FIELD(CONFIG_REG, SEL_CLK_PHASE_FLD, 2, 1)
61     FIELD(CONFIG_REG, SEL_CLK_POL_FLD, 1, 1)
62     FIELD(CONFIG_REG, ENB_SPI_FLD, 0, 1)
63 REG32(DEV_INSTR_RD_CONFIG_REG, 0x4)
64     FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV5_FLD, 29, 3)
65     FIELD(DEV_INSTR_RD_CONFIG_REG, DUMMY_RD_CLK_CYCLES_FLD, 24, 5)
66     FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV4_FLD, 21, 3)
67     FIELD(DEV_INSTR_RD_CONFIG_REG, MODE_BIT_ENABLE_FLD, 20, 1)
68     FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV3_FLD, 18, 2)
69     FIELD(DEV_INSTR_RD_CONFIG_REG, DATA_XFER_TYPE_EXT_MODE_FLD, 16, 2)
70     FIELD(DEV_INSTR_RD_CONFIG_REG, RD_INSTR_RESV2_FLD, 14, 2)
71     FIELD(DEV_INSTR_RD_CONFIG_REG, ADDR_XFER_TYPE_STD_MODE_FLD, 12, 2)
72     FIELD(DEV_INSTR_RD_CONFIG_REG, PRED_DIS_FLD, 11, 1)
73     FIELD(DEV_INSTR_RD_CONFIG_REG, DDR_EN_FLD, 10, 1)
74     FIELD(DEV_INSTR_RD_CONFIG_REG, INSTR_TYPE_FLD, 8, 2)
75     FIELD(DEV_INSTR_RD_CONFIG_REG, RD_OPCODE_NON_XIP_FLD, 0, 8)
76 REG32(DEV_INSTR_WR_CONFIG_REG, 0x8)
77     FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV4_FLD, 29, 3)
78     FIELD(DEV_INSTR_WR_CONFIG_REG, DUMMY_WR_CLK_CYCLES_FLD, 24, 5)
79     FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV3_FLD, 18, 6)
80     FIELD(DEV_INSTR_WR_CONFIG_REG, DATA_XFER_TYPE_EXT_MODE_FLD, 16, 2)
81     FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV2_FLD, 14, 2)
82     FIELD(DEV_INSTR_WR_CONFIG_REG, ADDR_XFER_TYPE_STD_MODE_FLD, 12, 2)
83     FIELD(DEV_INSTR_WR_CONFIG_REG, WR_INSTR_RESV1_FLD, 9, 3)
84     FIELD(DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD, 8, 1)
85     FIELD(DEV_INSTR_WR_CONFIG_REG, WR_OPCODE_FLD, 0, 8)
86 REG32(DEV_DELAY_REG, 0xc)
87     FIELD(DEV_DELAY_REG, D_NSS_FLD, 24, 8)
88     FIELD(DEV_DELAY_REG, D_BTWN_FLD, 16, 8)
89     FIELD(DEV_DELAY_REG, D_AFTER_FLD, 8, 8)
90     FIELD(DEV_DELAY_REG, D_INIT_FLD, 0, 8)
91 REG32(RD_DATA_CAPTURE_REG, 0x10)
92     FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV3_FLD, 20, 12)
93     FIELD(RD_DATA_CAPTURE_REG, DDR_READ_DELAY_FLD, 16, 4)
94     FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV2_FLD, 9, 7)
95     FIELD(RD_DATA_CAPTURE_REG, DQS_ENABLE_FLD, 8, 1)
96     FIELD(RD_DATA_CAPTURE_REG, RD_DATA_RESV1_FLD, 6, 2)
97     FIELD(RD_DATA_CAPTURE_REG, SAMPLE_EDGE_SEL_FLD, 5, 1)
98     FIELD(RD_DATA_CAPTURE_REG, DELAY_FLD, 1, 4)
99     FIELD(RD_DATA_CAPTURE_REG, BYPASS_FLD, 0, 1)
100 REG32(DEV_SIZE_CONFIG_REG, 0x14)
101     FIELD(DEV_SIZE_CONFIG_REG, DEV_SIZE_RESV_FLD, 29, 3)
102     FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS3_FLD, 27, 2)
103     FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS2_FLD, 25, 2)
104     FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS1_FLD, 23, 2)
105     FIELD(DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS0_FLD, 21, 2)
106     FIELD(DEV_SIZE_CONFIG_REG, BYTES_PER_SUBSECTOR_FLD, 16, 5)
107     FIELD(DEV_SIZE_CONFIG_REG, BYTES_PER_DEVICE_PAGE_FLD, 4, 12)
108     FIELD(DEV_SIZE_CONFIG_REG, NUM_ADDR_BYTES_FLD, 0, 4)
109 REG32(SRAM_PARTITION_CFG_REG, 0x18)
110     FIELD(SRAM_PARTITION_CFG_REG, SRAM_PARTITION_RESV_FLD, 8, 24)
111     FIELD(SRAM_PARTITION_CFG_REG, ADDR_FLD, 0, 8)
112 REG32(IND_AHB_ADDR_TRIGGER_REG, 0x1c)
113 REG32(DMA_PERIPH_CONFIG_REG, 0x20)
114     FIELD(DMA_PERIPH_CONFIG_REG, DMA_PERIPH_RESV2_FLD, 12, 20)
115     FIELD(DMA_PERIPH_CONFIG_REG, NUM_BURST_REQ_BYTES_FLD, 8, 4)
116     FIELD(DMA_PERIPH_CONFIG_REG, DMA_PERIPH_RESV1_FLD, 4, 4)
117     FIELD(DMA_PERIPH_CONFIG_REG, NUM_SINGLE_REQ_BYTES_FLD, 0, 4)
118 REG32(REMAP_ADDR_REG, 0x24)
119 REG32(MODE_BIT_CONFIG_REG, 0x28)
120     FIELD(MODE_BIT_CONFIG_REG, RX_CRC_DATA_LOW_FLD, 24, 8)
121     FIELD(MODE_BIT_CONFIG_REG, RX_CRC_DATA_UP_FLD, 16, 8)
122     FIELD(MODE_BIT_CONFIG_REG, CRC_OUT_ENABLE_FLD, 15, 1)
123     FIELD(MODE_BIT_CONFIG_REG, MODE_BIT_RESV1_FLD, 11, 4)
124     FIELD(MODE_BIT_CONFIG_REG, CHUNK_SIZE_FLD, 8, 3)
125     FIELD(MODE_BIT_CONFIG_REG, MODE_FLD, 0, 8)
126 REG32(SRAM_FILL_REG, 0x2c)
127     FIELD(SRAM_FILL_REG, SRAM_FILL_INDAC_WRITE_FLD, 16, 16)
128     FIELD(SRAM_FILL_REG, SRAM_FILL_INDAC_READ_FLD, 0, 16)
129 REG32(TX_THRESH_REG, 0x30)
130     FIELD(TX_THRESH_REG, TX_THRESH_RESV_FLD, 5, 27)
131     FIELD(TX_THRESH_REG, LEVEL_FLD, 0, 5)
132 REG32(RX_THRESH_REG, 0x34)
133     FIELD(RX_THRESH_REG, RX_THRESH_RESV_FLD, 5, 27)
134     FIELD(RX_THRESH_REG, LEVEL_FLD, 0, 5)
135 REG32(WRITE_COMPLETION_CTRL_REG, 0x38)
136     FIELD(WRITE_COMPLETION_CTRL_REG, POLL_REP_DELAY_FLD, 24, 8)
137     FIELD(WRITE_COMPLETION_CTRL_REG, POLL_COUNT_FLD, 16, 8)
138     FIELD(WRITE_COMPLETION_CTRL_REG, ENABLE_POLLING_EXP_FLD, 15, 1)
139     FIELD(WRITE_COMPLETION_CTRL_REG, DISABLE_POLLING_FLD, 14, 1)
140     FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_POLARITY_FLD, 13, 1)
141     FIELD(WRITE_COMPLETION_CTRL_REG, WR_COMP_CTRL_RESV1_FLD, 12, 1)
142     FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_ADDR_EN_FLD, 11, 1)
143     FIELD(WRITE_COMPLETION_CTRL_REG, POLLING_BIT_INDEX_FLD, 8, 3)
144     FIELD(WRITE_COMPLETION_CTRL_REG, OPCODE_FLD, 0, 8)
145 REG32(NO_OF_POLLS_BEF_EXP_REG, 0x3c)
146 REG32(IRQ_STATUS_REG, 0x40)
147     FIELD(IRQ_STATUS_REG, IRQ_STAT_RESV_FLD, 20, 12)
148     FIELD(IRQ_STATUS_REG, ECC_FAIL_FLD, 19, 1)
149     FIELD(IRQ_STATUS_REG, TX_CRC_CHUNK_BRK_FLD, 18, 1)
150     FIELD(IRQ_STATUS_REG, RX_CRC_DATA_VAL_FLD, 17, 1)
151     FIELD(IRQ_STATUS_REG, RX_CRC_DATA_ERR_FLD, 16, 1)
152     FIELD(IRQ_STATUS_REG, IRQ_STAT_RESV1_FLD, 15, 1)
153     FIELD(IRQ_STATUS_REG, STIG_REQ_INT_FLD, 14, 1)
154     FIELD(IRQ_STATUS_REG, POLL_EXP_INT_FLD, 13, 1)
155     FIELD(IRQ_STATUS_REG, INDRD_SRAM_FULL_FLD, 12, 1)
156     FIELD(IRQ_STATUS_REG, RX_FIFO_FULL_FLD, 11, 1)
157     FIELD(IRQ_STATUS_REG, RX_FIFO_NOT_EMPTY_FLD, 10, 1)
158     FIELD(IRQ_STATUS_REG, TX_FIFO_FULL_FLD, 9, 1)
159     FIELD(IRQ_STATUS_REG, TX_FIFO_NOT_FULL_FLD, 8, 1)
160     FIELD(IRQ_STATUS_REG, RECV_OVERFLOW_FLD, 7, 1)
161     FIELD(IRQ_STATUS_REG, INDIRECT_XFER_LEVEL_BREACH_FLD, 6, 1)
162     FIELD(IRQ_STATUS_REG, ILLEGAL_ACCESS_DET_FLD, 5, 1)
163     FIELD(IRQ_STATUS_REG, PROT_WR_ATTEMPT_FLD, 4, 1)
164     FIELD(IRQ_STATUS_REG, INDIRECT_TRANSFER_REJECT_FLD, 3, 1)
165     FIELD(IRQ_STATUS_REG, INDIRECT_OP_DONE_FLD, 2, 1)
166     FIELD(IRQ_STATUS_REG, UNDERFLOW_DET_FLD, 1, 1)
167     FIELD(IRQ_STATUS_REG, MODE_M_FAIL_FLD, 0, 1)
168 REG32(IRQ_MASK_REG, 0x44)
169     FIELD(IRQ_MASK_REG, IRQ_MASK_RESV_FLD, 20, 12)
170     FIELD(IRQ_MASK_REG, ECC_FAIL_MASK_FLD, 19, 1)
171     FIELD(IRQ_MASK_REG, TX_CRC_CHUNK_BRK_MASK_FLD, 18, 1)
172     FIELD(IRQ_MASK_REG, RX_CRC_DATA_VAL_MASK_FLD, 17, 1)
173     FIELD(IRQ_MASK_REG, RX_CRC_DATA_ERR_MASK_FLD, 16, 1)
174     FIELD(IRQ_MASK_REG, IRQ_MASK_RESV1_FLD, 15, 1)
175     FIELD(IRQ_MASK_REG, STIG_REQ_MASK_FLD, 14, 1)
176     FIELD(IRQ_MASK_REG, POLL_EXP_INT_MASK_FLD, 13, 1)
177     FIELD(IRQ_MASK_REG, INDRD_SRAM_FULL_MASK_FLD, 12, 1)
178     FIELD(IRQ_MASK_REG, RX_FIFO_FULL_MASK_FLD, 11, 1)
179     FIELD(IRQ_MASK_REG, RX_FIFO_NOT_EMPTY_MASK_FLD, 10, 1)
180     FIELD(IRQ_MASK_REG, TX_FIFO_FULL_MASK_FLD, 9, 1)
181     FIELD(IRQ_MASK_REG, TX_FIFO_NOT_FULL_MASK_FLD, 8, 1)
182     FIELD(IRQ_MASK_REG, RECV_OVERFLOW_MASK_FLD, 7, 1)
183     FIELD(IRQ_MASK_REG, INDIRECT_XFER_LEVEL_BREACH_MASK_FLD, 6, 1)
184     FIELD(IRQ_MASK_REG, ILLEGAL_ACCESS_DET_MASK_FLD, 5, 1)
185     FIELD(IRQ_MASK_REG, PROT_WR_ATTEMPT_MASK_FLD, 4, 1)
186     FIELD(IRQ_MASK_REG, INDIRECT_TRANSFER_REJECT_MASK_FLD, 3, 1)
187     FIELD(IRQ_MASK_REG, INDIRECT_OP_DONE_MASK_FLD, 2, 1)
188     FIELD(IRQ_MASK_REG, UNDERFLOW_DET_MASK_FLD, 1, 1)
189     FIELD(IRQ_MASK_REG, MODE_M_FAIL_MASK_FLD, 0, 1)
190 REG32(LOWER_WR_PROT_REG, 0x50)
191 REG32(UPPER_WR_PROT_REG, 0x54)
192 REG32(WR_PROT_CTRL_REG, 0x58)
193     FIELD(WR_PROT_CTRL_REG, WR_PROT_CTRL_RESV_FLD, 2, 30)
194     FIELD(WR_PROT_CTRL_REG, ENB_FLD, 1, 1)
195     FIELD(WR_PROT_CTRL_REG, INV_FLD, 0, 1)
196 REG32(INDIRECT_READ_XFER_CTRL_REG, 0x60)
197     FIELD(INDIRECT_READ_XFER_CTRL_REG, INDIR_RD_XFER_RESV_FLD, 8, 24)
198     FIELD(INDIRECT_READ_XFER_CTRL_REG, NUM_IND_OPS_DONE_FLD, 6, 2)
199     FIELD(INDIRECT_READ_XFER_CTRL_REG, IND_OPS_DONE_STATUS_FLD, 5, 1)
200     FIELD(INDIRECT_READ_XFER_CTRL_REG, RD_QUEUED_FLD, 4, 1)
201     FIELD(INDIRECT_READ_XFER_CTRL_REG, SRAM_FULL_FLD, 3, 1)
202     FIELD(INDIRECT_READ_XFER_CTRL_REG, RD_STATUS_FLD, 2, 1)
203     FIELD(INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD, 1, 1)
204     FIELD(INDIRECT_READ_XFER_CTRL_REG, START_FLD, 0, 1)
205 REG32(INDIRECT_READ_XFER_WATERMARK_REG, 0x64)
206 REG32(INDIRECT_READ_XFER_START_REG, 0x68)
207 REG32(INDIRECT_READ_XFER_NUM_BYTES_REG, 0x6c)
208 REG32(INDIRECT_WRITE_XFER_CTRL_REG, 0x70)
209     FIELD(INDIRECT_WRITE_XFER_CTRL_REG, INDIR_WR_XFER_RESV2_FLD, 8, 24)
210     FIELD(INDIRECT_WRITE_XFER_CTRL_REG, NUM_IND_OPS_DONE_FLD, 6, 2)
211     FIELD(INDIRECT_WRITE_XFER_CTRL_REG, IND_OPS_DONE_STATUS_FLD, 5, 1)
212     FIELD(INDIRECT_WRITE_XFER_CTRL_REG, WR_QUEUED_FLD, 4, 1)
213     FIELD(INDIRECT_WRITE_XFER_CTRL_REG, INDIR_WR_XFER_RESV1_FLD, 3, 1)
214     FIELD(INDIRECT_WRITE_XFER_CTRL_REG, WR_STATUS_FLD, 2, 1)
215     FIELD(INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD, 1, 1)
216     FIELD(INDIRECT_WRITE_XFER_CTRL_REG, START_FLD, 0, 1)
217 REG32(INDIRECT_WRITE_XFER_WATERMARK_REG, 0x74)
218 REG32(INDIRECT_WRITE_XFER_START_REG, 0x78)
219 REG32(INDIRECT_WRITE_XFER_NUM_BYTES_REG, 0x7c)
220 REG32(INDIRECT_TRIGGER_ADDR_RANGE_REG, 0x80)
221     FIELD(INDIRECT_TRIGGER_ADDR_RANGE_REG, IND_RANGE_RESV1_FLD, 4, 28)
222     FIELD(INDIRECT_TRIGGER_ADDR_RANGE_REG, IND_RANGE_WIDTH_FLD, 0, 4)
223 REG32(FLASH_COMMAND_CTRL_MEM_REG, 0x8c)
224     FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV1_FLD, 29, 3)
225     FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_ADDR_FLD, 20, 9)
226     FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV2_FLD, 19, 1)
227     FIELD(FLASH_COMMAND_CTRL_MEM_REG, NB_OF_STIG_READ_BYTES_FLD, 16, 3)
228     FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_READ_DATA_FLD, 8, 8)
229     FIELD(FLASH_COMMAND_CTRL_MEM_REG, FLASH_COMMAND_CTRL_MEM_RESV3_FLD, 2, 6)
230     FIELD(FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_REQ_IN_PROGRESS_FLD, 1, 1)
231     FIELD(FLASH_COMMAND_CTRL_MEM_REG, TRIGGER_MEM_BANK_REQ_FLD, 0, 1)
232 REG32(FLASH_CMD_CTRL_REG, 0x90)
233     FIELD(FLASH_CMD_CTRL_REG, CMD_OPCODE_FLD, 24, 8)
234     FIELD(FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD, 23, 1)
235     FIELD(FLASH_CMD_CTRL_REG, NUM_RD_DATA_BYTES_FLD, 20, 3)
236     FIELD(FLASH_CMD_CTRL_REG, ENB_COMD_ADDR_FLD, 19, 1)
237     FIELD(FLASH_CMD_CTRL_REG, ENB_MODE_BIT_FLD, 18, 1)
238     FIELD(FLASH_CMD_CTRL_REG, NUM_ADDR_BYTES_FLD, 16, 2)
239     FIELD(FLASH_CMD_CTRL_REG, ENB_WRITE_DATA_FLD, 15, 1)
240     FIELD(FLASH_CMD_CTRL_REG, NUM_WR_DATA_BYTES_FLD, 12, 3)
241     FIELD(FLASH_CMD_CTRL_REG, NUM_DUMMY_CYCLES_FLD, 7, 5)
242     FIELD(FLASH_CMD_CTRL_REG, FLASH_CMD_CTRL_RESV1_FLD, 3, 4)
243     FIELD(FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD, 2, 1)
244     FIELD(FLASH_CMD_CTRL_REG, CMD_EXEC_STATUS_FLD, 1, 1)
245     FIELD(FLASH_CMD_CTRL_REG, CMD_EXEC_FLD, 0, 1)
246 REG32(FLASH_CMD_ADDR_REG, 0x94)
247 REG32(FLASH_RD_DATA_LOWER_REG, 0xa0)
248 REG32(FLASH_RD_DATA_UPPER_REG, 0xa4)
249 REG32(FLASH_WR_DATA_LOWER_REG, 0xa8)
250 REG32(FLASH_WR_DATA_UPPER_REG, 0xac)
251 REG32(POLLING_FLASH_STATUS_REG, 0xb0)
252     FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_RSVD_FLD2, 21, 11)
253     FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_NB_DUMMY, 16, 5)
254     FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_RSVD_FLD1, 9, 7)
255     FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_VALID_FLD, 8, 1)
256     FIELD(POLLING_FLASH_STATUS_REG, DEVICE_STATUS_FLD, 0, 8)
257 REG32(PHY_CONFIGURATION_REG, 0xb4)
258     FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESYNC_FLD, 31, 1)
259     FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESET_FLD, 30, 1)
260     FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RX_DLL_BYPASS_FLD, 29, 1)
261     FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESV2_FLD, 23, 6)
262     FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_TX_DLL_DELAY_FLD, 16, 7)
263     FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RESV1_FLD, 7, 9)
264     FIELD(PHY_CONFIGURATION_REG, PHY_CONFIG_RX_DLL_DELAY_FLD, 0, 7)
265 REG32(PHY_MASTER_CONTROL_REG, 0xb8)
266     FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV3_FLD, 25, 7)
267     FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_LOCK_MODE_FLD, 24, 1)
268     FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_BYPASS_MODE_FLD, 23, 1)
269     FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_PHASE_DETECT_SELECTOR_FLD, 20, 3)
270     FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV2_FLD, 19, 1)
271     FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_NB_INDICATIONS_FLD, 16, 3)
272     FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_CONTROL_RESV1_FLD, 7, 9)
273     FIELD(PHY_MASTER_CONTROL_REG, PHY_MASTER_INITIAL_DELAY_FLD, 0, 7)
274 REG32(DLL_OBSERVABLE_LOWER_REG, 0xbc)
275     FIELD(DLL_OBSERVABLE_LOWER_REG,
276           DLL_OBSERVABLE_LOWER_DLL_LOCK_INC_FLD, 24, 8)
277     FIELD(DLL_OBSERVABLE_LOWER_REG,
278           DLL_OBSERVABLE_LOWER_DLL_LOCK_DEC_FLD, 16, 8)
279     FIELD(DLL_OBSERVABLE_LOWER_REG,
280           DLL_OBSERVABLE_LOWER_LOOPBACK_LOCK_FLD, 15, 1)
281     FIELD(DLL_OBSERVABLE_LOWER_REG,
282           DLL_OBSERVABLE_LOWER_LOCK_VALUE_FLD, 8, 7)
283     FIELD(DLL_OBSERVABLE_LOWER_REG,
284           DLL_OBSERVABLE_LOWER_UNLOCK_COUNTER_FLD, 3, 5)
285     FIELD(DLL_OBSERVABLE_LOWER_REG,
286           DLL_OBSERVABLE_LOWER_LOCK_MODE_FLD, 1, 2)
287     FIELD(DLL_OBSERVABLE_LOWER_REG,
288           DLL_OBSERVABLE_LOWER_DLL_LOCK_FLD, 0, 1)
289 REG32(DLL_OBSERVABLE_UPPER_REG, 0xc0)
290     FIELD(DLL_OBSERVABLE_UPPER_REG,
291           DLL_OBSERVABLE_UPPER_RESV2_FLD, 23, 9)
292     FIELD(DLL_OBSERVABLE_UPPER_REG,
293           DLL_OBSERVABLE_UPPER_TX_DECODER_OUTPUT_FLD, 16, 7)
294     FIELD(DLL_OBSERVABLE_UPPER_REG,
295           DLL_OBSERVABLE_UPPER_RESV1_FLD, 7, 9)
296     FIELD(DLL_OBSERVABLE_UPPER_REG,
297           DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD, 0, 7)
298 REG32(OPCODE_EXT_LOWER_REG, 0xe0)
299     FIELD(OPCODE_EXT_LOWER_REG, EXT_READ_OPCODE_FLD, 24, 8)
300     FIELD(OPCODE_EXT_LOWER_REG, EXT_WRITE_OPCODE_FLD, 16, 8)
301     FIELD(OPCODE_EXT_LOWER_REG, EXT_POLL_OPCODE_FLD, 8, 8)
302     FIELD(OPCODE_EXT_LOWER_REG, EXT_STIG_OPCODE_FLD, 0, 8)
303 REG32(OPCODE_EXT_UPPER_REG, 0xe4)
304     FIELD(OPCODE_EXT_UPPER_REG, WEL_OPCODE_FLD, 24, 8)
305     FIELD(OPCODE_EXT_UPPER_REG, EXT_WEL_OPCODE_FLD, 16, 8)
306     FIELD(OPCODE_EXT_UPPER_REG, OPCODE_EXT_UPPER_RESV1_FLD, 0, 16)
307 REG32(MODULE_ID_REG, 0xfc)
308     FIELD(MODULE_ID_REG, FIX_PATCH_FLD, 24, 8)
309     FIELD(MODULE_ID_REG, MODULE_ID_FLD, 8, 16)
310     FIELD(MODULE_ID_REG, MODULE_ID_RESV_FLD, 2, 6)
311     FIELD(MODULE_ID_REG, CONF_FLD, 0, 2)
312 
313 #define RXFF_SZ 1024
314 #define TXFF_SZ 1024
315 
316 #define MAX_RX_DEC_OUT 8
317 
318 #define SZ_512MBIT (512 * 1024 * 1024)
319 #define SZ_1GBIT   (1024 * 1024 * 1024)
320 #define SZ_2GBIT   (2ULL * SZ_1GBIT)
321 #define SZ_4GBIT   (4ULL * SZ_1GBIT)
322 
323 #define IS_IND_DMA_START(op) (op->done_bytes == 0)
324 /*
325  * Bit field size of R_INDIRECT_WRITE_XFER_CTRL_REG_NUM_IND_OPS_DONE_FLD
326  * is 2 bits, which can record max of 3 indac operations.
327  */
328 #define IND_OPS_DONE_MAX 3
329 
330 typedef enum {
331     WREN = 0x6,
332 } FlashCMD;
333 
334 static unsigned int ospi_stig_addr_len(XlnxVersalOspi *s)
335 {
336     /* Num address bytes is NUM_ADDR_BYTES_FLD + 1 */
337     return ARRAY_FIELD_EX32(s->regs,
338                             FLASH_CMD_CTRL_REG, NUM_ADDR_BYTES_FLD) + 1;
339 }
340 
341 static unsigned int ospi_stig_wr_data_len(XlnxVersalOspi *s)
342 {
343     /* Num write data bytes is NUM_WR_DATA_BYTES_FLD + 1 */
344     return ARRAY_FIELD_EX32(s->regs,
345                             FLASH_CMD_CTRL_REG, NUM_WR_DATA_BYTES_FLD) + 1;
346 }
347 
348 static unsigned int ospi_stig_rd_data_len(XlnxVersalOspi *s)
349 {
350     /* Num read data bytes is NUM_RD_DATA_BYTES_FLD + 1 */
351     return ARRAY_FIELD_EX32(s->regs,
352                             FLASH_CMD_CTRL_REG, NUM_RD_DATA_BYTES_FLD) + 1;
353 }
354 
355 /*
356  * Status bits in R_IRQ_STATUS_REG are set when the event occurs and the
357  * interrupt is enabled in the mask register ([1] Section 2.3.17)
358  */
359 static void set_irq(XlnxVersalOspi *s, uint32_t set_mask)
360 {
361     s->regs[R_IRQ_STATUS_REG] |= s->regs[R_IRQ_MASK_REG] & set_mask;
362 }
363 
364 static void ospi_update_irq_line(XlnxVersalOspi *s)
365 {
366     qemu_set_irq(s->irq, !!(s->regs[R_IRQ_STATUS_REG] &
367                             s->regs[R_IRQ_MASK_REG]));
368 }
369 
370 static uint8_t ospi_get_wr_opcode(XlnxVersalOspi *s)
371 {
372     return ARRAY_FIELD_EX32(s->regs,
373                             DEV_INSTR_WR_CONFIG_REG, WR_OPCODE_FLD);
374 }
375 
376 static uint8_t ospi_get_rd_opcode(XlnxVersalOspi *s)
377 {
378     return ARRAY_FIELD_EX32(s->regs,
379                             DEV_INSTR_RD_CONFIG_REG, RD_OPCODE_NON_XIP_FLD);
380 }
381 
382 static uint32_t ospi_get_num_addr_bytes(XlnxVersalOspi *s)
383 {
384     /* Num address bytes is NUM_ADDR_BYTES_FLD + 1 */
385     return ARRAY_FIELD_EX32(s->regs,
386                             DEV_SIZE_CONFIG_REG, NUM_ADDR_BYTES_FLD) + 1;
387 }
388 
389 static void ospi_stig_membank_req(XlnxVersalOspi *s)
390 {
391     int idx = ARRAY_FIELD_EX32(s->regs,
392                                FLASH_COMMAND_CTRL_MEM_REG, MEM_BANK_ADDR_FLD);
393 
394     ARRAY_FIELD_DP32(s->regs, FLASH_COMMAND_CTRL_MEM_REG,
395                      MEM_BANK_READ_DATA_FLD, s->stig_membank[idx]);
396 }
397 
398 static int ospi_stig_membank_rd_bytes(XlnxVersalOspi *s)
399 {
400     int rd_data_fld = ARRAY_FIELD_EX32(s->regs, FLASH_COMMAND_CTRL_MEM_REG,
401                                        NB_OF_STIG_READ_BYTES_FLD);
402     static const int sizes[6] = { 16, 32, 64, 128, 256, 512 };
403     return (rd_data_fld < 6) ? sizes[rd_data_fld] : 0;
404 }
405 
406 static uint32_t ospi_get_page_sz(XlnxVersalOspi *s)
407 {
408     return ARRAY_FIELD_EX32(s->regs,
409                             DEV_SIZE_CONFIG_REG, BYTES_PER_DEVICE_PAGE_FLD);
410 }
411 
412 static bool ospi_ind_rd_watermark_enabled(XlnxVersalOspi *s)
413 {
414     return s->regs[R_INDIRECT_READ_XFER_WATERMARK_REG];
415 }
416 
417 static void ind_op_advance(IndOp *op, unsigned int len)
418 {
419     op->done_bytes += len;
420     assert(op->done_bytes <= op->num_bytes);
421     if (op->done_bytes == op->num_bytes) {
422         op->completed = true;
423     }
424 }
425 
426 static uint32_t ind_op_next_byte(IndOp *op)
427 {
428     return op->flash_addr + op->done_bytes;
429 }
430 
431 static uint32_t ind_op_end_byte(IndOp *op)
432 {
433     return op->flash_addr + op->num_bytes;
434 }
435 
436 static void ospi_ind_op_next(IndOp *op)
437 {
438     op[0] = op[1];
439     op[1].completed = true;
440 }
441 
442 static void ind_op_setup(IndOp *op, uint32_t flash_addr, uint32_t num_bytes)
443 {
444     if (num_bytes & 0x3) {
445         qemu_log_mask(LOG_GUEST_ERROR,
446                       "OSPI indirect op num bytes not word aligned\n");
447     }
448     op->flash_addr = flash_addr;
449     op->num_bytes = num_bytes;
450     op->done_bytes = 0;
451     op->completed = false;
452 }
453 
454 static bool ospi_ind_op_completed(IndOp *op)
455 {
456     return op->completed;
457 }
458 
459 static bool ospi_ind_op_all_completed(XlnxVersalOspi *s)
460 {
461     return s->rd_ind_op[0].completed && s->wr_ind_op[0].completed;
462 }
463 
464 static void ospi_ind_op_cancel(IndOp *op)
465 {
466     op[0].completed = true;
467     op[1].completed = true;
468 }
469 
470 static bool ospi_ind_op_add(IndOp *op, Fifo8 *fifo,
471                             uint32_t flash_addr, uint32_t num_bytes)
472 {
473     /* Check if first indirect op has been completed */
474     if (op->completed) {
475         fifo8_reset(fifo);
476         ind_op_setup(op, flash_addr, num_bytes);
477         return false;
478     }
479 
480     /* Check if second indirect op has been completed */
481     op++;
482     if (op->completed) {
483         ind_op_setup(op, flash_addr, num_bytes);
484         return false;
485     }
486     return true;
487 }
488 
489 static void ospi_ind_op_queue_up_rd(XlnxVersalOspi *s)
490 {
491     uint32_t num_bytes = s->regs[R_INDIRECT_READ_XFER_NUM_BYTES_REG];
492     uint32_t flash_addr = s->regs[R_INDIRECT_READ_XFER_START_REG];
493     bool failed;
494 
495     failed = ospi_ind_op_add(s->rd_ind_op, &s->rx_sram, flash_addr, num_bytes);
496     /* If two already queued set rd reject interrupt */
497     if (failed) {
498         set_irq(s, R_IRQ_STATUS_REG_INDIRECT_TRANSFER_REJECT_FLD_MASK);
499     }
500 }
501 
502 static void ospi_ind_op_queue_up_wr(XlnxVersalOspi *s)
503 {
504     uint32_t num_bytes = s->regs[R_INDIRECT_WRITE_XFER_NUM_BYTES_REG];
505     uint32_t flash_addr = s->regs[R_INDIRECT_WRITE_XFER_START_REG];
506     bool failed;
507 
508     failed = ospi_ind_op_add(s->wr_ind_op, &s->tx_sram, flash_addr, num_bytes);
509     /* If two already queued set rd reject interrupt */
510     if (failed) {
511         set_irq(s, R_IRQ_STATUS_REG_INDIRECT_TRANSFER_REJECT_FLD_MASK);
512     }
513 }
514 
515 static uint64_t flash_sz(XlnxVersalOspi *s, unsigned int cs)
516 {
517     /* Flash sizes in MB */
518     static const uint64_t sizes[4] = { SZ_512MBIT / 8, SZ_1GBIT / 8,
519                                        SZ_2GBIT / 8, SZ_4GBIT / 8 };
520     uint32_t v = s->regs[R_DEV_SIZE_CONFIG_REG];
521 
522     v >>= cs * R_DEV_SIZE_CONFIG_REG_MEM_SIZE_ON_CS0_FLD_LENGTH;
523     return sizes[FIELD_EX32(v, DEV_SIZE_CONFIG_REG, MEM_SIZE_ON_CS0_FLD)];
524 }
525 
526 static unsigned int ospi_get_block_sz(XlnxVersalOspi *s)
527 {
528     unsigned int block_fld = ARRAY_FIELD_EX32(s->regs,
529                                               DEV_SIZE_CONFIG_REG,
530                                               BYTES_PER_SUBSECTOR_FLD);
531     return 1 << block_fld;
532 }
533 
534 static unsigned int flash_blocks(XlnxVersalOspi *s, unsigned int cs)
535 {
536     unsigned int b_sz = ospi_get_block_sz(s);
537     unsigned int f_sz = flash_sz(s, cs);
538 
539     return f_sz / b_sz;
540 }
541 
542 static int ospi_ahb_decoder_cs(XlnxVersalOspi *s, hwaddr addr)
543 {
544     uint64_t end_addr = 0;
545     int cs;
546 
547     for (cs = 0; cs < s->num_cs; cs++) {
548         end_addr += flash_sz(s, cs);
549         if (addr < end_addr) {
550             break;
551         }
552     }
553 
554     if (cs == s->num_cs) {
555         /* Address is out of range */
556         qemu_log_mask(LOG_GUEST_ERROR,
557                       "OSPI flash address does not fit in configuration\n");
558         return -1;
559     }
560     return cs;
561 }
562 
563 static void ospi_ahb_decoder_enable_cs(XlnxVersalOspi *s, hwaddr addr)
564 {
565     int cs = ospi_ahb_decoder_cs(s, addr);
566 
567     if (cs >= 0) {
568         for (int i = 0; i < s->num_cs; i++) {
569             qemu_set_irq(s->cs_lines[i], cs != i);
570         }
571     }
572 }
573 
574 static unsigned int single_cs(XlnxVersalOspi *s)
575 {
576     unsigned int field = ARRAY_FIELD_EX32(s->regs,
577                                           CONFIG_REG, PERIPH_CS_LINES_FLD);
578 
579     /*
580      * Below one liner is a trick that finds the rightmost zero and makes sure
581      * all other bits are turned to 1. It is a variant of the 'Isolate the
582      * rightmost 0-bit' trick found below at the time of writing:
583      *
584      * https://emre.me/computer-science/bit-manipulation-tricks/
585      *
586      * 4'bXXX0 -> 4'b1110
587      * 4'bXX01 -> 4'b1101
588      * 4'bX011 -> 4'b1011
589      * 4'b0111 -> 4'b0111
590      * 4'b1111 -> 4'b1111
591      */
592     return (field | ~(field + 1)) & 0xf;
593 }
594 
595 static void ospi_update_cs_lines(XlnxVersalOspi *s)
596 {
597     unsigned int all_cs;
598     int i;
599 
600     if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, PERIPH_SEL_DEC_FLD)) {
601         all_cs = ARRAY_FIELD_EX32(s->regs, CONFIG_REG, PERIPH_CS_LINES_FLD);
602     } else {
603         all_cs = single_cs(s);
604     }
605 
606     for (i = 0; i < s->num_cs; i++) {
607         bool cs = (all_cs >> i) & 1;
608 
609         qemu_set_irq(s->cs_lines[i], cs);
610     }
611 }
612 
613 static void ospi_dac_cs(XlnxVersalOspi *s, hwaddr addr)
614 {
615     if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENABLE_AHB_DECODER_FLD)) {
616         ospi_ahb_decoder_enable_cs(s, addr);
617     } else {
618         ospi_update_cs_lines(s);
619     }
620 }
621 
622 static void ospi_disable_cs(XlnxVersalOspi *s)
623 {
624     int i;
625 
626     for (i = 0; i < s->num_cs; i++) {
627         qemu_set_irq(s->cs_lines[i], 1);
628     }
629 }
630 
631 static void ospi_flush_txfifo(XlnxVersalOspi *s)
632 {
633     while (!fifo8_is_empty(&s->tx_fifo)) {
634         uint32_t tx_rx = fifo8_pop(&s->tx_fifo);
635 
636         tx_rx = ssi_transfer(s->spi, tx_rx);
637         fifo8_push(&s->rx_fifo, tx_rx);
638     }
639 }
640 
641 static void ospi_tx_fifo_push_address_raw(XlnxVersalOspi *s,
642                                           uint32_t flash_addr,
643                                           unsigned int addr_bytes)
644 {
645     /* Push write address */
646     if (addr_bytes == 4) {
647         fifo8_push(&s->tx_fifo, flash_addr >> 24);
648     }
649     if (addr_bytes >= 3) {
650         fifo8_push(&s->tx_fifo, flash_addr >> 16);
651     }
652     if (addr_bytes >= 2) {
653         fifo8_push(&s->tx_fifo, flash_addr >> 8);
654     }
655     fifo8_push(&s->tx_fifo, flash_addr);
656 }
657 
658 static void ospi_tx_fifo_push_address(XlnxVersalOspi *s, uint32_t flash_addr)
659 {
660     /* Push write address */
661     int addr_bytes = ospi_get_num_addr_bytes(s);
662 
663     ospi_tx_fifo_push_address_raw(s, flash_addr, addr_bytes);
664 }
665 
666 static void ospi_tx_fifo_push_stig_addr(XlnxVersalOspi *s)
667 {
668     uint32_t flash_addr = s->regs[R_FLASH_CMD_ADDR_REG];
669     unsigned int addr_bytes = ospi_stig_addr_len(s);
670 
671     ospi_tx_fifo_push_address_raw(s, flash_addr, addr_bytes);
672 }
673 
674 static void ospi_tx_fifo_push_rd_op_addr(XlnxVersalOspi *s, uint32_t flash_addr)
675 {
676     uint8_t inst_code = ospi_get_rd_opcode(s);
677 
678     fifo8_reset(&s->tx_fifo);
679 
680     /* Push read opcode */
681     fifo8_push(&s->tx_fifo, inst_code);
682 
683     /* Push read address */
684     ospi_tx_fifo_push_address(s, flash_addr);
685 }
686 
687 static void ospi_tx_fifo_push_stig_wr_data(XlnxVersalOspi *s)
688 {
689     uint64_t data = s->regs[R_FLASH_WR_DATA_LOWER_REG];
690     int wr_data_len = ospi_stig_wr_data_len(s);
691     int i;
692 
693     data |= (uint64_t) s->regs[R_FLASH_WR_DATA_UPPER_REG] << 32;
694     for (i = 0; i < wr_data_len; i++) {
695         int shift = i * 8;
696         fifo8_push(&s->tx_fifo, data >> shift);
697     }
698 }
699 
700 static void ospi_tx_fifo_push_stig_rd_data(XlnxVersalOspi *s)
701 {
702     int rd_data_len;
703     int i;
704 
705     if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD)) {
706         rd_data_len = ospi_stig_membank_rd_bytes(s);
707     } else {
708         rd_data_len = ospi_stig_rd_data_len(s);
709     }
710 
711     /* transmit second part (data) */
712     for (i = 0; i < rd_data_len; ++i) {
713         fifo8_push(&s->tx_fifo, 0);
714     }
715 }
716 
717 static void ospi_rx_fifo_pop_stig_rd_data(XlnxVersalOspi *s)
718 {
719     int size = ospi_stig_rd_data_len(s);
720     uint8_t bytes[8] = {};
721     int i;
722 
723     size = MIN(fifo8_num_used(&s->rx_fifo), size);
724 
725     assert(size <= 8);
726 
727     for (i = 0; i < size; i++) {
728         bytes[i] = fifo8_pop(&s->rx_fifo);
729     }
730 
731     s->regs[R_FLASH_RD_DATA_LOWER_REG] = ldl_le_p(bytes);
732     s->regs[R_FLASH_RD_DATA_UPPER_REG] = ldl_le_p(bytes + 4);
733 }
734 
735 static void ospi_ind_read(XlnxVersalOspi *s, uint32_t flash_addr, uint32_t len)
736 {
737     int i;
738 
739     /* Create first section of read cmd */
740     ospi_tx_fifo_push_rd_op_addr(s, flash_addr);
741 
742     /* transmit first part */
743     ospi_update_cs_lines(s);
744     ospi_flush_txfifo(s);
745 
746     fifo8_reset(&s->rx_fifo);
747 
748     /* transmit second part (data) */
749     for (i = 0; i < len; ++i) {
750         fifo8_push(&s->tx_fifo, 0);
751     }
752     ospi_flush_txfifo(s);
753 
754     for (i = 0; i < len; ++i) {
755         fifo8_push(&s->rx_sram, fifo8_pop(&s->rx_fifo));
756     }
757 
758     /* done */
759     ospi_disable_cs(s);
760 }
761 
762 static unsigned int ospi_dma_burst_size(XlnxVersalOspi *s)
763 {
764     return 1 << ARRAY_FIELD_EX32(s->regs,
765                                  DMA_PERIPH_CONFIG_REG,
766                                  NUM_BURST_REQ_BYTES_FLD);
767 }
768 
769 static unsigned int ospi_dma_single_size(XlnxVersalOspi *s)
770 {
771     return 1 << ARRAY_FIELD_EX32(s->regs,
772                                  DMA_PERIPH_CONFIG_REG,
773                                  NUM_SINGLE_REQ_BYTES_FLD);
774 }
775 
776 static void ind_rd_inc_num_done(XlnxVersalOspi *s)
777 {
778     unsigned int done = ARRAY_FIELD_EX32(s->regs,
779                                          INDIRECT_READ_XFER_CTRL_REG,
780                                          NUM_IND_OPS_DONE_FLD);
781     if (done < IND_OPS_DONE_MAX) {
782         done++;
783     }
784     done &= 0x3;
785     ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG,
786                      NUM_IND_OPS_DONE_FLD, done);
787 }
788 
789 static void ospi_ind_rd_completed(XlnxVersalOspi *s)
790 {
791     ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG,
792                      IND_OPS_DONE_STATUS_FLD, 1);
793 
794     ind_rd_inc_num_done(s);
795     ospi_ind_op_next(s->rd_ind_op);
796     if (ospi_ind_op_all_completed(s)) {
797         set_irq(s, R_IRQ_STATUS_REG_INDIRECT_OP_DONE_FLD_MASK);
798     }
799 }
800 
801 static void ospi_dma_read(XlnxVersalOspi *s)
802 {
803     IndOp *op = s->rd_ind_op;
804     uint32_t dma_len = op->num_bytes;
805     uint32_t burst_sz = ospi_dma_burst_size(s);
806     uint32_t single_sz = ospi_dma_single_size(s);
807     uint32_t ind_trig_range;
808     uint32_t remainder;
809     XlnxCSUDMAClass *xcdc = XLNX_CSU_DMA_GET_CLASS(s->dma_src);
810 
811     ind_trig_range = (1 << ARRAY_FIELD_EX32(s->regs,
812                                             INDIRECT_TRIGGER_ADDR_RANGE_REG,
813                                             IND_RANGE_WIDTH_FLD));
814     remainder = dma_len % burst_sz;
815     remainder = remainder % single_sz;
816     if (burst_sz > ind_trig_range || single_sz > ind_trig_range ||
817         remainder != 0) {
818         qemu_log_mask(LOG_GUEST_ERROR,
819                       "OSPI DMA burst size / single size config error\n");
820     }
821 
822     s->src_dma_inprog = true;
823     if (xcdc->read(s->dma_src, 0, dma_len) != MEMTX_OK) {
824         qemu_log_mask(LOG_GUEST_ERROR, "OSPI DMA configuration error\n");
825     }
826     s->src_dma_inprog = false;
827 }
828 
829 static void ospi_do_ind_read(XlnxVersalOspi *s)
830 {
831     IndOp *op = s->rd_ind_op;
832     uint32_t next_b;
833     uint32_t end_b;
834     uint32_t len;
835     bool start_dma = IS_IND_DMA_START(op) && !s->src_dma_inprog;
836 
837     /* Continue to read flash until we run out of space in sram */
838     while (!ospi_ind_op_completed(op) &&
839            !fifo8_is_full(&s->rx_sram)) {
840         /* Read requested number of bytes, max bytes limited to size of sram */
841         next_b = ind_op_next_byte(op);
842         end_b = next_b + fifo8_num_free(&s->rx_sram);
843         end_b = MIN(end_b, ind_op_end_byte(op));
844 
845         len = end_b - next_b;
846         ospi_ind_read(s, next_b, len);
847         ind_op_advance(op, len);
848 
849         if (ospi_ind_rd_watermark_enabled(s)) {
850             ARRAY_FIELD_DP32(s->regs, IRQ_STATUS_REG,
851                              INDIRECT_XFER_LEVEL_BREACH_FLD, 1);
852             set_irq(s,
853                     R_IRQ_STATUS_REG_INDIRECT_XFER_LEVEL_BREACH_FLD_MASK);
854         }
855 
856         if (!s->src_dma_inprog &&
857             ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD)) {
858             ospi_dma_read(s);
859         }
860     }
861 
862     /* Set sram full */
863     if (fifo8_num_used(&s->rx_sram) == RXFF_SZ) {
864         ARRAY_FIELD_DP32(s->regs,
865                          INDIRECT_READ_XFER_CTRL_REG, SRAM_FULL_FLD, 1);
866         set_irq(s, R_IRQ_STATUS_REG_INDRD_SRAM_FULL_FLD_MASK);
867     }
868 
869     /* Signal completion if done, unless inside recursion via ospi_dma_read */
870     if (!ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD) || start_dma) {
871         if (ospi_ind_op_completed(op)) {
872             ospi_ind_rd_completed(s);
873         }
874     }
875 }
876 
877 /* Transmit write enable instruction */
878 static void ospi_transmit_wel(XlnxVersalOspi *s, bool ahb_decoder_cs,
879                               hwaddr addr)
880 {
881     fifo8_reset(&s->tx_fifo);
882     fifo8_push(&s->tx_fifo, WREN);
883 
884     if (ahb_decoder_cs) {
885         ospi_ahb_decoder_enable_cs(s, addr);
886     } else {
887         ospi_update_cs_lines(s);
888     }
889 
890     ospi_flush_txfifo(s);
891     ospi_disable_cs(s);
892 
893     fifo8_reset(&s->rx_fifo);
894 }
895 
896 static void ospi_ind_write(XlnxVersalOspi *s, uint32_t flash_addr, uint32_t len)
897 {
898     bool ahb_decoder_cs = false;
899     uint8_t inst_code;
900     int i;
901 
902     assert(fifo8_num_used(&s->tx_sram) >= len);
903 
904     if (!ARRAY_FIELD_EX32(s->regs, DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD)) {
905         ospi_transmit_wel(s, ahb_decoder_cs, 0);
906     }
907 
908     /* reset fifos */
909     fifo8_reset(&s->tx_fifo);
910     fifo8_reset(&s->rx_fifo);
911 
912     /* Push write opcode */
913     inst_code = ospi_get_wr_opcode(s);
914     fifo8_push(&s->tx_fifo, inst_code);
915 
916     /* Push write address */
917     ospi_tx_fifo_push_address(s, flash_addr);
918 
919     /* data */
920     for (i = 0; i < len; i++) {
921         fifo8_push(&s->tx_fifo, fifo8_pop(&s->tx_sram));
922     }
923 
924     /* transmit */
925     ospi_update_cs_lines(s);
926     ospi_flush_txfifo(s);
927 
928     /* done */
929     ospi_disable_cs(s);
930     fifo8_reset(&s->rx_fifo);
931 }
932 
933 static void ind_wr_inc_num_done(XlnxVersalOspi *s)
934 {
935     unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
936                                          NUM_IND_OPS_DONE_FLD);
937     if (done < IND_OPS_DONE_MAX) {
938         done++;
939     }
940     done &= 0x3;
941     ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
942                      NUM_IND_OPS_DONE_FLD, done);
943 }
944 
945 static void ospi_ind_wr_completed(XlnxVersalOspi *s)
946 {
947     ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
948                      IND_OPS_DONE_STATUS_FLD, 1);
949     ind_wr_inc_num_done(s);
950     ospi_ind_op_next(s->wr_ind_op);
951     /* Set indirect op done interrupt if enabled */
952     if (ospi_ind_op_all_completed(s)) {
953         set_irq(s, R_IRQ_STATUS_REG_INDIRECT_OP_DONE_FLD_MASK);
954     }
955 }
956 
957 static void ospi_do_indirect_write(XlnxVersalOspi *s)
958 {
959     uint32_t write_watermark = s->regs[R_INDIRECT_WRITE_XFER_WATERMARK_REG];
960     uint32_t pagesz = ospi_get_page_sz(s);
961     uint32_t page_mask = ~(pagesz - 1);
962     IndOp *op = s->wr_ind_op;
963     uint32_t next_b;
964     uint32_t end_b;
965     uint32_t len;
966 
967     /* Write out tx_fifo in maximum page sz chunks */
968     while (!ospi_ind_op_completed(op) && fifo8_num_used(&s->tx_sram) > 0) {
969         next_b = ind_op_next_byte(op);
970         end_b = next_b +  MIN(fifo8_num_used(&s->tx_sram), pagesz);
971 
972         /* Dont cross page boundary */
973         if ((end_b & page_mask) > next_b) {
974             end_b &= page_mask;
975         }
976 
977         len = end_b - next_b;
978         len = MIN(len, op->num_bytes - op->done_bytes);
979         ospi_ind_write(s, next_b, len);
980         ind_op_advance(op, len);
981     }
982 
983     /*
984      * Always set indirect transfer level breached interrupt if enabled
985      * (write watermark > 0) since the tx_sram always will be emptied
986      */
987     if (write_watermark > 0) {
988         set_irq(s, R_IRQ_STATUS_REG_INDIRECT_XFER_LEVEL_BREACH_FLD_MASK);
989     }
990 
991     /* Signal completions if done */
992     if (ospi_ind_op_completed(op)) {
993         ospi_ind_wr_completed(s);
994     }
995 }
996 
997 static void ospi_stig_fill_membank(XlnxVersalOspi *s)
998 {
999     int num_rd_bytes = ospi_stig_membank_rd_bytes(s);
1000     int idx = num_rd_bytes - 8; /* first of last 8 */
1001     int i;
1002 
1003     for (i = 0; i < num_rd_bytes; i++) {
1004         s->stig_membank[i] = fifo8_pop(&s->rx_fifo);
1005     }
1006 
1007     g_assert((idx + 4) < ARRAY_SIZE(s->stig_membank));
1008 
1009     /* Fill in lower upper regs */
1010     s->regs[R_FLASH_RD_DATA_LOWER_REG] = ldl_le_p(&s->stig_membank[idx]);
1011     s->regs[R_FLASH_RD_DATA_UPPER_REG] = ldl_le_p(&s->stig_membank[idx + 4]);
1012 }
1013 
1014 static void ospi_stig_cmd_exec(XlnxVersalOspi *s)
1015 {
1016     uint8_t inst_code;
1017 
1018     /* Reset fifos */
1019     fifo8_reset(&s->tx_fifo);
1020     fifo8_reset(&s->rx_fifo);
1021 
1022     /* Push write opcode */
1023     inst_code = ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, CMD_OPCODE_FLD);
1024     fifo8_push(&s->tx_fifo, inst_code);
1025 
1026     /* Push address if enabled */
1027     if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_COMD_ADDR_FLD)) {
1028         ospi_tx_fifo_push_stig_addr(s);
1029     }
1030 
1031     /* Enable cs */
1032     ospi_update_cs_lines(s);
1033 
1034     /* Data */
1035     if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_WRITE_DATA_FLD)) {
1036         ospi_tx_fifo_push_stig_wr_data(s);
1037     } else if (ARRAY_FIELD_EX32(s->regs,
1038                                 FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD)) {
1039         /* transmit first part */
1040         ospi_flush_txfifo(s);
1041         fifo8_reset(&s->rx_fifo);
1042         ospi_tx_fifo_push_stig_rd_data(s);
1043     }
1044 
1045     /* Transmit */
1046     ospi_flush_txfifo(s);
1047     ospi_disable_cs(s);
1048 
1049     if (ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, ENB_READ_DATA_FLD)) {
1050         if (ARRAY_FIELD_EX32(s->regs,
1051                              FLASH_CMD_CTRL_REG, STIG_MEM_BANK_EN_FLD)) {
1052             ospi_stig_fill_membank(s);
1053         } else {
1054             ospi_rx_fifo_pop_stig_rd_data(s);
1055         }
1056     }
1057 }
1058 
1059 static uint32_t ospi_block_address(XlnxVersalOspi *s, unsigned int block)
1060 {
1061     unsigned int block_sz = ospi_get_block_sz(s);
1062     unsigned int cs = 0;
1063     uint32_t addr = 0;
1064 
1065     while (cs < s->num_cs && block >= flash_blocks(s, cs)) {
1066         block -= flash_blocks(s, 0);
1067         addr += flash_sz(s, cs);
1068     }
1069     addr += block * block_sz;
1070     return addr;
1071 }
1072 
1073 static uint32_t ospi_get_wr_prot_addr_low(XlnxVersalOspi *s)
1074 {
1075     unsigned int block = s->regs[R_LOWER_WR_PROT_REG];
1076 
1077     return ospi_block_address(s, block);
1078 }
1079 
1080 static uint32_t ospi_get_wr_prot_addr_upper(XlnxVersalOspi *s)
1081 {
1082     unsigned int block = s->regs[R_UPPER_WR_PROT_REG];
1083 
1084     /* Get address of first block out of defined range */
1085     return ospi_block_address(s, block + 1);
1086 }
1087 
1088 static bool ospi_is_write_protected(XlnxVersalOspi *s, hwaddr addr)
1089 {
1090     uint32_t wr_prot_addr_upper = ospi_get_wr_prot_addr_upper(s);
1091     uint32_t wr_prot_addr_low = ospi_get_wr_prot_addr_low(s);
1092     bool in_range = false;
1093 
1094     if (addr >= wr_prot_addr_low && addr < wr_prot_addr_upper) {
1095         in_range = true;
1096     }
1097 
1098     if (ARRAY_FIELD_EX32(s->regs, WR_PROT_CTRL_REG, INV_FLD)) {
1099         in_range = !in_range;
1100     }
1101     return in_range;
1102 }
1103 
1104 static uint64_t ospi_rx_sram_read(XlnxVersalOspi *s, unsigned int size)
1105 {
1106     uint8_t bytes[8] = {};
1107     int i;
1108 
1109     if (size < 4 && fifo8_num_used(&s->rx_sram) >= 4) {
1110         qemu_log_mask(LOG_GUEST_ERROR,
1111                       "OSPI only last read of internal "
1112                       "sram is allowed to be < 32 bits\n");
1113     }
1114 
1115     size = MIN(fifo8_num_used(&s->rx_sram), size);
1116 
1117     assert(size <= 8);
1118 
1119     for (i = 0; i < size; i++) {
1120         bytes[i] = fifo8_pop(&s->rx_sram);
1121     }
1122 
1123     return ldq_le_p(bytes);
1124 }
1125 
1126 static void ospi_tx_sram_write(XlnxVersalOspi *s, uint64_t value,
1127                                unsigned int size)
1128 {
1129     int i;
1130     for (i = 0; i < size && !fifo8_is_full(&s->tx_sram); i++) {
1131         fifo8_push(&s->tx_sram, value >> 8 * i);
1132     }
1133 }
1134 
1135 static uint64_t ospi_do_dac_read(void *opaque, hwaddr addr, unsigned int size)
1136 {
1137     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1138     uint8_t bytes[8] = {};
1139     int i;
1140 
1141     /* Create first section of read cmd */
1142     ospi_tx_fifo_push_rd_op_addr(s, (uint32_t) addr);
1143 
1144     /* Enable cs and transmit first part */
1145     ospi_dac_cs(s, addr);
1146     ospi_flush_txfifo(s);
1147 
1148     fifo8_reset(&s->rx_fifo);
1149 
1150     /* transmit second part (data) */
1151     for (i = 0; i < size; ++i) {
1152         fifo8_push(&s->tx_fifo, 0);
1153     }
1154     ospi_flush_txfifo(s);
1155 
1156     /* fill in result */
1157     size = MIN(fifo8_num_used(&s->rx_fifo), size);
1158 
1159     assert(size <= 8);
1160 
1161     for (i = 0; i < size; i++) {
1162         bytes[i] = fifo8_pop(&s->rx_fifo);
1163     }
1164 
1165     /* done */
1166     ospi_disable_cs(s);
1167 
1168     return ldq_le_p(bytes);
1169 }
1170 
1171 static void ospi_do_dac_write(void *opaque,
1172                               hwaddr addr,
1173                               uint64_t value,
1174                               unsigned int size)
1175 {
1176     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1177     bool ahb_decoder_cs = ARRAY_FIELD_EX32(s->regs, CONFIG_REG,
1178                                            ENABLE_AHB_DECODER_FLD);
1179     uint8_t inst_code;
1180     unsigned int i;
1181 
1182     if (!ARRAY_FIELD_EX32(s->regs, DEV_INSTR_WR_CONFIG_REG, WEL_DIS_FLD)) {
1183         ospi_transmit_wel(s, ahb_decoder_cs, addr);
1184     }
1185 
1186     /* reset fifos */
1187     fifo8_reset(&s->tx_fifo);
1188     fifo8_reset(&s->rx_fifo);
1189 
1190     /* Push write opcode */
1191     inst_code = ospi_get_wr_opcode(s);
1192     fifo8_push(&s->tx_fifo, inst_code);
1193 
1194     /* Push write address */
1195     ospi_tx_fifo_push_address(s, addr);
1196 
1197     /* data */
1198     for (i = 0; i < size; i++) {
1199         fifo8_push(&s->tx_fifo, value >> 8 * i);
1200     }
1201 
1202     /* Enable cs and transmit */
1203     ospi_dac_cs(s, addr);
1204     ospi_flush_txfifo(s);
1205     ospi_disable_cs(s);
1206 
1207     fifo8_reset(&s->rx_fifo);
1208 }
1209 
1210 static void flash_cmd_ctrl_mem_reg_post_write(RegisterInfo *reg,
1211                                               uint64_t val)
1212 {
1213     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1214     if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) {
1215         if (ARRAY_FIELD_EX32(s->regs,
1216                              FLASH_COMMAND_CTRL_MEM_REG,
1217                              TRIGGER_MEM_BANK_REQ_FLD)) {
1218             ospi_stig_membank_req(s);
1219             ARRAY_FIELD_DP32(s->regs, FLASH_COMMAND_CTRL_MEM_REG,
1220                              TRIGGER_MEM_BANK_REQ_FLD, 0);
1221         }
1222     }
1223 }
1224 
1225 static void flash_cmd_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val)
1226 {
1227     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1228 
1229     if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD) &&
1230         ARRAY_FIELD_EX32(s->regs, FLASH_CMD_CTRL_REG, CMD_EXEC_FLD)) {
1231         ospi_stig_cmd_exec(s);
1232         set_irq(s, R_IRQ_STATUS_REG_STIG_REQ_INT_FLD_MASK);
1233         ARRAY_FIELD_DP32(s->regs, FLASH_CMD_CTRL_REG, CMD_EXEC_FLD, 0);
1234     }
1235 }
1236 
1237 static uint64_t ind_wr_dec_num_done(XlnxVersalOspi *s, uint64_t val)
1238 {
1239     unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
1240                                          NUM_IND_OPS_DONE_FLD);
1241     done--;
1242     done &= 0x3;
1243     val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG,
1244                      NUM_IND_OPS_DONE_FLD, done);
1245     return val;
1246 }
1247 
1248 static bool ind_wr_clearing_op_done(XlnxVersalOspi *s, uint64_t new_val)
1249 {
1250     bool set_in_reg = ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG,
1251                                        IND_OPS_DONE_STATUS_FLD);
1252     bool set_in_new_val = FIELD_EX32(new_val, INDIRECT_WRITE_XFER_CTRL_REG,
1253                                      IND_OPS_DONE_STATUS_FLD);
1254     /* return true if clearing bit */
1255     return set_in_reg && !set_in_new_val;
1256 }
1257 
1258 static uint64_t ind_wr_xfer_ctrl_reg_pre_write(RegisterInfo *reg,
1259                                                uint64_t val)
1260 {
1261     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1262 
1263     if (ind_wr_clearing_op_done(s, val)) {
1264         val = ind_wr_dec_num_done(s, val);
1265     }
1266     return val;
1267 }
1268 
1269 static void ind_wr_xfer_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val)
1270 {
1271     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1272 
1273     if (s->ind_write_disabled) {
1274         return;
1275     }
1276 
1277     if (ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, START_FLD)) {
1278         ospi_ind_op_queue_up_wr(s);
1279         ospi_do_indirect_write(s);
1280         ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, START_FLD, 0);
1281     }
1282 
1283     if (ARRAY_FIELD_EX32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD)) {
1284         ospi_ind_op_cancel(s->wr_ind_op);
1285         fifo8_reset(&s->tx_sram);
1286         ARRAY_FIELD_DP32(s->regs, INDIRECT_WRITE_XFER_CTRL_REG, CANCEL_FLD, 0);
1287     }
1288 }
1289 
1290 static uint64_t ind_wr_xfer_ctrl_reg_post_read(RegisterInfo *reg,
1291                                                uint64_t val)
1292 {
1293     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1294     IndOp *op = s->wr_ind_op;
1295 
1296     /* Check if ind ops is ongoing */
1297     if (!ospi_ind_op_completed(&op[0])) {
1298         /* Check if two ind ops are queued */
1299         if (!ospi_ind_op_completed(&op[1])) {
1300             val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG,
1301                              WR_QUEUED_FLD, 1);
1302         }
1303         val = FIELD_DP32(val, INDIRECT_WRITE_XFER_CTRL_REG, WR_STATUS_FLD, 1);
1304     }
1305     return val;
1306 }
1307 
1308 static uint64_t ind_rd_dec_num_done(XlnxVersalOspi *s, uint64_t val)
1309 {
1310     unsigned int done = ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG,
1311                                          NUM_IND_OPS_DONE_FLD);
1312     done--;
1313     done &= 0x3;
1314     val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG,
1315                      NUM_IND_OPS_DONE_FLD, done);
1316     return val;
1317 }
1318 
1319 static uint64_t ind_rd_xfer_ctrl_reg_pre_write(RegisterInfo *reg,
1320                                                uint64_t val)
1321 {
1322     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1323 
1324     if (FIELD_EX32(val, INDIRECT_READ_XFER_CTRL_REG,
1325                    IND_OPS_DONE_STATUS_FLD)) {
1326         val = ind_rd_dec_num_done(s, val);
1327         val &= ~R_INDIRECT_READ_XFER_CTRL_REG_IND_OPS_DONE_STATUS_FLD_MASK;
1328     }
1329     return val;
1330 }
1331 
1332 static void ind_rd_xfer_ctrl_reg_post_write(RegisterInfo *reg, uint64_t val)
1333 {
1334     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1335 
1336     if (ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG, START_FLD)) {
1337         ospi_ind_op_queue_up_rd(s);
1338         ospi_do_ind_read(s);
1339         ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG, START_FLD, 0);
1340     }
1341 
1342     if (ARRAY_FIELD_EX32(s->regs, INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD)) {
1343         ospi_ind_op_cancel(s->rd_ind_op);
1344         fifo8_reset(&s->rx_sram);
1345         ARRAY_FIELD_DP32(s->regs, INDIRECT_READ_XFER_CTRL_REG, CANCEL_FLD, 0);
1346     }
1347 }
1348 
1349 static uint64_t ind_rd_xfer_ctrl_reg_post_read(RegisterInfo *reg,
1350                                                uint64_t val)
1351 {
1352     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1353     IndOp *op = s->rd_ind_op;
1354 
1355     /* Check if ind ops is ongoing */
1356     if (!ospi_ind_op_completed(&op[0])) {
1357         /* Check if two ind ops are queued */
1358         if (!ospi_ind_op_completed(&op[1])) {
1359             val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG,
1360                              RD_QUEUED_FLD, 1);
1361         }
1362         val = FIELD_DP32(val, INDIRECT_READ_XFER_CTRL_REG, RD_STATUS_FLD, 1);
1363     }
1364     return val;
1365 }
1366 
1367 static uint64_t sram_fill_reg_post_read(RegisterInfo *reg, uint64_t val)
1368 {
1369     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1370     val = ((fifo8_num_used(&s->tx_sram) & 0xFFFF) << 16) |
1371           (fifo8_num_used(&s->rx_sram) & 0xFFFF);
1372     return val;
1373 }
1374 
1375 static uint64_t dll_obs_upper_reg_post_read(RegisterInfo *reg, uint64_t val)
1376 {
1377     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(reg->opaque);
1378     uint32_t rx_dec_out;
1379 
1380     rx_dec_out = FIELD_EX32(val, DLL_OBSERVABLE_UPPER_REG,
1381                             DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD);
1382 
1383     if (rx_dec_out < MAX_RX_DEC_OUT) {
1384         ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_UPPER_REG,
1385                          DLL_OBSERVABLE__UPPER_RX_DECODER_OUTPUT_FLD,
1386                          rx_dec_out + 1);
1387     }
1388 
1389     return val;
1390 }
1391 
1392 
1393 static void xlnx_versal_ospi_reset(DeviceState *dev)
1394 {
1395     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(dev);
1396     unsigned int i;
1397 
1398     for (i = 0; i < ARRAY_SIZE(s->regs_info); ++i) {
1399         register_reset(&s->regs_info[i]);
1400     }
1401 
1402     fifo8_reset(&s->rx_fifo);
1403     fifo8_reset(&s->tx_fifo);
1404     fifo8_reset(&s->rx_sram);
1405     fifo8_reset(&s->tx_sram);
1406 
1407     s->rd_ind_op[0].completed = true;
1408     s->rd_ind_op[1].completed = true;
1409     s->wr_ind_op[0].completed = true;
1410     s->wr_ind_op[1].completed = true;
1411     ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_LOWER_REG,
1412                      DLL_OBSERVABLE_LOWER_DLL_LOCK_FLD, 1);
1413     ARRAY_FIELD_DP32(s->regs, DLL_OBSERVABLE_LOWER_REG,
1414                      DLL_OBSERVABLE_LOWER_LOOPBACK_LOCK_FLD, 1);
1415 }
1416 
1417 static RegisterAccessInfo ospi_regs_info[] = {
1418     {   .name = "CONFIG_REG",
1419         .addr = A_CONFIG_REG,
1420         .reset = 0x80780081,
1421         .ro = 0x9c000000,
1422     },{ .name = "DEV_INSTR_RD_CONFIG_REG",
1423         .addr = A_DEV_INSTR_RD_CONFIG_REG,
1424         .reset = 0x3,
1425         .ro = 0xe0ecc800,
1426     },{ .name = "DEV_INSTR_WR_CONFIG_REG",
1427         .addr = A_DEV_INSTR_WR_CONFIG_REG,
1428         .reset = 0x2,
1429         .ro = 0xe0fcce00,
1430     },{ .name = "DEV_DELAY_REG",
1431         .addr = A_DEV_DELAY_REG,
1432     },{ .name = "RD_DATA_CAPTURE_REG",
1433         .addr = A_RD_DATA_CAPTURE_REG,
1434         .reset = 0x1,
1435         .ro = 0xfff0fec0,
1436     },{ .name = "DEV_SIZE_CONFIG_REG",
1437         .addr = A_DEV_SIZE_CONFIG_REG,
1438         .reset = 0x101002,
1439         .ro = 0xe0000000,
1440     },{ .name = "SRAM_PARTITION_CFG_REG",
1441         .addr = A_SRAM_PARTITION_CFG_REG,
1442         .reset = 0x80,
1443         .ro = 0xffffff00,
1444     },{ .name = "IND_AHB_ADDR_TRIGGER_REG",
1445         .addr = A_IND_AHB_ADDR_TRIGGER_REG,
1446     },{ .name = "DMA_PERIPH_CONFIG_REG",
1447         .addr = A_DMA_PERIPH_CONFIG_REG,
1448         .ro = 0xfffff0f0,
1449     },{ .name = "REMAP_ADDR_REG",
1450         .addr = A_REMAP_ADDR_REG,
1451     },{ .name = "MODE_BIT_CONFIG_REG",
1452         .addr = A_MODE_BIT_CONFIG_REG,
1453         .reset = 0x200,
1454         .ro = 0xffff7800,
1455     },{ .name = "SRAM_FILL_REG",
1456         .addr = A_SRAM_FILL_REG,
1457         .ro = 0xffffffff,
1458         .post_read = sram_fill_reg_post_read,
1459     },{ .name = "TX_THRESH_REG",
1460         .addr = A_TX_THRESH_REG,
1461         .reset = 0x1,
1462         .ro = 0xffffffe0,
1463     },{ .name = "RX_THRESH_REG",
1464         .addr = A_RX_THRESH_REG,
1465         .reset = 0x1,
1466         .ro = 0xffffffe0,
1467     },{ .name = "WRITE_COMPLETION_CTRL_REG",
1468         .addr = A_WRITE_COMPLETION_CTRL_REG,
1469         .reset = 0x10005,
1470         .ro = 0x1800,
1471     },{ .name = "NO_OF_POLLS_BEF_EXP_REG",
1472         .addr = A_NO_OF_POLLS_BEF_EXP_REG,
1473         .reset = 0xffffffff,
1474     },{ .name = "IRQ_STATUS_REG",
1475         .addr = A_IRQ_STATUS_REG,
1476         .ro = 0xfff08000,
1477         .w1c = 0xf7fff,
1478     },{ .name = "IRQ_MASK_REG",
1479         .addr = A_IRQ_MASK_REG,
1480         .ro = 0xfff08000,
1481     },{ .name = "LOWER_WR_PROT_REG",
1482         .addr = A_LOWER_WR_PROT_REG,
1483     },{ .name = "UPPER_WR_PROT_REG",
1484         .addr = A_UPPER_WR_PROT_REG,
1485     },{ .name = "WR_PROT_CTRL_REG",
1486         .addr = A_WR_PROT_CTRL_REG,
1487         .ro = 0xfffffffc,
1488     },{ .name = "INDIRECT_READ_XFER_CTRL_REG",
1489         .addr = A_INDIRECT_READ_XFER_CTRL_REG,
1490         .ro = 0xffffffd4,
1491         .w1c = 0x08,
1492         .pre_write = ind_rd_xfer_ctrl_reg_pre_write,
1493         .post_write = ind_rd_xfer_ctrl_reg_post_write,
1494         .post_read = ind_rd_xfer_ctrl_reg_post_read,
1495     },{ .name = "INDIRECT_READ_XFER_WATERMARK_REG",
1496         .addr = A_INDIRECT_READ_XFER_WATERMARK_REG,
1497     },{ .name = "INDIRECT_READ_XFER_START_REG",
1498         .addr = A_INDIRECT_READ_XFER_START_REG,
1499     },{ .name = "INDIRECT_READ_XFER_NUM_BYTES_REG",
1500         .addr = A_INDIRECT_READ_XFER_NUM_BYTES_REG,
1501     },{ .name = "INDIRECT_WRITE_XFER_CTRL_REG",
1502         .addr = A_INDIRECT_WRITE_XFER_CTRL_REG,
1503         .ro = 0xffffffdc,
1504         .w1c = 0x20,
1505         .pre_write = ind_wr_xfer_ctrl_reg_pre_write,
1506         .post_write = ind_wr_xfer_ctrl_reg_post_write,
1507         .post_read = ind_wr_xfer_ctrl_reg_post_read,
1508     },{ .name = "INDIRECT_WRITE_XFER_WATERMARK_REG",
1509         .addr = A_INDIRECT_WRITE_XFER_WATERMARK_REG,
1510         .reset = 0xffffffff,
1511     },{ .name = "INDIRECT_WRITE_XFER_START_REG",
1512         .addr = A_INDIRECT_WRITE_XFER_START_REG,
1513     },{ .name = "INDIRECT_WRITE_XFER_NUM_BYTES_REG",
1514         .addr = A_INDIRECT_WRITE_XFER_NUM_BYTES_REG,
1515     },{ .name = "INDIRECT_TRIGGER_ADDR_RANGE_REG",
1516         .addr = A_INDIRECT_TRIGGER_ADDR_RANGE_REG,
1517         .reset = 0x4,
1518         .ro = 0xfffffff0,
1519     },{ .name = "FLASH_COMMAND_CTRL_MEM_REG",
1520         .addr = A_FLASH_COMMAND_CTRL_MEM_REG,
1521         .ro = 0xe008fffe,
1522         .post_write = flash_cmd_ctrl_mem_reg_post_write,
1523     },{ .name = "FLASH_CMD_CTRL_REG",
1524         .addr = A_FLASH_CMD_CTRL_REG,
1525         .ro = 0x7a,
1526         .post_write = flash_cmd_ctrl_reg_post_write,
1527     },{ .name = "FLASH_CMD_ADDR_REG",
1528         .addr = A_FLASH_CMD_ADDR_REG,
1529     },{ .name = "FLASH_RD_DATA_LOWER_REG",
1530         .addr = A_FLASH_RD_DATA_LOWER_REG,
1531         .ro = 0xffffffff,
1532     },{ .name = "FLASH_RD_DATA_UPPER_REG",
1533         .addr = A_FLASH_RD_DATA_UPPER_REG,
1534         .ro = 0xffffffff,
1535     },{ .name = "FLASH_WR_DATA_LOWER_REG",
1536         .addr = A_FLASH_WR_DATA_LOWER_REG,
1537     },{ .name = "FLASH_WR_DATA_UPPER_REG",
1538         .addr = A_FLASH_WR_DATA_UPPER_REG,
1539     },{ .name = "POLLING_FLASH_STATUS_REG",
1540         .addr = A_POLLING_FLASH_STATUS_REG,
1541         .ro = 0xfff0ffff,
1542     },{ .name = "PHY_CONFIGURATION_REG",
1543         .addr = A_PHY_CONFIGURATION_REG,
1544         .reset = 0x40000000,
1545         .ro = 0x1f80ff80,
1546     },{ .name = "PHY_MASTER_CONTROL_REG",
1547         .addr = A_PHY_MASTER_CONTROL_REG,
1548         .reset = 0x800000,
1549         .ro = 0xfe08ff80,
1550     },{ .name = "DLL_OBSERVABLE_LOWER_REG",
1551         .addr = A_DLL_OBSERVABLE_LOWER_REG,
1552         .ro = 0xffffffff,
1553     },{ .name = "DLL_OBSERVABLE_UPPER_REG",
1554         .addr = A_DLL_OBSERVABLE_UPPER_REG,
1555         .ro = 0xffffffff,
1556         .post_read = dll_obs_upper_reg_post_read,
1557     },{ .name = "OPCODE_EXT_LOWER_REG",
1558         .addr = A_OPCODE_EXT_LOWER_REG,
1559         .reset = 0x13edfa00,
1560     },{ .name = "OPCODE_EXT_UPPER_REG",
1561         .addr = A_OPCODE_EXT_UPPER_REG,
1562         .reset = 0x6f90000,
1563         .ro = 0xffff,
1564     },{ .name = "MODULE_ID_REG",
1565         .addr = A_MODULE_ID_REG,
1566         .reset = 0x300,
1567         .ro = 0xffffffff,
1568     }
1569 };
1570 
1571 /* Return dev-obj from reg-region created by register_init_block32 */
1572 static XlnxVersalOspi *xilinx_ospi_of_mr(void *mr_accessor)
1573 {
1574     RegisterInfoArray *reg_array = mr_accessor;
1575     Object *dev;
1576 
1577     dev = reg_array->mem.owner;
1578     assert(dev);
1579 
1580     return XILINX_VERSAL_OSPI(dev);
1581 }
1582 
1583 static void ospi_write(void *opaque, hwaddr addr, uint64_t value,
1584         unsigned int size)
1585 {
1586     XlnxVersalOspi *s = xilinx_ospi_of_mr(opaque);
1587 
1588     register_write_memory(opaque, addr, value, size);
1589     ospi_update_irq_line(s);
1590 }
1591 
1592 static const MemoryRegionOps ospi_ops = {
1593     .read = register_read_memory,
1594     .write = ospi_write,
1595     .endianness = DEVICE_LITTLE_ENDIAN,
1596     .valid = {
1597         .min_access_size = 4,
1598         .max_access_size = 4,
1599     },
1600 };
1601 
1602 static uint64_t ospi_indac_read(void *opaque, unsigned int size)
1603 {
1604     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1605     uint64_t ret = ospi_rx_sram_read(s, size);
1606 
1607     if (!ospi_ind_op_completed(s->rd_ind_op)) {
1608         ospi_do_ind_read(s);
1609     }
1610     return ret;
1611 }
1612 
1613 static void ospi_indac_write(void *opaque, uint64_t value, unsigned int size)
1614 {
1615     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1616 
1617     g_assert(!s->ind_write_disabled);
1618 
1619     if (!ospi_ind_op_completed(s->wr_ind_op)) {
1620         ospi_tx_sram_write(s, value, size);
1621         ospi_do_indirect_write(s);
1622     } else {
1623         qemu_log_mask(LOG_GUEST_ERROR,
1624             "OSPI wr into indac area while no ongoing indac wr\n");
1625     }
1626 }
1627 
1628 static bool is_inside_indac_range(XlnxVersalOspi *s, hwaddr addr)
1629 {
1630     uint32_t range_start;
1631     uint32_t range_end;
1632 
1633     if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DMA_IF_FLD)) {
1634         return true;
1635     }
1636 
1637     range_start = s->regs[R_IND_AHB_ADDR_TRIGGER_REG];
1638     range_end = range_start +
1639                 (1 << ARRAY_FIELD_EX32(s->regs,
1640                                        INDIRECT_TRIGGER_ADDR_RANGE_REG,
1641                                        IND_RANGE_WIDTH_FLD));
1642 
1643     addr += s->regs[R_IND_AHB_ADDR_TRIGGER_REG] & 0xF0000000;
1644 
1645     return addr >= range_start && addr < range_end;
1646 }
1647 
1648 static bool ospi_is_indac_active(XlnxVersalOspi *s)
1649 {
1650     /*
1651      * When dac and indac cannot be active at the same time,
1652      * return true when dac is disabled.
1653      */
1654     return s->dac_with_indac || !s->dac_enable;
1655 }
1656 
1657 static uint64_t ospi_dac_read(void *opaque, hwaddr addr, unsigned int size)
1658 {
1659     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1660 
1661     if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) {
1662         if (ospi_is_indac_active(s) &&
1663             is_inside_indac_range(s, addr)) {
1664             return ospi_indac_read(s, size);
1665         }
1666         if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DIR_ACC_CTLR_FLD)
1667             && s->dac_enable) {
1668             if (ARRAY_FIELD_EX32(s->regs,
1669                                  CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD)) {
1670                 addr += s->regs[R_REMAP_ADDR_REG];
1671             }
1672             return ospi_do_dac_read(opaque, addr, size);
1673         } else {
1674             qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB rd while DAC disabled\n");
1675         }
1676     } else {
1677         qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB rd while OSPI disabled\n");
1678     }
1679 
1680     return 0;
1681 }
1682 
1683 static void ospi_dac_write(void *opaque, hwaddr addr, uint64_t value,
1684                            unsigned int size)
1685 {
1686     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1687 
1688     if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_SPI_FLD)) {
1689         if (ospi_is_indac_active(s) &&
1690             !s->ind_write_disabled &&
1691             is_inside_indac_range(s, addr)) {
1692             return ospi_indac_write(s, value, size);
1693         }
1694         if (ARRAY_FIELD_EX32(s->regs, CONFIG_REG, ENB_DIR_ACC_CTLR_FLD) &&
1695             s->dac_enable) {
1696             if (ARRAY_FIELD_EX32(s->regs,
1697                                  CONFIG_REG, ENB_AHB_ADDR_REMAP_FLD)) {
1698                 addr += s->regs[R_REMAP_ADDR_REG];
1699             }
1700             /* Check if addr is write protected */
1701             if (ARRAY_FIELD_EX32(s->regs, WR_PROT_CTRL_REG, ENB_FLD) &&
1702                 ospi_is_write_protected(s, addr)) {
1703                 set_irq(s, R_IRQ_STATUS_REG_PROT_WR_ATTEMPT_FLD_MASK);
1704                 ospi_update_irq_line(s);
1705                 qemu_log_mask(LOG_GUEST_ERROR,
1706                               "OSPI writing into write protected area\n");
1707                 return;
1708             }
1709             ospi_do_dac_write(opaque, addr, value, size);
1710         } else {
1711             qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB wr while DAC disabled\n");
1712         }
1713     } else {
1714         qemu_log_mask(LOG_GUEST_ERROR, "OSPI AHB wr while OSPI disabled\n");
1715     }
1716 }
1717 
1718 static const MemoryRegionOps ospi_dac_ops = {
1719     .read = ospi_dac_read,
1720     .write = ospi_dac_write,
1721     .endianness = DEVICE_LITTLE_ENDIAN,
1722     .valid = {
1723         .min_access_size = 4,
1724         .max_access_size = 4,
1725     },
1726 };
1727 
1728 static void ospi_update_dac_status(void *opaque, int n, int level)
1729 {
1730     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(opaque);
1731 
1732     s->dac_enable = level;
1733 }
1734 
1735 static void xlnx_versal_ospi_realize(DeviceState *dev, Error **errp)
1736 {
1737     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(dev);
1738     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1739 
1740     s->num_cs = 4;
1741     s->spi = ssi_create_bus(dev, "spi0");
1742     s->cs_lines = g_new0(qemu_irq, s->num_cs);
1743     for (int i = 0; i < s->num_cs; ++i) {
1744         sysbus_init_irq(sbd, &s->cs_lines[i]);
1745     }
1746 
1747     fifo8_create(&s->rx_fifo, RXFF_SZ);
1748     fifo8_create(&s->tx_fifo, TXFF_SZ);
1749     fifo8_create(&s->rx_sram, RXFF_SZ);
1750     fifo8_create(&s->tx_sram, TXFF_SZ);
1751 }
1752 
1753 static void xlnx_versal_ospi_init(Object *obj)
1754 {
1755     XlnxVersalOspi *s = XILINX_VERSAL_OSPI(obj);
1756     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1757     DeviceState *dev = DEVICE(obj);
1758     RegisterInfoArray *reg_array;
1759 
1760     memory_region_init(&s->iomem, obj, TYPE_XILINX_VERSAL_OSPI,
1761                        XILINX_VERSAL_OSPI_R_MAX * 4);
1762     reg_array =
1763         register_init_block32(DEVICE(obj), ospi_regs_info,
1764                               ARRAY_SIZE(ospi_regs_info),
1765                               s->regs_info, s->regs,
1766                               &ospi_ops,
1767                               XILINX_VERSAL_OSPI_ERR_DEBUG,
1768                               XILINX_VERSAL_OSPI_R_MAX * 4);
1769     memory_region_add_subregion(&s->iomem, 0x0, &reg_array->mem);
1770     sysbus_init_mmio(sbd, &s->iomem);
1771 
1772     memory_region_init_io(&s->iomem_dac, obj, &ospi_dac_ops, s,
1773                           TYPE_XILINX_VERSAL_OSPI "-dac", 0x20000000);
1774     sysbus_init_mmio(sbd, &s->iomem_dac);
1775     /*
1776      * The OSPI DMA reads flash data through the OSPI linear address space (the
1777      * iomem_dac region), because of this the reentrancy guard needs to be
1778      * disabled.
1779      */
1780     s->iomem_dac.disable_reentrancy_guard = true;
1781 
1782     sysbus_init_irq(sbd, &s->irq);
1783 
1784     object_property_add_link(obj, "dma-src", TYPE_XLNX_CSU_DMA,
1785                              (Object **)&s->dma_src,
1786                              object_property_allow_set_link,
1787                              OBJ_PROP_LINK_STRONG);
1788 
1789     qdev_init_gpio_in_named(dev, ospi_update_dac_status, "ospi-mux-sel", 1);
1790 }
1791 
1792 static const VMStateDescription vmstate_ind_op = {
1793     .name = "OSPIIndOp",
1794     .version_id = 1,
1795     .minimum_version_id = 1,
1796     .fields = (const VMStateField[]) {
1797         VMSTATE_UINT32(flash_addr, IndOp),
1798         VMSTATE_UINT32(num_bytes, IndOp),
1799         VMSTATE_UINT32(done_bytes, IndOp),
1800         VMSTATE_BOOL(completed, IndOp),
1801         VMSTATE_END_OF_LIST()
1802     }
1803 };
1804 
1805 static const VMStateDescription vmstate_xlnx_versal_ospi = {
1806     .name = TYPE_XILINX_VERSAL_OSPI,
1807     .version_id = 1,
1808     .minimum_version_id = 1,
1809     .fields = (const VMStateField[]) {
1810         VMSTATE_FIFO8(rx_fifo, XlnxVersalOspi),
1811         VMSTATE_FIFO8(tx_fifo, XlnxVersalOspi),
1812         VMSTATE_FIFO8(rx_sram, XlnxVersalOspi),
1813         VMSTATE_FIFO8(tx_sram, XlnxVersalOspi),
1814         VMSTATE_BOOL(ind_write_disabled, XlnxVersalOspi),
1815         VMSTATE_BOOL(dac_with_indac, XlnxVersalOspi),
1816         VMSTATE_BOOL(dac_enable, XlnxVersalOspi),
1817         VMSTATE_BOOL(src_dma_inprog, XlnxVersalOspi),
1818         VMSTATE_STRUCT_ARRAY(rd_ind_op, XlnxVersalOspi, 2, 1,
1819                              vmstate_ind_op, IndOp),
1820         VMSTATE_STRUCT_ARRAY(wr_ind_op, XlnxVersalOspi, 2, 1,
1821                              vmstate_ind_op, IndOp),
1822         VMSTATE_UINT32_ARRAY(regs, XlnxVersalOspi, XILINX_VERSAL_OSPI_R_MAX),
1823         VMSTATE_UINT8_ARRAY(stig_membank, XlnxVersalOspi, 512),
1824         VMSTATE_END_OF_LIST(),
1825     }
1826 };
1827 
1828 static Property xlnx_versal_ospi_properties[] = {
1829     DEFINE_PROP_BOOL("dac-with-indac", XlnxVersalOspi, dac_with_indac, false),
1830     DEFINE_PROP_BOOL("indac-write-disabled", XlnxVersalOspi,
1831                      ind_write_disabled, false),
1832     DEFINE_PROP_END_OF_LIST(),
1833 };
1834 
1835 static void xlnx_versal_ospi_class_init(ObjectClass *klass, void *data)
1836 {
1837     DeviceClass *dc = DEVICE_CLASS(klass);
1838 
1839     dc->reset = xlnx_versal_ospi_reset;
1840     dc->realize = xlnx_versal_ospi_realize;
1841     dc->vmsd = &vmstate_xlnx_versal_ospi;
1842     device_class_set_props(dc, xlnx_versal_ospi_properties);
1843 }
1844 
1845 static const TypeInfo xlnx_versal_ospi_info = {
1846     .name          = TYPE_XILINX_VERSAL_OSPI,
1847     .parent        = TYPE_SYS_BUS_DEVICE,
1848     .instance_size = sizeof(XlnxVersalOspi),
1849     .class_init    = xlnx_versal_ospi_class_init,
1850     .instance_init = xlnx_versal_ospi_init,
1851 };
1852 
1853 static void xlnx_versal_ospi_register_types(void)
1854 {
1855     type_register_static(&xlnx_versal_ospi_info);
1856 }
1857 
1858 type_init(xlnx_versal_ospi_register_types)
1859