1 /* 2 * QEMU model of the Xilinx Zynq SPI controller 3 * 4 * Copyright (c) 2012 Peter A. G. Crosthwaite 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/sysbus.h" 27 #include "hw/irq.h" 28 #include "hw/ptimer.h" 29 #include "hw/qdev-properties.h" 30 #include "qemu/log.h" 31 #include "qemu/module.h" 32 #include "qemu/bitops.h" 33 #include "hw/ssi/xilinx_spips.h" 34 #include "qapi/error.h" 35 #include "hw/register.h" 36 #include "sysemu/dma.h" 37 #include "migration/blocker.h" 38 #include "migration/vmstate.h" 39 40 #ifndef XILINX_SPIPS_ERR_DEBUG 41 #define XILINX_SPIPS_ERR_DEBUG 0 42 #endif 43 44 #define DB_PRINT_L(level, ...) do { \ 45 if (XILINX_SPIPS_ERR_DEBUG > (level)) { \ 46 fprintf(stderr, ": %s: ", __func__); \ 47 fprintf(stderr, ## __VA_ARGS__); \ 48 } \ 49 } while (0) 50 51 /* config register */ 52 #define R_CONFIG (0x00 / 4) 53 #define IFMODE (1U << 31) 54 #define R_CONFIG_ENDIAN (1 << 26) 55 #define MODEFAIL_GEN_EN (1 << 17) 56 #define MAN_START_COM (1 << 16) 57 #define MAN_START_EN (1 << 15) 58 #define MANUAL_CS (1 << 14) 59 #define CS (0xF << 10) 60 #define CS_SHIFT (10) 61 #define PERI_SEL (1 << 9) 62 #define REF_CLK (1 << 8) 63 #define FIFO_WIDTH (3 << 6) 64 #define BAUD_RATE_DIV (7 << 3) 65 #define CLK_PH (1 << 2) 66 #define CLK_POL (1 << 1) 67 #define MODE_SEL (1 << 0) 68 #define R_CONFIG_RSVD (0x7bf40000) 69 70 /* interrupt mechanism */ 71 #define R_INTR_STATUS (0x04 / 4) 72 #define R_INTR_STATUS_RESET (0x104) 73 #define R_INTR_EN (0x08 / 4) 74 #define R_INTR_DIS (0x0C / 4) 75 #define R_INTR_MASK (0x10 / 4) 76 #define IXR_TX_FIFO_UNDERFLOW (1 << 6) 77 /* Poll timeout not implemented */ 78 #define IXR_RX_FIFO_EMPTY (1 << 11) 79 #define IXR_GENERIC_FIFO_FULL (1 << 10) 80 #define IXR_GENERIC_FIFO_NOT_FULL (1 << 9) 81 #define IXR_TX_FIFO_EMPTY (1 << 8) 82 #define IXR_GENERIC_FIFO_EMPTY (1 << 7) 83 #define IXR_RX_FIFO_FULL (1 << 5) 84 #define IXR_RX_FIFO_NOT_EMPTY (1 << 4) 85 #define IXR_TX_FIFO_FULL (1 << 3) 86 #define IXR_TX_FIFO_NOT_FULL (1 << 2) 87 #define IXR_TX_FIFO_MODE_FAIL (1 << 1) 88 #define IXR_RX_FIFO_OVERFLOW (1 << 0) 89 #define IXR_ALL ((1 << 13) - 1) 90 #define GQSPI_IXR_MASK 0xFBE 91 #define IXR_SELF_CLEAR \ 92 (IXR_GENERIC_FIFO_EMPTY \ 93 | IXR_GENERIC_FIFO_FULL \ 94 | IXR_GENERIC_FIFO_NOT_FULL \ 95 | IXR_TX_FIFO_EMPTY \ 96 | IXR_TX_FIFO_FULL \ 97 | IXR_TX_FIFO_NOT_FULL \ 98 | IXR_RX_FIFO_EMPTY \ 99 | IXR_RX_FIFO_FULL \ 100 | IXR_RX_FIFO_NOT_EMPTY) 101 102 #define R_EN (0x14 / 4) 103 #define R_DELAY (0x18 / 4) 104 #define R_TX_DATA (0x1C / 4) 105 #define R_RX_DATA (0x20 / 4) 106 #define R_SLAVE_IDLE_COUNT (0x24 / 4) 107 #define R_TX_THRES (0x28 / 4) 108 #define R_RX_THRES (0x2C / 4) 109 #define R_GPIO (0x30 / 4) 110 #define R_LPBK_DLY_ADJ (0x38 / 4) 111 #define R_LPBK_DLY_ADJ_RESET (0x33) 112 #define R_IOU_TAPDLY_BYPASS (0x3C / 4) 113 #define R_TXD1 (0x80 / 4) 114 #define R_TXD2 (0x84 / 4) 115 #define R_TXD3 (0x88 / 4) 116 117 #define R_LQSPI_CFG (0xa0 / 4) 118 #define R_LQSPI_CFG_RESET 0x03A002EB 119 #define LQSPI_CFG_LQ_MODE (1U << 31) 120 #define LQSPI_CFG_TWO_MEM (1 << 30) 121 #define LQSPI_CFG_SEP_BUS (1 << 29) 122 #define LQSPI_CFG_U_PAGE (1 << 28) 123 #define LQSPI_CFG_ADDR4 (1 << 27) 124 #define LQSPI_CFG_MODE_EN (1 << 25) 125 #define LQSPI_CFG_MODE_WIDTH 8 126 #define LQSPI_CFG_MODE_SHIFT 16 127 #define LQSPI_CFG_DUMMY_WIDTH 3 128 #define LQSPI_CFG_DUMMY_SHIFT 8 129 #define LQSPI_CFG_INST_CODE 0xFF 130 131 #define R_CMND (0xc0 / 4) 132 #define R_CMND_RXFIFO_DRAIN (1 << 19) 133 FIELD(CMND, PARTIAL_BYTE_LEN, 16, 3) 134 #define R_CMND_EXT_ADD (1 << 15) 135 FIELD(CMND, RX_DISCARD, 8, 7) 136 FIELD(CMND, DUMMY_CYCLES, 2, 6) 137 #define R_CMND_DMA_EN (1 << 1) 138 #define R_CMND_PUSH_WAIT (1 << 0) 139 #define R_TRANSFER_SIZE (0xc4 / 4) 140 #define R_LQSPI_STS (0xA4 / 4) 141 #define LQSPI_STS_WR_RECVD (1 << 1) 142 143 #define R_DUMMY_CYCLE_EN (0xC8 / 4) 144 #define R_ECO (0xF8 / 4) 145 #define R_MOD_ID (0xFC / 4) 146 147 #define R_GQSPI_SELECT (0x144 / 4) 148 FIELD(GQSPI_SELECT, GENERIC_QSPI_EN, 0, 1) 149 #define R_GQSPI_ISR (0x104 / 4) 150 #define R_GQSPI_IER (0x108 / 4) 151 #define R_GQSPI_IDR (0x10c / 4) 152 #define R_GQSPI_IMR (0x110 / 4) 153 #define R_GQSPI_IMR_RESET (0xfbe) 154 #define R_GQSPI_TX_THRESH (0x128 / 4) 155 #define R_GQSPI_RX_THRESH (0x12c / 4) 156 #define R_GQSPI_GPIO (0x130 / 4) 157 #define R_GQSPI_LPBK_DLY_ADJ (0x138 / 4) 158 #define R_GQSPI_LPBK_DLY_ADJ_RESET (0x33) 159 #define R_GQSPI_CNFG (0x100 / 4) 160 FIELD(GQSPI_CNFG, MODE_EN, 30, 2) 161 FIELD(GQSPI_CNFG, GEN_FIFO_START_MODE, 29, 1) 162 FIELD(GQSPI_CNFG, GEN_FIFO_START, 28, 1) 163 FIELD(GQSPI_CNFG, ENDIAN, 26, 1) 164 /* Poll timeout not implemented */ 165 FIELD(GQSPI_CNFG, EN_POLL_TIMEOUT, 20, 1) 166 /* QEMU doesnt care about any of these last three */ 167 FIELD(GQSPI_CNFG, BR, 3, 3) 168 FIELD(GQSPI_CNFG, CPH, 2, 1) 169 FIELD(GQSPI_CNFG, CPL, 1, 1) 170 #define R_GQSPI_GEN_FIFO (0x140 / 4) 171 #define R_GQSPI_TXD (0x11c / 4) 172 #define R_GQSPI_RXD (0x120 / 4) 173 #define R_GQSPI_FIFO_CTRL (0x14c / 4) 174 FIELD(GQSPI_FIFO_CTRL, RX_FIFO_RESET, 2, 1) 175 FIELD(GQSPI_FIFO_CTRL, TX_FIFO_RESET, 1, 1) 176 FIELD(GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET, 0, 1) 177 #define R_GQSPI_GFIFO_THRESH (0x150 / 4) 178 #define R_GQSPI_DATA_STS (0x15c / 4) 179 /* We use the snapshot register to hold the core state for the currently 180 * or most recently executed command. So the generic fifo format is defined 181 * for the snapshot register 182 */ 183 #define R_GQSPI_GF_SNAPSHOT (0x160 / 4) 184 FIELD(GQSPI_GF_SNAPSHOT, POLL, 19, 1) 185 FIELD(GQSPI_GF_SNAPSHOT, STRIPE, 18, 1) 186 FIELD(GQSPI_GF_SNAPSHOT, RECIEVE, 17, 1) 187 FIELD(GQSPI_GF_SNAPSHOT, TRANSMIT, 16, 1) 188 FIELD(GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT, 14, 2) 189 FIELD(GQSPI_GF_SNAPSHOT, CHIP_SELECT, 12, 2) 190 FIELD(GQSPI_GF_SNAPSHOT, SPI_MODE, 10, 2) 191 FIELD(GQSPI_GF_SNAPSHOT, EXPONENT, 9, 1) 192 FIELD(GQSPI_GF_SNAPSHOT, DATA_XFER, 8, 1) 193 FIELD(GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA, 0, 8) 194 #define R_GQSPI_MOD_ID (0x1fc / 4) 195 #define R_GQSPI_MOD_ID_RESET (0x10a0000) 196 197 #define R_QSPIDMA_DST_CTRL (0x80c / 4) 198 #define R_QSPIDMA_DST_CTRL_RESET (0x803ffa00) 199 #define R_QSPIDMA_DST_I_MASK (0x820 / 4) 200 #define R_QSPIDMA_DST_I_MASK_RESET (0xfe) 201 #define R_QSPIDMA_DST_CTRL2 (0x824 / 4) 202 #define R_QSPIDMA_DST_CTRL2_RESET (0x081bfff8) 203 204 /* size of TXRX FIFOs */ 205 #define RXFF_A (128) 206 #define TXFF_A (128) 207 208 #define RXFF_A_Q (64 * 4) 209 #define TXFF_A_Q (64 * 4) 210 211 /* 16MB per linear region */ 212 #define LQSPI_ADDRESS_BITS 24 213 214 #define SNOOP_CHECKING 0xFF 215 #define SNOOP_ADDR 0xF0 216 #define SNOOP_NONE 0xEE 217 #define SNOOP_STRIPING 0 218 219 #define MIN_NUM_BUSSES 1 220 #define MAX_NUM_BUSSES 2 221 222 static inline int num_effective_busses(XilinxSPIPS *s) 223 { 224 return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS && 225 s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1; 226 } 227 228 static void xilinx_spips_update_cs(XilinxSPIPS *s, int field) 229 { 230 int i; 231 232 for (i = 0; i < s->num_cs * s->num_busses; i++) { 233 bool old_state = s->cs_lines_state[i]; 234 bool new_state = field & (1 << i); 235 236 if (old_state != new_state) { 237 s->cs_lines_state[i] = new_state; 238 s->rx_discard = ARRAY_FIELD_EX32(s->regs, CMND, RX_DISCARD); 239 DB_PRINT_L(1, "%sselecting slave %d\n", new_state ? "" : "de", i); 240 } 241 qemu_set_irq(s->cs_lines[i], !new_state); 242 } 243 if (!(field & ((1 << (s->num_cs * s->num_busses)) - 1))) { 244 s->snoop_state = SNOOP_CHECKING; 245 s->cmd_dummies = 0; 246 s->link_state = 1; 247 s->link_state_next = 1; 248 s->link_state_next_when = 0; 249 DB_PRINT_L(1, "moving to snoop check state\n"); 250 } 251 } 252 253 static void xlnx_zynqmp_qspips_update_cs_lines(XlnxZynqMPQSPIPS *s) 254 { 255 if (s->regs[R_GQSPI_GF_SNAPSHOT]) { 256 int field = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, CHIP_SELECT); 257 bool upper_cs_sel = field & (1 << 1); 258 bool lower_cs_sel = field & 1; 259 bool bus0_enabled; 260 bool bus1_enabled; 261 uint8_t buses; 262 int cs = 0; 263 264 buses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT); 265 bus0_enabled = buses & 1; 266 bus1_enabled = buses & (1 << 1); 267 268 if (bus0_enabled && bus1_enabled) { 269 if (lower_cs_sel) { 270 cs |= 1; 271 } 272 if (upper_cs_sel) { 273 cs |= 1 << 3; 274 } 275 } else if (bus0_enabled) { 276 if (lower_cs_sel) { 277 cs |= 1; 278 } 279 if (upper_cs_sel) { 280 cs |= 1 << 1; 281 } 282 } else if (bus1_enabled) { 283 if (lower_cs_sel) { 284 cs |= 1 << 2; 285 } 286 if (upper_cs_sel) { 287 cs |= 1 << 3; 288 } 289 } 290 xilinx_spips_update_cs(XILINX_SPIPS(s), cs); 291 } 292 } 293 294 static void xilinx_spips_update_cs_lines(XilinxSPIPS *s) 295 { 296 int field = ~((s->regs[R_CONFIG] & CS) >> CS_SHIFT); 297 298 /* In dual parallel, mirror low CS to both */ 299 if (num_effective_busses(s) == 2) { 300 /* Single bit chip-select for qspi */ 301 field &= 0x1; 302 field |= field << 3; 303 /* Dual stack U-Page */ 304 } else if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM && 305 s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE) { 306 /* Single bit chip-select for qspi */ 307 field &= 0x1; 308 /* change from CS0 to CS1 */ 309 field <<= 1; 310 } 311 /* Auto CS */ 312 if (!(s->regs[R_CONFIG] & MANUAL_CS) && 313 fifo8_is_empty(&s->tx_fifo)) { 314 field = 0; 315 } 316 xilinx_spips_update_cs(s, field); 317 } 318 319 static void xilinx_spips_update_ixr(XilinxSPIPS *s) 320 { 321 if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) { 322 s->regs[R_INTR_STATUS] &= ~IXR_SELF_CLEAR; 323 s->regs[R_INTR_STATUS] |= 324 (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) | 325 (s->rx_fifo.num >= s->regs[R_RX_THRES] ? 326 IXR_RX_FIFO_NOT_EMPTY : 0) | 327 (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) | 328 (fifo8_is_empty(&s->tx_fifo) ? IXR_TX_FIFO_EMPTY : 0) | 329 (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0); 330 } 331 int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] & 332 IXR_ALL); 333 if (new_irqline != s->irqline) { 334 s->irqline = new_irqline; 335 qemu_set_irq(s->irq, s->irqline); 336 } 337 } 338 339 static void xlnx_zynqmp_qspips_update_ixr(XlnxZynqMPQSPIPS *s) 340 { 341 uint32_t gqspi_int; 342 int new_irqline; 343 344 s->regs[R_GQSPI_ISR] &= ~IXR_SELF_CLEAR; 345 s->regs[R_GQSPI_ISR] |= 346 (fifo32_is_empty(&s->fifo_g) ? IXR_GENERIC_FIFO_EMPTY : 0) | 347 (fifo32_is_full(&s->fifo_g) ? IXR_GENERIC_FIFO_FULL : 0) | 348 (s->fifo_g.fifo.num < s->regs[R_GQSPI_GFIFO_THRESH] ? 349 IXR_GENERIC_FIFO_NOT_FULL : 0) | 350 (fifo8_is_empty(&s->rx_fifo_g) ? IXR_RX_FIFO_EMPTY : 0) | 351 (fifo8_is_full(&s->rx_fifo_g) ? IXR_RX_FIFO_FULL : 0) | 352 (s->rx_fifo_g.num >= s->regs[R_GQSPI_RX_THRESH] ? 353 IXR_RX_FIFO_NOT_EMPTY : 0) | 354 (fifo8_is_empty(&s->tx_fifo_g) ? IXR_TX_FIFO_EMPTY : 0) | 355 (fifo8_is_full(&s->tx_fifo_g) ? IXR_TX_FIFO_FULL : 0) | 356 (s->tx_fifo_g.num < s->regs[R_GQSPI_TX_THRESH] ? 357 IXR_TX_FIFO_NOT_FULL : 0); 358 359 /* GQSPI Interrupt Trigger Status */ 360 gqspi_int = (~s->regs[R_GQSPI_IMR]) & s->regs[R_GQSPI_ISR] & GQSPI_IXR_MASK; 361 new_irqline = !!(gqspi_int & IXR_ALL); 362 363 /* drive external interrupt pin */ 364 if (new_irqline != s->gqspi_irqline) { 365 s->gqspi_irqline = new_irqline; 366 qemu_set_irq(XILINX_SPIPS(s)->irq, s->gqspi_irqline); 367 } 368 } 369 370 static void xilinx_spips_reset(DeviceState *d) 371 { 372 XilinxSPIPS *s = XILINX_SPIPS(d); 373 374 memset(s->regs, 0, sizeof(s->regs)); 375 376 fifo8_reset(&s->rx_fifo); 377 fifo8_reset(&s->rx_fifo); 378 /* non zero resets */ 379 s->regs[R_CONFIG] |= MODEFAIL_GEN_EN; 380 s->regs[R_SLAVE_IDLE_COUNT] = 0xFF; 381 s->regs[R_TX_THRES] = 1; 382 s->regs[R_RX_THRES] = 1; 383 /* FIXME: move magic number definition somewhere sensible */ 384 s->regs[R_MOD_ID] = 0x01090106; 385 s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET; 386 s->link_state = 1; 387 s->link_state_next = 1; 388 s->link_state_next_when = 0; 389 s->snoop_state = SNOOP_CHECKING; 390 s->cmd_dummies = 0; 391 s->man_start_com = false; 392 xilinx_spips_update_ixr(s); 393 xilinx_spips_update_cs_lines(s); 394 } 395 396 static void xlnx_zynqmp_qspips_reset(DeviceState *d) 397 { 398 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(d); 399 400 xilinx_spips_reset(d); 401 402 memset(s->regs, 0, sizeof(s->regs)); 403 404 fifo8_reset(&s->rx_fifo_g); 405 fifo8_reset(&s->rx_fifo_g); 406 fifo32_reset(&s->fifo_g); 407 s->regs[R_INTR_STATUS] = R_INTR_STATUS_RESET; 408 s->regs[R_GPIO] = 1; 409 s->regs[R_LPBK_DLY_ADJ] = R_LPBK_DLY_ADJ_RESET; 410 s->regs[R_GQSPI_GFIFO_THRESH] = 0x10; 411 s->regs[R_MOD_ID] = 0x01090101; 412 s->regs[R_GQSPI_IMR] = R_GQSPI_IMR_RESET; 413 s->regs[R_GQSPI_TX_THRESH] = 1; 414 s->regs[R_GQSPI_RX_THRESH] = 1; 415 s->regs[R_GQSPI_GPIO] = 1; 416 s->regs[R_GQSPI_LPBK_DLY_ADJ] = R_GQSPI_LPBK_DLY_ADJ_RESET; 417 s->regs[R_GQSPI_MOD_ID] = R_GQSPI_MOD_ID_RESET; 418 s->regs[R_QSPIDMA_DST_CTRL] = R_QSPIDMA_DST_CTRL_RESET; 419 s->regs[R_QSPIDMA_DST_I_MASK] = R_QSPIDMA_DST_I_MASK_RESET; 420 s->regs[R_QSPIDMA_DST_CTRL2] = R_QSPIDMA_DST_CTRL2_RESET; 421 s->man_start_com_g = false; 422 s->gqspi_irqline = 0; 423 xlnx_zynqmp_qspips_update_ixr(s); 424 } 425 426 /* N way (num) in place bit striper. Lay out row wise bits (MSB to LSB) 427 * column wise (from element 0 to N-1). num is the length of x, and dir 428 * reverses the direction of the transform. Best illustrated by example: 429 * Each digit in the below array is a single bit (num == 3): 430 * 431 * {{ 76543210, } ----- stripe (dir == false) -----> {{ 741gdaFC, } 432 * { hgfedcba, } { 630fcHEB, } 433 * { HGFEDCBA, }} <---- upstripe (dir == true) ----- { 52hebGDA, }} 434 */ 435 436 static inline void stripe8(uint8_t *x, int num, bool dir) 437 { 438 uint8_t r[MAX_NUM_BUSSES]; 439 int idx[2] = {0, 0}; 440 int bit[2] = {0, 7}; 441 int d = dir; 442 443 assert(num <= MAX_NUM_BUSSES); 444 memset(r, 0, sizeof(uint8_t) * num); 445 446 for (idx[0] = 0; idx[0] < num; ++idx[0]) { 447 for (bit[0] = 7; bit[0] >= 0; bit[0]--) { 448 r[idx[!d]] |= x[idx[d]] & 1 << bit[d] ? 1 << bit[!d] : 0; 449 idx[1] = (idx[1] + 1) % num; 450 if (!idx[1]) { 451 bit[1]--; 452 } 453 } 454 } 455 memcpy(x, r, sizeof(uint8_t) * num); 456 } 457 458 static void xlnx_zynqmp_qspips_flush_fifo_g(XlnxZynqMPQSPIPS *s) 459 { 460 while (s->regs[R_GQSPI_DATA_STS] || !fifo32_is_empty(&s->fifo_g)) { 461 uint8_t tx_rx[2] = { 0 }; 462 int num_stripes = 1; 463 uint8_t busses; 464 int i; 465 466 if (!s->regs[R_GQSPI_DATA_STS]) { 467 uint8_t imm; 468 469 s->regs[R_GQSPI_GF_SNAPSHOT] = fifo32_pop(&s->fifo_g); 470 DB_PRINT_L(0, "GQSPI command: %x\n", s->regs[R_GQSPI_GF_SNAPSHOT]); 471 if (!s->regs[R_GQSPI_GF_SNAPSHOT]) { 472 DB_PRINT_L(0, "Dummy GQSPI Delay Command Entry, Do nothing"); 473 continue; 474 } 475 xlnx_zynqmp_qspips_update_cs_lines(s); 476 477 imm = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA); 478 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) { 479 /* immedate transfer */ 480 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) || 481 ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) { 482 s->regs[R_GQSPI_DATA_STS] = 1; 483 /* CS setup/hold - do nothing */ 484 } else { 485 s->regs[R_GQSPI_DATA_STS] = 0; 486 } 487 } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, EXPONENT)) { 488 if (imm > 31) { 489 qemu_log_mask(LOG_UNIMP, "QSPI exponential transfer too" 490 " long - 2 ^ %" PRId8 " requested\n", imm); 491 } 492 s->regs[R_GQSPI_DATA_STS] = 1ul << imm; 493 } else { 494 s->regs[R_GQSPI_DATA_STS] = imm; 495 } 496 } 497 /* Zero length transfer check */ 498 if (!s->regs[R_GQSPI_DATA_STS]) { 499 continue; 500 } 501 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE) && 502 fifo8_is_full(&s->rx_fifo_g)) { 503 /* No space in RX fifo for transfer - try again later */ 504 return; 505 } 506 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, STRIPE) && 507 (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) || 508 ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE))) { 509 num_stripes = 2; 510 } 511 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) { 512 tx_rx[0] = ARRAY_FIELD_EX32(s->regs, 513 GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA); 514 } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT)) { 515 for (i = 0; i < num_stripes; ++i) { 516 if (!fifo8_is_empty(&s->tx_fifo_g)) { 517 tx_rx[i] = fifo8_pop(&s->tx_fifo_g); 518 s->tx_fifo_g_align++; 519 } else { 520 return; 521 } 522 } 523 } 524 if (num_stripes == 1) { 525 /* mirror */ 526 tx_rx[1] = tx_rx[0]; 527 } 528 busses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT); 529 for (i = 0; i < 2; ++i) { 530 DB_PRINT_L(1, "bus %d tx = %02x\n", i, tx_rx[i]); 531 tx_rx[i] = ssi_transfer(XILINX_SPIPS(s)->spi[i], tx_rx[i]); 532 DB_PRINT_L(1, "bus %d rx = %02x\n", i, tx_rx[i]); 533 } 534 if (s->regs[R_GQSPI_DATA_STS] > 1 && 535 busses == 0x3 && num_stripes == 2) { 536 s->regs[R_GQSPI_DATA_STS] -= 2; 537 } else if (s->regs[R_GQSPI_DATA_STS] > 0) { 538 s->regs[R_GQSPI_DATA_STS]--; 539 } 540 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) { 541 for (i = 0; i < 2; ++i) { 542 if (busses & (1 << i)) { 543 DB_PRINT_L(1, "bus %d push_byte = %02x\n", i, tx_rx[i]); 544 fifo8_push(&s->rx_fifo_g, tx_rx[i]); 545 s->rx_fifo_g_align++; 546 } 547 } 548 } 549 if (!s->regs[R_GQSPI_DATA_STS]) { 550 for (; s->tx_fifo_g_align % 4; s->tx_fifo_g_align++) { 551 fifo8_pop(&s->tx_fifo_g); 552 } 553 for (; s->rx_fifo_g_align % 4; s->rx_fifo_g_align++) { 554 fifo8_push(&s->rx_fifo_g, 0); 555 } 556 } 557 } 558 } 559 560 static int xilinx_spips_num_dummies(XilinxQSPIPS *qs, uint8_t command) 561 { 562 if (!qs) { 563 /* The SPI device is not a QSPI device */ 564 return -1; 565 } 566 567 switch (command) { /* check for dummies */ 568 case READ: /* no dummy bytes/cycles */ 569 case PP: 570 case DPP: 571 case QPP: 572 case READ_4: 573 case PP_4: 574 case QPP_4: 575 return 0; 576 case FAST_READ: 577 case DOR: 578 case QOR: 579 case DOR_4: 580 case QOR_4: 581 return 1; 582 case DIOR: 583 case FAST_READ_4: 584 case DIOR_4: 585 return 2; 586 case QIOR: 587 case QIOR_4: 588 return 4; 589 default: 590 return -1; 591 } 592 } 593 594 static inline uint8_t get_addr_length(XilinxSPIPS *s, uint8_t cmd) 595 { 596 switch (cmd) { 597 case PP_4: 598 case QPP_4: 599 case READ_4: 600 case QIOR_4: 601 case FAST_READ_4: 602 case DOR_4: 603 case QOR_4: 604 case DIOR_4: 605 return 4; 606 default: 607 return (s->regs[R_CMND] & R_CMND_EXT_ADD) ? 4 : 3; 608 } 609 } 610 611 static void xilinx_spips_flush_txfifo(XilinxSPIPS *s) 612 { 613 int debug_level = 0; 614 XilinxQSPIPS *q = (XilinxQSPIPS *) object_dynamic_cast(OBJECT(s), 615 TYPE_XILINX_QSPIPS); 616 617 for (;;) { 618 int i; 619 uint8_t tx = 0; 620 uint8_t tx_rx[MAX_NUM_BUSSES] = { 0 }; 621 uint8_t dummy_cycles = 0; 622 uint8_t addr_length; 623 624 if (fifo8_is_empty(&s->tx_fifo)) { 625 xilinx_spips_update_ixr(s); 626 return; 627 } else if (s->snoop_state == SNOOP_STRIPING || 628 s->snoop_state == SNOOP_NONE) { 629 for (i = 0; i < num_effective_busses(s); ++i) { 630 tx_rx[i] = fifo8_pop(&s->tx_fifo); 631 } 632 stripe8(tx_rx, num_effective_busses(s), false); 633 } else if (s->snoop_state >= SNOOP_ADDR) { 634 tx = fifo8_pop(&s->tx_fifo); 635 for (i = 0; i < num_effective_busses(s); ++i) { 636 tx_rx[i] = tx; 637 } 638 } else { 639 /* Extract a dummy byte and generate dummy cycles according to the 640 * link state */ 641 tx = fifo8_pop(&s->tx_fifo); 642 dummy_cycles = 8 / s->link_state; 643 } 644 645 for (i = 0; i < num_effective_busses(s); ++i) { 646 int bus = num_effective_busses(s) - 1 - i; 647 if (dummy_cycles) { 648 int d; 649 for (d = 0; d < dummy_cycles; ++d) { 650 tx_rx[0] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[0]); 651 } 652 } else { 653 DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]); 654 tx_rx[i] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[i]); 655 DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]); 656 } 657 } 658 659 if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) { 660 DB_PRINT_L(debug_level, "dircarding drained rx byte\n"); 661 /* Do nothing */ 662 } else if (s->rx_discard) { 663 DB_PRINT_L(debug_level, "dircarding discarded rx byte\n"); 664 s->rx_discard -= 8 / s->link_state; 665 } else if (fifo8_is_full(&s->rx_fifo)) { 666 s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW; 667 DB_PRINT_L(0, "rx FIFO overflow"); 668 } else if (s->snoop_state == SNOOP_STRIPING) { 669 stripe8(tx_rx, num_effective_busses(s), true); 670 for (i = 0; i < num_effective_busses(s); ++i) { 671 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]); 672 DB_PRINT_L(debug_level, "pushing striped rx byte\n"); 673 } 674 } else { 675 DB_PRINT_L(debug_level, "pushing unstriped rx byte\n"); 676 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]); 677 } 678 679 if (s->link_state_next_when) { 680 s->link_state_next_when--; 681 if (!s->link_state_next_when) { 682 s->link_state = s->link_state_next; 683 } 684 } 685 686 DB_PRINT_L(debug_level, "initial snoop state: %x\n", 687 (unsigned)s->snoop_state); 688 switch (s->snoop_state) { 689 case (SNOOP_CHECKING): 690 /* Store the count of dummy bytes in the txfifo */ 691 s->cmd_dummies = xilinx_spips_num_dummies(q, tx); 692 addr_length = get_addr_length(s, tx); 693 if (s->cmd_dummies < 0) { 694 s->snoop_state = SNOOP_NONE; 695 } else { 696 s->snoop_state = SNOOP_ADDR + addr_length - 1; 697 } 698 switch (tx) { 699 case DPP: 700 case DOR: 701 case DOR_4: 702 s->link_state_next = 2; 703 s->link_state_next_when = addr_length + s->cmd_dummies; 704 break; 705 case QPP: 706 case QPP_4: 707 case QOR: 708 case QOR_4: 709 s->link_state_next = 4; 710 s->link_state_next_when = addr_length + s->cmd_dummies; 711 break; 712 case DIOR: 713 case DIOR_4: 714 s->link_state = 2; 715 break; 716 case QIOR: 717 case QIOR_4: 718 s->link_state = 4; 719 break; 720 } 721 break; 722 case (SNOOP_ADDR): 723 /* Address has been transmitted, transmit dummy cycles now if 724 * needed */ 725 if (s->cmd_dummies < 0) { 726 s->snoop_state = SNOOP_NONE; 727 } else { 728 s->snoop_state = s->cmd_dummies; 729 } 730 break; 731 case (SNOOP_STRIPING): 732 case (SNOOP_NONE): 733 /* Once we hit the boring stuff - squelch debug noise */ 734 if (!debug_level) { 735 DB_PRINT_L(0, "squelching debug info ....\n"); 736 debug_level = 1; 737 } 738 break; 739 default: 740 s->snoop_state--; 741 } 742 DB_PRINT_L(debug_level, "final snoop state: %x\n", 743 (unsigned)s->snoop_state); 744 } 745 } 746 747 static inline void tx_data_bytes(Fifo8 *fifo, uint32_t value, int num, bool be) 748 { 749 int i; 750 for (i = 0; i < num && !fifo8_is_full(fifo); ++i) { 751 if (be) { 752 fifo8_push(fifo, (uint8_t)(value >> 24)); 753 value <<= 8; 754 } else { 755 fifo8_push(fifo, (uint8_t)value); 756 value >>= 8; 757 } 758 } 759 } 760 761 static void xilinx_spips_check_zero_pump(XilinxSPIPS *s) 762 { 763 if (!s->regs[R_TRANSFER_SIZE]) { 764 return; 765 } 766 if (!fifo8_is_empty(&s->tx_fifo) && s->regs[R_CMND] & R_CMND_PUSH_WAIT) { 767 return; 768 } 769 /* 770 * The zero pump must never fill tx fifo such that rx overflow is 771 * possible 772 */ 773 while (s->regs[R_TRANSFER_SIZE] && 774 s->rx_fifo.num + s->tx_fifo.num < RXFF_A_Q - 3) { 775 /* endianess just doesn't matter when zero pumping */ 776 tx_data_bytes(&s->tx_fifo, 0, 4, false); 777 s->regs[R_TRANSFER_SIZE] &= ~0x03ull; 778 s->regs[R_TRANSFER_SIZE] -= 4; 779 } 780 } 781 782 static void xilinx_spips_check_flush(XilinxSPIPS *s) 783 { 784 if (s->man_start_com || 785 (!fifo8_is_empty(&s->tx_fifo) && 786 !(s->regs[R_CONFIG] & MAN_START_EN))) { 787 xilinx_spips_check_zero_pump(s); 788 xilinx_spips_flush_txfifo(s); 789 } 790 if (fifo8_is_empty(&s->tx_fifo) && !s->regs[R_TRANSFER_SIZE]) { 791 s->man_start_com = false; 792 } 793 xilinx_spips_update_ixr(s); 794 } 795 796 static void xlnx_zynqmp_qspips_check_flush(XlnxZynqMPQSPIPS *s) 797 { 798 bool gqspi_has_work = s->regs[R_GQSPI_DATA_STS] || 799 !fifo32_is_empty(&s->fifo_g); 800 801 if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) { 802 if (s->man_start_com_g || (gqspi_has_work && 803 !ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE))) { 804 xlnx_zynqmp_qspips_flush_fifo_g(s); 805 } 806 } else { 807 xilinx_spips_check_flush(XILINX_SPIPS(s)); 808 } 809 if (!gqspi_has_work) { 810 s->man_start_com_g = false; 811 } 812 xlnx_zynqmp_qspips_update_ixr(s); 813 } 814 815 static inline int rx_data_bytes(Fifo8 *fifo, uint8_t *value, int max) 816 { 817 int i; 818 819 for (i = 0; i < max && !fifo8_is_empty(fifo); ++i) { 820 value[i] = fifo8_pop(fifo); 821 } 822 return max - i; 823 } 824 825 static const void *pop_buf(Fifo8 *fifo, uint32_t max, uint32_t *num) 826 { 827 void *ret; 828 829 if (max == 0 || max > fifo->num) { 830 abort(); 831 } 832 *num = MIN(fifo->capacity - fifo->head, max); 833 ret = &fifo->data[fifo->head]; 834 fifo->head += *num; 835 fifo->head %= fifo->capacity; 836 fifo->num -= *num; 837 return ret; 838 } 839 840 static void xlnx_zynqmp_qspips_notify(void *opaque) 841 { 842 XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(opaque); 843 XilinxSPIPS *s = XILINX_SPIPS(rq); 844 Fifo8 *recv_fifo; 845 846 if (ARRAY_FIELD_EX32(rq->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) { 847 if (!(ARRAY_FIELD_EX32(rq->regs, GQSPI_CNFG, MODE_EN) == 2)) { 848 return; 849 } 850 recv_fifo = &rq->rx_fifo_g; 851 } else { 852 if (!(s->regs[R_CMND] & R_CMND_DMA_EN)) { 853 return; 854 } 855 recv_fifo = &s->rx_fifo; 856 } 857 while (recv_fifo->num >= 4 858 && stream_can_push(rq->dma, xlnx_zynqmp_qspips_notify, rq)) 859 { 860 size_t ret; 861 uint32_t num; 862 const void *rxd; 863 int len; 864 865 len = recv_fifo->num >= rq->dma_burst_size ? rq->dma_burst_size : 866 recv_fifo->num; 867 rxd = pop_buf(recv_fifo, len, &num); 868 869 memcpy(rq->dma_buf, rxd, num); 870 871 ret = stream_push(rq->dma, rq->dma_buf, num); 872 assert(ret == num); 873 xlnx_zynqmp_qspips_check_flush(rq); 874 } 875 } 876 877 static uint64_t xilinx_spips_read(void *opaque, hwaddr addr, 878 unsigned size) 879 { 880 XilinxSPIPS *s = opaque; 881 uint32_t mask = ~0; 882 uint32_t ret; 883 uint8_t rx_buf[4]; 884 int shortfall; 885 886 addr >>= 2; 887 switch (addr) { 888 case R_CONFIG: 889 mask = ~(R_CONFIG_RSVD | MAN_START_COM); 890 break; 891 case R_INTR_STATUS: 892 ret = s->regs[addr] & IXR_ALL; 893 s->regs[addr] = 0; 894 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret); 895 xilinx_spips_update_ixr(s); 896 return ret; 897 case R_INTR_MASK: 898 mask = IXR_ALL; 899 break; 900 case R_EN: 901 mask = 0x1; 902 break; 903 case R_SLAVE_IDLE_COUNT: 904 mask = 0xFF; 905 break; 906 case R_MOD_ID: 907 mask = 0x01FFFFFF; 908 break; 909 case R_INTR_EN: 910 case R_INTR_DIS: 911 case R_TX_DATA: 912 mask = 0; 913 break; 914 case R_RX_DATA: 915 memset(rx_buf, 0, sizeof(rx_buf)); 916 shortfall = rx_data_bytes(&s->rx_fifo, rx_buf, s->num_txrx_bytes); 917 ret = s->regs[R_CONFIG] & R_CONFIG_ENDIAN ? 918 cpu_to_be32(*(uint32_t *)rx_buf) : 919 cpu_to_le32(*(uint32_t *)rx_buf); 920 if (!(s->regs[R_CONFIG] & R_CONFIG_ENDIAN)) { 921 ret <<= 8 * shortfall; 922 } 923 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret); 924 xilinx_spips_check_flush(s); 925 xilinx_spips_update_ixr(s); 926 return ret; 927 } 928 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, 929 s->regs[addr] & mask); 930 return s->regs[addr] & mask; 931 932 } 933 934 static uint64_t xlnx_zynqmp_qspips_read(void *opaque, 935 hwaddr addr, unsigned size) 936 { 937 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque); 938 uint32_t reg = addr / 4; 939 uint32_t ret; 940 uint8_t rx_buf[4]; 941 int shortfall; 942 943 if (reg <= R_MOD_ID) { 944 return xilinx_spips_read(opaque, addr, size); 945 } else { 946 switch (reg) { 947 case R_GQSPI_RXD: 948 if (fifo8_is_empty(&s->rx_fifo_g)) { 949 qemu_log_mask(LOG_GUEST_ERROR, 950 "Read from empty GQSPI RX FIFO\n"); 951 return 0; 952 } 953 memset(rx_buf, 0, sizeof(rx_buf)); 954 shortfall = rx_data_bytes(&s->rx_fifo_g, rx_buf, 955 XILINX_SPIPS(s)->num_txrx_bytes); 956 ret = ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN) ? 957 cpu_to_be32(*(uint32_t *)rx_buf) : 958 cpu_to_le32(*(uint32_t *)rx_buf); 959 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)) { 960 ret <<= 8 * shortfall; 961 } 962 xlnx_zynqmp_qspips_check_flush(s); 963 xlnx_zynqmp_qspips_update_ixr(s); 964 return ret; 965 default: 966 return s->regs[reg]; 967 } 968 } 969 } 970 971 static void xilinx_spips_write(void *opaque, hwaddr addr, 972 uint64_t value, unsigned size) 973 { 974 int mask = ~0; 975 XilinxSPIPS *s = opaque; 976 bool try_flush = true; 977 978 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value); 979 addr >>= 2; 980 switch (addr) { 981 case R_CONFIG: 982 mask = ~(R_CONFIG_RSVD | MAN_START_COM); 983 if ((value & MAN_START_COM) && (s->regs[R_CONFIG] & MAN_START_EN)) { 984 s->man_start_com = true; 985 } 986 break; 987 case R_INTR_STATUS: 988 mask = IXR_ALL; 989 s->regs[R_INTR_STATUS] &= ~(mask & value); 990 goto no_reg_update; 991 case R_INTR_DIS: 992 mask = IXR_ALL; 993 s->regs[R_INTR_MASK] &= ~(mask & value); 994 goto no_reg_update; 995 case R_INTR_EN: 996 mask = IXR_ALL; 997 s->regs[R_INTR_MASK] |= mask & value; 998 goto no_reg_update; 999 case R_EN: 1000 mask = 0x1; 1001 break; 1002 case R_SLAVE_IDLE_COUNT: 1003 mask = 0xFF; 1004 break; 1005 case R_RX_DATA: 1006 case R_INTR_MASK: 1007 case R_MOD_ID: 1008 mask = 0; 1009 break; 1010 case R_TX_DATA: 1011 tx_data_bytes(&s->tx_fifo, (uint32_t)value, s->num_txrx_bytes, 1012 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 1013 goto no_reg_update; 1014 case R_TXD1: 1015 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 1, 1016 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 1017 goto no_reg_update; 1018 case R_TXD2: 1019 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 2, 1020 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 1021 goto no_reg_update; 1022 case R_TXD3: 1023 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 3, 1024 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 1025 goto no_reg_update; 1026 /* Skip SPI bus update for below registers writes */ 1027 case R_GPIO: 1028 case R_LPBK_DLY_ADJ: 1029 case R_IOU_TAPDLY_BYPASS: 1030 case R_DUMMY_CYCLE_EN: 1031 case R_ECO: 1032 try_flush = false; 1033 break; 1034 } 1035 s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask); 1036 no_reg_update: 1037 if (try_flush) { 1038 xilinx_spips_update_cs_lines(s); 1039 xilinx_spips_check_flush(s); 1040 xilinx_spips_update_cs_lines(s); 1041 xilinx_spips_update_ixr(s); 1042 } 1043 } 1044 1045 static const MemoryRegionOps spips_ops = { 1046 .read = xilinx_spips_read, 1047 .write = xilinx_spips_write, 1048 .endianness = DEVICE_LITTLE_ENDIAN, 1049 }; 1050 1051 static void xilinx_qspips_invalidate_mmio_ptr(XilinxQSPIPS *q) 1052 { 1053 q->lqspi_cached_addr = ~0ULL; 1054 } 1055 1056 static void xilinx_qspips_write(void *opaque, hwaddr addr, 1057 uint64_t value, unsigned size) 1058 { 1059 XilinxQSPIPS *q = XILINX_QSPIPS(opaque); 1060 XilinxSPIPS *s = XILINX_SPIPS(opaque); 1061 1062 xilinx_spips_write(opaque, addr, value, size); 1063 addr >>= 2; 1064 1065 if (addr == R_LQSPI_CFG) { 1066 xilinx_qspips_invalidate_mmio_ptr(q); 1067 } 1068 if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) { 1069 fifo8_reset(&s->rx_fifo); 1070 } 1071 } 1072 1073 static void xlnx_zynqmp_qspips_write(void *opaque, hwaddr addr, 1074 uint64_t value, unsigned size) 1075 { 1076 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque); 1077 uint32_t reg = addr / 4; 1078 1079 if (reg <= R_MOD_ID) { 1080 xilinx_qspips_write(opaque, addr, value, size); 1081 } else { 1082 switch (reg) { 1083 case R_GQSPI_CNFG: 1084 if (FIELD_EX32(value, GQSPI_CNFG, GEN_FIFO_START) && 1085 ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE)) { 1086 s->man_start_com_g = true; 1087 } 1088 s->regs[reg] = value & ~(R_GQSPI_CNFG_GEN_FIFO_START_MASK); 1089 break; 1090 case R_GQSPI_GEN_FIFO: 1091 if (!fifo32_is_full(&s->fifo_g)) { 1092 fifo32_push(&s->fifo_g, value); 1093 } 1094 break; 1095 case R_GQSPI_TXD: 1096 tx_data_bytes(&s->tx_fifo_g, (uint32_t)value, 4, 1097 ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)); 1098 break; 1099 case R_GQSPI_FIFO_CTRL: 1100 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET)) { 1101 fifo32_reset(&s->fifo_g); 1102 } 1103 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, TX_FIFO_RESET)) { 1104 fifo8_reset(&s->tx_fifo_g); 1105 } 1106 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, RX_FIFO_RESET)) { 1107 fifo8_reset(&s->rx_fifo_g); 1108 } 1109 break; 1110 case R_GQSPI_IDR: 1111 s->regs[R_GQSPI_IMR] |= value; 1112 break; 1113 case R_GQSPI_IER: 1114 s->regs[R_GQSPI_IMR] &= ~value; 1115 break; 1116 case R_GQSPI_ISR: 1117 s->regs[R_GQSPI_ISR] &= ~value; 1118 break; 1119 case R_GQSPI_IMR: 1120 case R_GQSPI_RXD: 1121 case R_GQSPI_GF_SNAPSHOT: 1122 case R_GQSPI_MOD_ID: 1123 break; 1124 default: 1125 s->regs[reg] = value; 1126 break; 1127 } 1128 xlnx_zynqmp_qspips_update_cs_lines(s); 1129 xlnx_zynqmp_qspips_check_flush(s); 1130 xlnx_zynqmp_qspips_update_cs_lines(s); 1131 xlnx_zynqmp_qspips_update_ixr(s); 1132 } 1133 xlnx_zynqmp_qspips_notify(s); 1134 } 1135 1136 static const MemoryRegionOps qspips_ops = { 1137 .read = xilinx_spips_read, 1138 .write = xilinx_qspips_write, 1139 .endianness = DEVICE_LITTLE_ENDIAN, 1140 }; 1141 1142 static const MemoryRegionOps xlnx_zynqmp_qspips_ops = { 1143 .read = xlnx_zynqmp_qspips_read, 1144 .write = xlnx_zynqmp_qspips_write, 1145 .endianness = DEVICE_LITTLE_ENDIAN, 1146 }; 1147 1148 #define LQSPI_CACHE_SIZE 1024 1149 1150 static void lqspi_load_cache(void *opaque, hwaddr addr) 1151 { 1152 XilinxQSPIPS *q = opaque; 1153 XilinxSPIPS *s = opaque; 1154 int i; 1155 int flash_addr = ((addr & ~(LQSPI_CACHE_SIZE - 1)) 1156 / num_effective_busses(s)); 1157 int slave = flash_addr >> LQSPI_ADDRESS_BITS; 1158 int cache_entry = 0; 1159 uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE; 1160 1161 if (addr < q->lqspi_cached_addr || 1162 addr > q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) { 1163 xilinx_qspips_invalidate_mmio_ptr(q); 1164 s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE; 1165 s->regs[R_LQSPI_STS] |= slave ? LQSPI_CFG_U_PAGE : 0; 1166 1167 DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]); 1168 1169 fifo8_reset(&s->tx_fifo); 1170 fifo8_reset(&s->rx_fifo); 1171 1172 /* instruction */ 1173 DB_PRINT_L(0, "pushing read instruction: %02x\n", 1174 (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] & 1175 LQSPI_CFG_INST_CODE)); 1176 fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE); 1177 /* read address */ 1178 DB_PRINT_L(0, "pushing read address %06x\n", flash_addr); 1179 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_ADDR4) { 1180 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 24)); 1181 } 1182 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16)); 1183 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8)); 1184 fifo8_push(&s->tx_fifo, (uint8_t)flash_addr); 1185 /* mode bits */ 1186 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) { 1187 fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG], 1188 LQSPI_CFG_MODE_SHIFT, 1189 LQSPI_CFG_MODE_WIDTH)); 1190 } 1191 /* dummy bytes */ 1192 for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT, 1193 LQSPI_CFG_DUMMY_WIDTH)); ++i) { 1194 DB_PRINT_L(0, "pushing dummy byte\n"); 1195 fifo8_push(&s->tx_fifo, 0); 1196 } 1197 xilinx_spips_update_cs_lines(s); 1198 xilinx_spips_flush_txfifo(s); 1199 fifo8_reset(&s->rx_fifo); 1200 1201 DB_PRINT_L(0, "starting QSPI data read\n"); 1202 1203 while (cache_entry < LQSPI_CACHE_SIZE) { 1204 for (i = 0; i < 64; ++i) { 1205 tx_data_bytes(&s->tx_fifo, 0, 1, false); 1206 } 1207 xilinx_spips_flush_txfifo(s); 1208 for (i = 0; i < 64; ++i) { 1209 rx_data_bytes(&s->rx_fifo, &q->lqspi_buf[cache_entry++], 1); 1210 } 1211 } 1212 1213 s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE; 1214 s->regs[R_LQSPI_STS] |= u_page_save; 1215 xilinx_spips_update_cs_lines(s); 1216 1217 q->lqspi_cached_addr = flash_addr * num_effective_busses(s); 1218 } 1219 } 1220 1221 static MemTxResult lqspi_read(void *opaque, hwaddr addr, uint64_t *value, 1222 unsigned size, MemTxAttrs attrs) 1223 { 1224 XilinxQSPIPS *q = XILINX_QSPIPS(opaque); 1225 1226 if (addr >= q->lqspi_cached_addr && 1227 addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) { 1228 uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr]; 1229 *value = cpu_to_le32(*(uint32_t *)retp); 1230 DB_PRINT_L(1, "addr: %08" HWADDR_PRIx ", data: %08" PRIx64 "\n", 1231 addr, *value); 1232 return MEMTX_OK; 1233 } 1234 1235 lqspi_load_cache(opaque, addr); 1236 return lqspi_read(opaque, addr, value, size, attrs); 1237 } 1238 1239 static MemTxResult lqspi_write(void *opaque, hwaddr offset, uint64_t value, 1240 unsigned size, MemTxAttrs attrs) 1241 { 1242 /* 1243 * From UG1085, Chapter 24 (Quad-SPI controllers): 1244 * - Writes are ignored 1245 * - AXI writes generate an external AXI slave error (SLVERR) 1246 */ 1247 qemu_log_mask(LOG_GUEST_ERROR, "%s Unexpected %u-bit access to 0x%" PRIx64 1248 " (value: 0x%" PRIx64 "\n", 1249 __func__, size << 3, offset, value); 1250 1251 return MEMTX_ERROR; 1252 } 1253 1254 static const MemoryRegionOps lqspi_ops = { 1255 .read_with_attrs = lqspi_read, 1256 .write_with_attrs = lqspi_write, 1257 .endianness = DEVICE_NATIVE_ENDIAN, 1258 .impl = { 1259 .min_access_size = 4, 1260 .max_access_size = 4, 1261 }, 1262 .valid = { 1263 .min_access_size = 1, 1264 .max_access_size = 4 1265 } 1266 }; 1267 1268 static void xilinx_spips_realize(DeviceState *dev, Error **errp) 1269 { 1270 XilinxSPIPS *s = XILINX_SPIPS(dev); 1271 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1272 XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s); 1273 qemu_irq *cs; 1274 int i; 1275 1276 DB_PRINT_L(0, "realized spips\n"); 1277 1278 if (s->num_busses > MAX_NUM_BUSSES) { 1279 error_setg(errp, 1280 "requested number of SPI busses %u exceeds maximum %d", 1281 s->num_busses, MAX_NUM_BUSSES); 1282 return; 1283 } 1284 if (s->num_busses < MIN_NUM_BUSSES) { 1285 error_setg(errp, 1286 "requested number of SPI busses %u is below minimum %d", 1287 s->num_busses, MIN_NUM_BUSSES); 1288 return; 1289 } 1290 1291 s->spi = g_new(SSIBus *, s->num_busses); 1292 for (i = 0; i < s->num_busses; ++i) { 1293 char bus_name[16]; 1294 snprintf(bus_name, 16, "spi%d", i); 1295 s->spi[i] = ssi_create_bus(dev, bus_name); 1296 } 1297 1298 s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses); 1299 s->cs_lines_state = g_new0(bool, s->num_cs * s->num_busses); 1300 for (i = 0, cs = s->cs_lines; i < s->num_busses; ++i, cs += s->num_cs) { 1301 ssi_auto_connect_slaves(DEVICE(s), cs, s->spi[i]); 1302 } 1303 1304 sysbus_init_irq(sbd, &s->irq); 1305 for (i = 0; i < s->num_cs * s->num_busses; ++i) { 1306 sysbus_init_irq(sbd, &s->cs_lines[i]); 1307 } 1308 1309 memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s, 1310 "spi", XLNX_ZYNQMP_SPIPS_R_MAX * 4); 1311 sysbus_init_mmio(sbd, &s->iomem); 1312 1313 s->irqline = -1; 1314 1315 fifo8_create(&s->rx_fifo, xsc->rx_fifo_size); 1316 fifo8_create(&s->tx_fifo, xsc->tx_fifo_size); 1317 } 1318 1319 static void xilinx_qspips_realize(DeviceState *dev, Error **errp) 1320 { 1321 XilinxSPIPS *s = XILINX_SPIPS(dev); 1322 XilinxQSPIPS *q = XILINX_QSPIPS(dev); 1323 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1324 1325 DB_PRINT_L(0, "realized qspips\n"); 1326 1327 s->num_busses = 2; 1328 s->num_cs = 2; 1329 s->num_txrx_bytes = 4; 1330 1331 xilinx_spips_realize(dev, errp); 1332 memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi", 1333 (1 << LQSPI_ADDRESS_BITS) * 2); 1334 sysbus_init_mmio(sbd, &s->mmlqspi); 1335 1336 q->lqspi_cached_addr = ~0ULL; 1337 } 1338 1339 static void xlnx_zynqmp_qspips_realize(DeviceState *dev, Error **errp) 1340 { 1341 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(dev); 1342 XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s); 1343 1344 if (s->dma_burst_size > QSPI_DMA_MAX_BURST_SIZE) { 1345 error_setg(errp, 1346 "qspi dma burst size %u exceeds maximum limit %d", 1347 s->dma_burst_size, QSPI_DMA_MAX_BURST_SIZE); 1348 return; 1349 } 1350 xilinx_qspips_realize(dev, errp); 1351 fifo8_create(&s->rx_fifo_g, xsc->rx_fifo_size); 1352 fifo8_create(&s->tx_fifo_g, xsc->tx_fifo_size); 1353 fifo32_create(&s->fifo_g, 32); 1354 } 1355 1356 static void xlnx_zynqmp_qspips_init(Object *obj) 1357 { 1358 XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(obj); 1359 1360 object_property_add_link(obj, "stream-connected-dma", TYPE_STREAM_SLAVE, 1361 (Object **)&rq->dma, 1362 object_property_allow_set_link, 1363 OBJ_PROP_LINK_STRONG, 1364 NULL); 1365 } 1366 1367 static int xilinx_spips_post_load(void *opaque, int version_id) 1368 { 1369 xilinx_spips_update_ixr((XilinxSPIPS *)opaque); 1370 xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque); 1371 return 0; 1372 } 1373 1374 static const VMStateDescription vmstate_xilinx_spips = { 1375 .name = "xilinx_spips", 1376 .version_id = 2, 1377 .minimum_version_id = 2, 1378 .post_load = xilinx_spips_post_load, 1379 .fields = (VMStateField[]) { 1380 VMSTATE_FIFO8(tx_fifo, XilinxSPIPS), 1381 VMSTATE_FIFO8(rx_fifo, XilinxSPIPS), 1382 VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX), 1383 VMSTATE_UINT8(snoop_state, XilinxSPIPS), 1384 VMSTATE_END_OF_LIST() 1385 } 1386 }; 1387 1388 static int xlnx_zynqmp_qspips_post_load(void *opaque, int version_id) 1389 { 1390 XlnxZynqMPQSPIPS *s = (XlnxZynqMPQSPIPS *)opaque; 1391 XilinxSPIPS *qs = XILINX_SPIPS(s); 1392 1393 if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN) && 1394 fifo8_is_empty(&qs->rx_fifo) && fifo8_is_empty(&qs->tx_fifo)) { 1395 xlnx_zynqmp_qspips_update_ixr(s); 1396 xlnx_zynqmp_qspips_update_cs_lines(s); 1397 } 1398 return 0; 1399 } 1400 1401 static const VMStateDescription vmstate_xilinx_qspips = { 1402 .name = "xilinx_qspips", 1403 .version_id = 1, 1404 .minimum_version_id = 1, 1405 .fields = (VMStateField[]) { 1406 VMSTATE_STRUCT(parent_obj, XilinxQSPIPS, 0, 1407 vmstate_xilinx_spips, XilinxSPIPS), 1408 VMSTATE_END_OF_LIST() 1409 } 1410 }; 1411 1412 static const VMStateDescription vmstate_xlnx_zynqmp_qspips = { 1413 .name = "xlnx_zynqmp_qspips", 1414 .version_id = 1, 1415 .minimum_version_id = 1, 1416 .post_load = xlnx_zynqmp_qspips_post_load, 1417 .fields = (VMStateField[]) { 1418 VMSTATE_STRUCT(parent_obj, XlnxZynqMPQSPIPS, 0, 1419 vmstate_xilinx_qspips, XilinxQSPIPS), 1420 VMSTATE_FIFO8(tx_fifo_g, XlnxZynqMPQSPIPS), 1421 VMSTATE_FIFO8(rx_fifo_g, XlnxZynqMPQSPIPS), 1422 VMSTATE_FIFO32(fifo_g, XlnxZynqMPQSPIPS), 1423 VMSTATE_UINT32_ARRAY(regs, XlnxZynqMPQSPIPS, XLNX_ZYNQMP_SPIPS_R_MAX), 1424 VMSTATE_END_OF_LIST() 1425 } 1426 }; 1427 1428 static Property xilinx_zynqmp_qspips_properties[] = { 1429 DEFINE_PROP_UINT32("dma-burst-size", XlnxZynqMPQSPIPS, dma_burst_size, 64), 1430 DEFINE_PROP_END_OF_LIST(), 1431 }; 1432 1433 static Property xilinx_spips_properties[] = { 1434 DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1), 1435 DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4), 1436 DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1), 1437 DEFINE_PROP_END_OF_LIST(), 1438 }; 1439 1440 static void xilinx_qspips_class_init(ObjectClass *klass, void * data) 1441 { 1442 DeviceClass *dc = DEVICE_CLASS(klass); 1443 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); 1444 1445 dc->realize = xilinx_qspips_realize; 1446 xsc->reg_ops = &qspips_ops; 1447 xsc->rx_fifo_size = RXFF_A_Q; 1448 xsc->tx_fifo_size = TXFF_A_Q; 1449 } 1450 1451 static void xilinx_spips_class_init(ObjectClass *klass, void *data) 1452 { 1453 DeviceClass *dc = DEVICE_CLASS(klass); 1454 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); 1455 1456 dc->realize = xilinx_spips_realize; 1457 dc->reset = xilinx_spips_reset; 1458 device_class_set_props(dc, xilinx_spips_properties); 1459 dc->vmsd = &vmstate_xilinx_spips; 1460 1461 xsc->reg_ops = &spips_ops; 1462 xsc->rx_fifo_size = RXFF_A; 1463 xsc->tx_fifo_size = TXFF_A; 1464 } 1465 1466 static void xlnx_zynqmp_qspips_class_init(ObjectClass *klass, void * data) 1467 { 1468 DeviceClass *dc = DEVICE_CLASS(klass); 1469 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); 1470 1471 dc->realize = xlnx_zynqmp_qspips_realize; 1472 dc->reset = xlnx_zynqmp_qspips_reset; 1473 dc->vmsd = &vmstate_xlnx_zynqmp_qspips; 1474 device_class_set_props(dc, xilinx_zynqmp_qspips_properties); 1475 xsc->reg_ops = &xlnx_zynqmp_qspips_ops; 1476 xsc->rx_fifo_size = RXFF_A_Q; 1477 xsc->tx_fifo_size = TXFF_A_Q; 1478 } 1479 1480 static const TypeInfo xilinx_spips_info = { 1481 .name = TYPE_XILINX_SPIPS, 1482 .parent = TYPE_SYS_BUS_DEVICE, 1483 .instance_size = sizeof(XilinxSPIPS), 1484 .class_init = xilinx_spips_class_init, 1485 .class_size = sizeof(XilinxSPIPSClass), 1486 }; 1487 1488 static const TypeInfo xilinx_qspips_info = { 1489 .name = TYPE_XILINX_QSPIPS, 1490 .parent = TYPE_XILINX_SPIPS, 1491 .instance_size = sizeof(XilinxQSPIPS), 1492 .class_init = xilinx_qspips_class_init, 1493 }; 1494 1495 static const TypeInfo xlnx_zynqmp_qspips_info = { 1496 .name = TYPE_XLNX_ZYNQMP_QSPIPS, 1497 .parent = TYPE_XILINX_QSPIPS, 1498 .instance_size = sizeof(XlnxZynqMPQSPIPS), 1499 .instance_init = xlnx_zynqmp_qspips_init, 1500 .class_init = xlnx_zynqmp_qspips_class_init, 1501 }; 1502 1503 static void xilinx_spips_register_types(void) 1504 { 1505 type_register_static(&xilinx_spips_info); 1506 type_register_static(&xilinx_qspips_info); 1507 type_register_static(&xlnx_zynqmp_qspips_info); 1508 } 1509 1510 type_init(xilinx_spips_register_types) 1511