xref: /openbmc/qemu/hw/ssi/xilinx_spips.c (revision d341d9f3)
1 /*
2  * QEMU model of the Xilinx Zynq SPI controller
3  *
4  * Copyright (c) 2012 Peter A. G. Crosthwaite
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "hw/sysbus.h"
26 #include "sysemu/sysemu.h"
27 #include "hw/ptimer.h"
28 #include "qemu/log.h"
29 #include "qemu/fifo8.h"
30 #include "hw/ssi/ssi.h"
31 #include "qemu/bitops.h"
32 #include "hw/ssi/xilinx_spips.h"
33 
34 #ifndef XILINX_SPIPS_ERR_DEBUG
35 #define XILINX_SPIPS_ERR_DEBUG 0
36 #endif
37 
38 #define DB_PRINT_L(level, ...) do { \
39     if (XILINX_SPIPS_ERR_DEBUG > (level)) { \
40         fprintf(stderr,  ": %s: ", __func__); \
41         fprintf(stderr, ## __VA_ARGS__); \
42     } \
43 } while (0);
44 
45 /* config register */
46 #define R_CONFIG            (0x00 / 4)
47 #define IFMODE              (1U << 31)
48 #define ENDIAN              (1 << 26)
49 #define MODEFAIL_GEN_EN     (1 << 17)
50 #define MAN_START_COM       (1 << 16)
51 #define MAN_START_EN        (1 << 15)
52 #define MANUAL_CS           (1 << 14)
53 #define CS                  (0xF << 10)
54 #define CS_SHIFT            (10)
55 #define PERI_SEL            (1 << 9)
56 #define REF_CLK             (1 << 8)
57 #define FIFO_WIDTH          (3 << 6)
58 #define BAUD_RATE_DIV       (7 << 3)
59 #define CLK_PH              (1 << 2)
60 #define CLK_POL             (1 << 1)
61 #define MODE_SEL            (1 << 0)
62 #define R_CONFIG_RSVD       (0x7bf40000)
63 
64 /* interrupt mechanism */
65 #define R_INTR_STATUS       (0x04 / 4)
66 #define R_INTR_EN           (0x08 / 4)
67 #define R_INTR_DIS          (0x0C / 4)
68 #define R_INTR_MASK         (0x10 / 4)
69 #define IXR_TX_FIFO_UNDERFLOW   (1 << 6)
70 #define IXR_RX_FIFO_FULL        (1 << 5)
71 #define IXR_RX_FIFO_NOT_EMPTY   (1 << 4)
72 #define IXR_TX_FIFO_FULL        (1 << 3)
73 #define IXR_TX_FIFO_NOT_FULL    (1 << 2)
74 #define IXR_TX_FIFO_MODE_FAIL   (1 << 1)
75 #define IXR_RX_FIFO_OVERFLOW    (1 << 0)
76 #define IXR_ALL                 ((IXR_TX_FIFO_UNDERFLOW<<1)-1)
77 
78 #define R_EN                (0x14 / 4)
79 #define R_DELAY             (0x18 / 4)
80 #define R_TX_DATA           (0x1C / 4)
81 #define R_RX_DATA           (0x20 / 4)
82 #define R_SLAVE_IDLE_COUNT  (0x24 / 4)
83 #define R_TX_THRES          (0x28 / 4)
84 #define R_RX_THRES          (0x2C / 4)
85 #define R_TXD1              (0x80 / 4)
86 #define R_TXD2              (0x84 / 4)
87 #define R_TXD3              (0x88 / 4)
88 
89 #define R_LQSPI_CFG         (0xa0 / 4)
90 #define R_LQSPI_CFG_RESET       0x03A002EB
91 #define LQSPI_CFG_LQ_MODE       (1U << 31)
92 #define LQSPI_CFG_TWO_MEM       (1 << 30)
93 #define LQSPI_CFG_SEP_BUS       (1 << 30)
94 #define LQSPI_CFG_U_PAGE        (1 << 28)
95 #define LQSPI_CFG_MODE_EN       (1 << 25)
96 #define LQSPI_CFG_MODE_WIDTH    8
97 #define LQSPI_CFG_MODE_SHIFT    16
98 #define LQSPI_CFG_DUMMY_WIDTH   3
99 #define LQSPI_CFG_DUMMY_SHIFT   8
100 #define LQSPI_CFG_INST_CODE     0xFF
101 
102 #define R_LQSPI_STS         (0xA4 / 4)
103 #define LQSPI_STS_WR_RECVD      (1 << 1)
104 
105 #define R_MOD_ID            (0xFC / 4)
106 
107 /* size of TXRX FIFOs */
108 #define RXFF_A          32
109 #define TXFF_A          32
110 
111 #define RXFF_A_Q          (64 * 4)
112 #define TXFF_A_Q          (64 * 4)
113 
114 /* 16MB per linear region */
115 #define LQSPI_ADDRESS_BITS 24
116 /* Bite off 4k chunks at a time */
117 #define LQSPI_CACHE_SIZE 1024
118 
119 #define SNOOP_CHECKING 0xFF
120 #define SNOOP_NONE 0xFE
121 #define SNOOP_STRIPING 0
122 
123 typedef enum {
124     READ = 0x3,
125     FAST_READ = 0xb,
126     DOR = 0x3b,
127     QOR = 0x6b,
128     DIOR = 0xbb,
129     QIOR = 0xeb,
130 
131     PP = 0x2,
132     DPP = 0xa2,
133     QPP = 0x32,
134 } FlashCMD;
135 
136 typedef struct {
137     XilinxSPIPS parent_obj;
138 
139     uint8_t lqspi_buf[LQSPI_CACHE_SIZE];
140     hwaddr lqspi_cached_addr;
141 } XilinxQSPIPS;
142 
143 typedef struct XilinxSPIPSClass {
144     SysBusDeviceClass parent_class;
145 
146     const MemoryRegionOps *reg_ops;
147 
148     uint32_t rx_fifo_size;
149     uint32_t tx_fifo_size;
150 } XilinxSPIPSClass;
151 
152 static inline int num_effective_busses(XilinxSPIPS *s)
153 {
154     return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS &&
155             s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
156 }
157 
158 static inline bool xilinx_spips_cs_is_set(XilinxSPIPS *s, int i, int field)
159 {
160     return ~field & (1 << i) && (s->regs[R_CONFIG] & MANUAL_CS
161                     || !fifo8_is_empty(&s->tx_fifo));
162 }
163 
164 static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
165 {
166     int i, j;
167     bool found = false;
168     int field = s->regs[R_CONFIG] >> CS_SHIFT;
169 
170     for (i = 0; i < s->num_cs; i++) {
171         for (j = 0; j < num_effective_busses(s); j++) {
172             int upage = !!(s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE);
173             int cs_to_set = (j * s->num_cs + i + upage) %
174                                 (s->num_cs * s->num_busses);
175 
176             if (xilinx_spips_cs_is_set(s, i, field) && !found) {
177                 DB_PRINT_L(0, "selecting slave %d\n", i);
178                 qemu_set_irq(s->cs_lines[cs_to_set], 0);
179             } else {
180                 DB_PRINT_L(0, "deselecting slave %d\n", i);
181                 qemu_set_irq(s->cs_lines[cs_to_set], 1);
182             }
183         }
184         if (xilinx_spips_cs_is_set(s, i, field)) {
185             found = true;
186         }
187     }
188     if (!found) {
189         s->snoop_state = SNOOP_CHECKING;
190         DB_PRINT_L(1, "moving to snoop check state\n");
191     }
192 }
193 
194 static void xilinx_spips_update_ixr(XilinxSPIPS *s)
195 {
196     if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE) {
197         return;
198     }
199     /* These are set/cleared as they occur */
200     s->regs[R_INTR_STATUS] &= (IXR_TX_FIFO_UNDERFLOW | IXR_RX_FIFO_OVERFLOW |
201                                 IXR_TX_FIFO_MODE_FAIL);
202     /* these are pure functions of fifo state, set them here */
203     s->regs[R_INTR_STATUS] |=
204         (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
205         (s->rx_fifo.num >= s->regs[R_RX_THRES] ? IXR_RX_FIFO_NOT_EMPTY : 0) |
206         (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
207         (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
208     /* drive external interrupt pin */
209     int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
210                                                                 IXR_ALL);
211     if (new_irqline != s->irqline) {
212         s->irqline = new_irqline;
213         qemu_set_irq(s->irq, s->irqline);
214     }
215 }
216 
217 static void xilinx_spips_reset(DeviceState *d)
218 {
219     XilinxSPIPS *s = XILINX_SPIPS(d);
220 
221     int i;
222     for (i = 0; i < XLNX_SPIPS_R_MAX; i++) {
223         s->regs[i] = 0;
224     }
225 
226     fifo8_reset(&s->rx_fifo);
227     fifo8_reset(&s->rx_fifo);
228     /* non zero resets */
229     s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
230     s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
231     s->regs[R_TX_THRES] = 1;
232     s->regs[R_RX_THRES] = 1;
233     /* FIXME: move magic number definition somewhere sensible */
234     s->regs[R_MOD_ID] = 0x01090106;
235     s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
236     s->snoop_state = SNOOP_CHECKING;
237     xilinx_spips_update_ixr(s);
238     xilinx_spips_update_cs_lines(s);
239 }
240 
241 /* N way (num) in place bit striper. Lay out row wise bits (LSB to MSB)
242  * column wise (from element 0 to N-1). num is the length of x, and dir
243  * reverses the direction of the transform. Best illustrated by example:
244  * Each digit in the below array is a single bit (num == 3):
245  *
246  * {{ 76543210, }  ----- stripe (dir == false) -----> {{ FCheb630, }
247  *  { hgfedcba, }                                      { GDAfc741, }
248  *  { HGFEDCBA, }} <---- upstripe (dir == true) -----  { HEBgda52, }}
249  */
250 
251 static inline void stripe8(uint8_t *x, int num, bool dir)
252 {
253     uint8_t r[num];
254     memset(r, 0, sizeof(uint8_t) * num);
255     int idx[2] = {0, 0};
256     int bit[2] = {0, 0};
257     int d = dir;
258 
259     for (idx[0] = 0; idx[0] < num; ++idx[0]) {
260         for (bit[0] = 0; bit[0] < 8; ++bit[0]) {
261             r[idx[d]] |= x[idx[!d]] & 1 << bit[!d] ? 1 << bit[d] : 0;
262             idx[1] = (idx[1] + 1) % num;
263             if (!idx[1]) {
264                 bit[1]++;
265             }
266         }
267     }
268     memcpy(x, r, sizeof(uint8_t) * num);
269 }
270 
271 static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
272 {
273     int debug_level = 0;
274 
275     for (;;) {
276         int i;
277         uint8_t tx = 0;
278         uint8_t tx_rx[num_effective_busses(s)];
279 
280         if (fifo8_is_empty(&s->tx_fifo)) {
281             if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
282                 s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW;
283             }
284             xilinx_spips_update_ixr(s);
285             return;
286         } else if (s->snoop_state == SNOOP_STRIPING) {
287             for (i = 0; i < num_effective_busses(s); ++i) {
288                 tx_rx[i] = fifo8_pop(&s->tx_fifo);
289             }
290             stripe8(tx_rx, num_effective_busses(s), false);
291         } else {
292             tx = fifo8_pop(&s->tx_fifo);
293             for (i = 0; i < num_effective_busses(s); ++i) {
294                 tx_rx[i] = tx;
295             }
296         }
297 
298         for (i = 0; i < num_effective_busses(s); ++i) {
299             DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]);
300             tx_rx[i] = ssi_transfer(s->spi[i], (uint32_t)tx_rx[i]);
301             DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]);
302         }
303 
304         if (fifo8_is_full(&s->rx_fifo)) {
305             s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
306             DB_PRINT_L(0, "rx FIFO overflow");
307         } else if (s->snoop_state == SNOOP_STRIPING) {
308             stripe8(tx_rx, num_effective_busses(s), true);
309             for (i = 0; i < num_effective_busses(s); ++i) {
310                 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]);
311             }
312         } else {
313            fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]);
314         }
315 
316         DB_PRINT_L(debug_level, "initial snoop state: %x\n",
317                    (unsigned)s->snoop_state);
318         switch (s->snoop_state) {
319         case (SNOOP_CHECKING):
320             switch (tx) { /* new instruction code */
321             case READ: /* 3 address bytes, no dummy bytes/cycles */
322             case PP:
323             case DPP:
324             case QPP:
325                 s->snoop_state = 3;
326                 break;
327             case FAST_READ: /* 3 address bytes, 1 dummy byte */
328             case DOR:
329             case QOR:
330             case DIOR: /* FIXME: these vary between vendor - set to spansion */
331                 s->snoop_state = 4;
332                 break;
333             case QIOR: /* 3 address bytes, 2 dummy bytes */
334                 s->snoop_state = 6;
335                 break;
336             default:
337                 s->snoop_state = SNOOP_NONE;
338             }
339             break;
340         case (SNOOP_STRIPING):
341         case (SNOOP_NONE):
342             /* Once we hit the boring stuff - squelch debug noise */
343             if (!debug_level) {
344                 DB_PRINT_L(0, "squelching debug info ....\n");
345                 debug_level = 1;
346             }
347             break;
348         default:
349             s->snoop_state--;
350         }
351         DB_PRINT_L(debug_level, "final snoop state: %x\n",
352                    (unsigned)s->snoop_state);
353     }
354 }
355 
356 static inline void rx_data_bytes(XilinxSPIPS *s, uint8_t *value, int max)
357 {
358     int i;
359 
360     for (i = 0; i < max && !fifo8_is_empty(&s->rx_fifo); ++i) {
361         value[i] = fifo8_pop(&s->rx_fifo);
362     }
363 }
364 
365 static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
366                                                         unsigned size)
367 {
368     XilinxSPIPS *s = opaque;
369     uint32_t mask = ~0;
370     uint32_t ret;
371     uint8_t rx_buf[4];
372 
373     addr >>= 2;
374     switch (addr) {
375     case R_CONFIG:
376         mask = ~(R_CONFIG_RSVD | MAN_START_COM);
377         break;
378     case R_INTR_STATUS:
379         ret = s->regs[addr] & IXR_ALL;
380         s->regs[addr] = 0;
381         DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
382         return ret;
383     case R_INTR_MASK:
384         mask = IXR_ALL;
385         break;
386     case  R_EN:
387         mask = 0x1;
388         break;
389     case R_SLAVE_IDLE_COUNT:
390         mask = 0xFF;
391         break;
392     case R_MOD_ID:
393         mask = 0x01FFFFFF;
394         break;
395     case R_INTR_EN:
396     case R_INTR_DIS:
397     case R_TX_DATA:
398         mask = 0;
399         break;
400     case R_RX_DATA:
401         memset(rx_buf, 0, sizeof(rx_buf));
402         rx_data_bytes(s, rx_buf, s->num_txrx_bytes);
403         ret = s->regs[R_CONFIG] & ENDIAN ? cpu_to_be32(*(uint32_t *)rx_buf)
404                         : cpu_to_le32(*(uint32_t *)rx_buf);
405         DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
406         xilinx_spips_update_ixr(s);
407         return ret;
408     }
409     DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4,
410                s->regs[addr] & mask);
411     return s->regs[addr] & mask;
412 
413 }
414 
415 static inline void tx_data_bytes(XilinxSPIPS *s, uint32_t value, int num)
416 {
417     int i;
418     for (i = 0; i < num && !fifo8_is_full(&s->tx_fifo); ++i) {
419         if (s->regs[R_CONFIG] & ENDIAN) {
420             fifo8_push(&s->tx_fifo, (uint8_t)(value >> 24));
421             value <<= 8;
422         } else {
423             fifo8_push(&s->tx_fifo, (uint8_t)value);
424             value >>= 8;
425         }
426     }
427 }
428 
429 static void xilinx_spips_write(void *opaque, hwaddr addr,
430                                         uint64_t value, unsigned size)
431 {
432     int mask = ~0;
433     int man_start_com = 0;
434     XilinxSPIPS *s = opaque;
435 
436     DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
437     addr >>= 2;
438     switch (addr) {
439     case R_CONFIG:
440         mask = ~(R_CONFIG_RSVD | MAN_START_COM);
441         if (value & MAN_START_COM) {
442             man_start_com = 1;
443         }
444         break;
445     case R_INTR_STATUS:
446         mask = IXR_ALL;
447         s->regs[R_INTR_STATUS] &= ~(mask & value);
448         goto no_reg_update;
449     case R_INTR_DIS:
450         mask = IXR_ALL;
451         s->regs[R_INTR_MASK] &= ~(mask & value);
452         goto no_reg_update;
453     case R_INTR_EN:
454         mask = IXR_ALL;
455         s->regs[R_INTR_MASK] |= mask & value;
456         goto no_reg_update;
457     case R_EN:
458         mask = 0x1;
459         break;
460     case R_SLAVE_IDLE_COUNT:
461         mask = 0xFF;
462         break;
463     case R_RX_DATA:
464     case R_INTR_MASK:
465     case R_MOD_ID:
466         mask = 0;
467         break;
468     case R_TX_DATA:
469         tx_data_bytes(s, (uint32_t)value, s->num_txrx_bytes);
470         goto no_reg_update;
471     case R_TXD1:
472         tx_data_bytes(s, (uint32_t)value, 1);
473         goto no_reg_update;
474     case R_TXD2:
475         tx_data_bytes(s, (uint32_t)value, 2);
476         goto no_reg_update;
477     case R_TXD3:
478         tx_data_bytes(s, (uint32_t)value, 3);
479         goto no_reg_update;
480     }
481     s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
482 no_reg_update:
483     xilinx_spips_update_cs_lines(s);
484     if ((man_start_com && s->regs[R_CONFIG] & MAN_START_EN) ||
485             (fifo8_is_empty(&s->tx_fifo) && s->regs[R_CONFIG] & MAN_START_EN)) {
486         xilinx_spips_flush_txfifo(s);
487     }
488     xilinx_spips_update_cs_lines(s);
489     xilinx_spips_update_ixr(s);
490 }
491 
492 static const MemoryRegionOps spips_ops = {
493     .read = xilinx_spips_read,
494     .write = xilinx_spips_write,
495     .endianness = DEVICE_LITTLE_ENDIAN,
496 };
497 
498 static void xilinx_qspips_write(void *opaque, hwaddr addr,
499                                 uint64_t value, unsigned size)
500 {
501     XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
502 
503     xilinx_spips_write(opaque, addr, value, size);
504     addr >>= 2;
505 
506     if (addr == R_LQSPI_CFG) {
507         q->lqspi_cached_addr = ~0ULL;
508     }
509 }
510 
511 static const MemoryRegionOps qspips_ops = {
512     .read = xilinx_spips_read,
513     .write = xilinx_qspips_write,
514     .endianness = DEVICE_LITTLE_ENDIAN,
515 };
516 
517 #define LQSPI_CACHE_SIZE 1024
518 
519 static uint64_t
520 lqspi_read(void *opaque, hwaddr addr, unsigned int size)
521 {
522     int i;
523     XilinxQSPIPS *q = opaque;
524     XilinxSPIPS *s = opaque;
525     uint32_t ret;
526 
527     if (addr >= q->lqspi_cached_addr &&
528             addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
529         uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr];
530         ret = cpu_to_le32(*(uint32_t *)retp);
531         DB_PRINT_L(1, "addr: %08x, data: %08x\n", (unsigned)addr,
532                    (unsigned)ret);
533         return ret;
534     } else {
535         int flash_addr = (addr / num_effective_busses(s));
536         int slave = flash_addr >> LQSPI_ADDRESS_BITS;
537         int cache_entry = 0;
538         uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE;
539 
540         s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
541         s->regs[R_LQSPI_STS] |= slave ? LQSPI_CFG_U_PAGE : 0;
542 
543         DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
544 
545         fifo8_reset(&s->tx_fifo);
546         fifo8_reset(&s->rx_fifo);
547 
548         /* instruction */
549         DB_PRINT_L(0, "pushing read instruction: %02x\n",
550                    (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] &
551                                        LQSPI_CFG_INST_CODE));
552         fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
553         /* read address */
554         DB_PRINT_L(0, "pushing read address %06x\n", flash_addr);
555         fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
556         fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
557         fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
558         /* mode bits */
559         if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
560             fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
561                                               LQSPI_CFG_MODE_SHIFT,
562                                               LQSPI_CFG_MODE_WIDTH));
563         }
564         /* dummy bytes */
565         for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
566                                    LQSPI_CFG_DUMMY_WIDTH)); ++i) {
567             DB_PRINT_L(0, "pushing dummy byte\n");
568             fifo8_push(&s->tx_fifo, 0);
569         }
570         xilinx_spips_update_cs_lines(s);
571         xilinx_spips_flush_txfifo(s);
572         fifo8_reset(&s->rx_fifo);
573 
574         DB_PRINT_L(0, "starting QSPI data read\n");
575 
576         while (cache_entry < LQSPI_CACHE_SIZE) {
577             for (i = 0; i < 64; ++i) {
578                 tx_data_bytes(s, 0, 1);
579             }
580             xilinx_spips_flush_txfifo(s);
581             for (i = 0; i < 64; ++i) {
582                 rx_data_bytes(s, &q->lqspi_buf[cache_entry++], 1);
583             }
584         }
585 
586         s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
587         s->regs[R_LQSPI_STS] |= u_page_save;
588         xilinx_spips_update_cs_lines(s);
589 
590         q->lqspi_cached_addr = flash_addr * num_effective_busses(s);
591         return lqspi_read(opaque, addr, size);
592     }
593 }
594 
595 static const MemoryRegionOps lqspi_ops = {
596     .read = lqspi_read,
597     .endianness = DEVICE_NATIVE_ENDIAN,
598     .valid = {
599         .min_access_size = 1,
600         .max_access_size = 4
601     }
602 };
603 
604 static void xilinx_spips_realize(DeviceState *dev, Error **errp)
605 {
606     XilinxSPIPS *s = XILINX_SPIPS(dev);
607     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
608     XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
609     int i;
610 
611     DB_PRINT_L(0, "realized spips\n");
612 
613     s->spi = g_new(SSIBus *, s->num_busses);
614     for (i = 0; i < s->num_busses; ++i) {
615         char bus_name[16];
616         snprintf(bus_name, 16, "spi%d", i);
617         s->spi[i] = ssi_create_bus(dev, bus_name);
618     }
619 
620     s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses);
621     ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[0]);
622     ssi_auto_connect_slaves(DEVICE(s), s->cs_lines, s->spi[1]);
623     sysbus_init_irq(sbd, &s->irq);
624     for (i = 0; i < s->num_cs * s->num_busses; ++i) {
625         sysbus_init_irq(sbd, &s->cs_lines[i]);
626     }
627 
628     memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s,
629                           "spi", XLNX_SPIPS_R_MAX * 4);
630     sysbus_init_mmio(sbd, &s->iomem);
631 
632     s->irqline = -1;
633 
634     fifo8_create(&s->rx_fifo, xsc->rx_fifo_size);
635     fifo8_create(&s->tx_fifo, xsc->tx_fifo_size);
636 }
637 
638 static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
639 {
640     XilinxSPIPS *s = XILINX_SPIPS(dev);
641     XilinxQSPIPS *q = XILINX_QSPIPS(dev);
642     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
643 
644     DB_PRINT_L(0, "realized qspips\n");
645 
646     s->num_busses = 2;
647     s->num_cs = 2;
648     s->num_txrx_bytes = 4;
649 
650     xilinx_spips_realize(dev, errp);
651     memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi",
652                           (1 << LQSPI_ADDRESS_BITS) * 2);
653     sysbus_init_mmio(sbd, &s->mmlqspi);
654 
655     q->lqspi_cached_addr = ~0ULL;
656 }
657 
658 static int xilinx_spips_post_load(void *opaque, int version_id)
659 {
660     xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
661     xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
662     return 0;
663 }
664 
665 static const VMStateDescription vmstate_xilinx_spips = {
666     .name = "xilinx_spips",
667     .version_id = 2,
668     .minimum_version_id = 2,
669     .post_load = xilinx_spips_post_load,
670     .fields = (VMStateField[]) {
671         VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
672         VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
673         VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX),
674         VMSTATE_UINT8(snoop_state, XilinxSPIPS),
675         VMSTATE_END_OF_LIST()
676     }
677 };
678 
679 static Property xilinx_spips_properties[] = {
680     DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
681     DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
682     DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
683     DEFINE_PROP_END_OF_LIST(),
684 };
685 
686 static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
687 {
688     DeviceClass *dc = DEVICE_CLASS(klass);
689     XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
690 
691     dc->realize = xilinx_qspips_realize;
692     xsc->reg_ops = &qspips_ops;
693     xsc->rx_fifo_size = RXFF_A_Q;
694     xsc->tx_fifo_size = TXFF_A_Q;
695 }
696 
697 static void xilinx_spips_class_init(ObjectClass *klass, void *data)
698 {
699     DeviceClass *dc = DEVICE_CLASS(klass);
700     XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
701 
702     dc->realize = xilinx_spips_realize;
703     dc->reset = xilinx_spips_reset;
704     dc->props = xilinx_spips_properties;
705     dc->vmsd = &vmstate_xilinx_spips;
706 
707     xsc->reg_ops = &spips_ops;
708     xsc->rx_fifo_size = RXFF_A;
709     xsc->tx_fifo_size = TXFF_A;
710 }
711 
712 static const TypeInfo xilinx_spips_info = {
713     .name  = TYPE_XILINX_SPIPS,
714     .parent = TYPE_SYS_BUS_DEVICE,
715     .instance_size  = sizeof(XilinxSPIPS),
716     .class_init = xilinx_spips_class_init,
717     .class_size = sizeof(XilinxSPIPSClass),
718 };
719 
720 static const TypeInfo xilinx_qspips_info = {
721     .name  = TYPE_XILINX_QSPIPS,
722     .parent = TYPE_XILINX_SPIPS,
723     .instance_size  = sizeof(XilinxQSPIPS),
724     .class_init = xilinx_qspips_class_init,
725 };
726 
727 static void xilinx_spips_register_types(void)
728 {
729     type_register_static(&xilinx_spips_info);
730     type_register_static(&xilinx_qspips_info);
731 }
732 
733 type_init(xilinx_spips_register_types)
734