xref: /openbmc/qemu/hw/ssi/xilinx_spips.c (revision 8d3dfb6205a9e00dff30c09e4f6f0d274a090dbe)
1 /*
2  * QEMU model of the Xilinx Zynq SPI controller
3  *
4  * Copyright (c) 2012 Peter A. G. Crosthwaite
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "hw/irq.h"
28 #include "hw/ptimer.h"
29 #include "hw/qdev-properties.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "qemu/bitops.h"
33 #include "hw/ssi/xilinx_spips.h"
34 #include "qapi/error.h"
35 #include "hw/register.h"
36 #include "sysemu/dma.h"
37 #include "migration/blocker.h"
38 #include "migration/vmstate.h"
39 
40 #ifndef XILINX_SPIPS_ERR_DEBUG
41 #define XILINX_SPIPS_ERR_DEBUG 0
42 #endif
43 
44 #define DB_PRINT_L(level, ...) do { \
45     if (XILINX_SPIPS_ERR_DEBUG > (level)) { \
46         fprintf(stderr,  ": %s: ", __func__); \
47         fprintf(stderr, ## __VA_ARGS__); \
48     } \
49 } while (0)
50 
51 /* config register */
52 #define R_CONFIG            (0x00 / 4)
53 #define IFMODE              (1U << 31)
54 #define R_CONFIG_ENDIAN     (1 << 26)
55 #define MODEFAIL_GEN_EN     (1 << 17)
56 #define MAN_START_COM       (1 << 16)
57 #define MAN_START_EN        (1 << 15)
58 #define MANUAL_CS           (1 << 14)
59 #define CS                  (0xF << 10)
60 #define CS_SHIFT            (10)
61 #define PERI_SEL            (1 << 9)
62 #define REF_CLK             (1 << 8)
63 #define FIFO_WIDTH          (3 << 6)
64 #define BAUD_RATE_DIV       (7 << 3)
65 #define CLK_PH              (1 << 2)
66 #define CLK_POL             (1 << 1)
67 #define MODE_SEL            (1 << 0)
68 #define R_CONFIG_RSVD       (0x7bf40000)
69 
70 /* interrupt mechanism */
71 #define R_INTR_STATUS       (0x04 / 4)
72 #define R_INTR_STATUS_RESET (0x104)
73 #define R_INTR_EN           (0x08 / 4)
74 #define R_INTR_DIS          (0x0C / 4)
75 #define R_INTR_MASK         (0x10 / 4)
76 #define IXR_TX_FIFO_UNDERFLOW   (1 << 6)
77 /* Poll timeout not implemented */
78 #define IXR_RX_FIFO_EMPTY       (1 << 11)
79 #define IXR_GENERIC_FIFO_FULL   (1 << 10)
80 #define IXR_GENERIC_FIFO_NOT_FULL (1 << 9)
81 #define IXR_TX_FIFO_EMPTY       (1 << 8)
82 #define IXR_GENERIC_FIFO_EMPTY  (1 << 7)
83 #define IXR_RX_FIFO_FULL        (1 << 5)
84 #define IXR_RX_FIFO_NOT_EMPTY   (1 << 4)
85 #define IXR_TX_FIFO_FULL        (1 << 3)
86 #define IXR_TX_FIFO_NOT_FULL    (1 << 2)
87 #define IXR_TX_FIFO_MODE_FAIL   (1 << 1)
88 #define IXR_RX_FIFO_OVERFLOW    (1 << 0)
89 #define IXR_ALL                 ((1 << 13) - 1)
90 #define GQSPI_IXR_MASK          0xFBE
91 #define IXR_SELF_CLEAR \
92 (IXR_GENERIC_FIFO_EMPTY \
93 | IXR_GENERIC_FIFO_FULL  \
94 | IXR_GENERIC_FIFO_NOT_FULL \
95 | IXR_TX_FIFO_EMPTY \
96 | IXR_TX_FIFO_FULL  \
97 | IXR_TX_FIFO_NOT_FULL \
98 | IXR_RX_FIFO_EMPTY \
99 | IXR_RX_FIFO_FULL  \
100 | IXR_RX_FIFO_NOT_EMPTY)
101 
102 #define R_EN                (0x14 / 4)
103 #define R_DELAY             (0x18 / 4)
104 #define R_TX_DATA           (0x1C / 4)
105 #define R_RX_DATA           (0x20 / 4)
106 #define R_SLAVE_IDLE_COUNT  (0x24 / 4)
107 #define R_TX_THRES          (0x28 / 4)
108 #define R_RX_THRES          (0x2C / 4)
109 #define R_GPIO              (0x30 / 4)
110 #define R_LPBK_DLY_ADJ      (0x38 / 4)
111 #define R_LPBK_DLY_ADJ_RESET (0x33)
112 #define R_IOU_TAPDLY_BYPASS (0x3C / 4)
113 #define R_TXD1              (0x80 / 4)
114 #define R_TXD2              (0x84 / 4)
115 #define R_TXD3              (0x88 / 4)
116 
117 #define R_LQSPI_CFG         (0xa0 / 4)
118 #define R_LQSPI_CFG_RESET       0x03A002EB
119 #define LQSPI_CFG_LQ_MODE       (1U << 31)
120 #define LQSPI_CFG_TWO_MEM       (1 << 30)
121 #define LQSPI_CFG_SEP_BUS       (1 << 29)
122 #define LQSPI_CFG_U_PAGE        (1 << 28)
123 #define LQSPI_CFG_ADDR4         (1 << 27)
124 #define LQSPI_CFG_MODE_EN       (1 << 25)
125 #define LQSPI_CFG_MODE_WIDTH    8
126 #define LQSPI_CFG_MODE_SHIFT    16
127 #define LQSPI_CFG_DUMMY_WIDTH   3
128 #define LQSPI_CFG_DUMMY_SHIFT   8
129 #define LQSPI_CFG_INST_CODE     0xFF
130 
131 #define R_CMND        (0xc0 / 4)
132     #define R_CMND_RXFIFO_DRAIN   (1 << 19)
133     FIELD(CMND, PARTIAL_BYTE_LEN, 16, 3)
134 #define R_CMND_EXT_ADD        (1 << 15)
135     FIELD(CMND, RX_DISCARD, 8, 7)
136     FIELD(CMND, DUMMY_CYCLES, 2, 6)
137 #define R_CMND_DMA_EN         (1 << 1)
138 #define R_CMND_PUSH_WAIT      (1 << 0)
139 #define R_TRANSFER_SIZE     (0xc4 / 4)
140 #define R_LQSPI_STS         (0xA4 / 4)
141 #define LQSPI_STS_WR_RECVD      (1 << 1)
142 
143 #define R_DUMMY_CYCLE_EN    (0xC8 / 4)
144 #define R_ECO               (0xF8 / 4)
145 #define R_MOD_ID            (0xFC / 4)
146 
147 #define R_GQSPI_SELECT          (0x144 / 4)
148     FIELD(GQSPI_SELECT, GENERIC_QSPI_EN, 0, 1)
149 #define R_GQSPI_ISR         (0x104 / 4)
150 #define R_GQSPI_IER         (0x108 / 4)
151 #define R_GQSPI_IDR         (0x10c / 4)
152 #define R_GQSPI_IMR         (0x110 / 4)
153 #define R_GQSPI_IMR_RESET   (0xfbe)
154 #define R_GQSPI_TX_THRESH   (0x128 / 4)
155 #define R_GQSPI_RX_THRESH   (0x12c / 4)
156 #define R_GQSPI_GPIO (0x130 / 4)
157 #define R_GQSPI_LPBK_DLY_ADJ (0x138 / 4)
158 #define R_GQSPI_LPBK_DLY_ADJ_RESET (0x33)
159 #define R_GQSPI_CNFG        (0x100 / 4)
160     FIELD(GQSPI_CNFG, MODE_EN, 30, 2)
161     FIELD(GQSPI_CNFG, GEN_FIFO_START_MODE, 29, 1)
162     FIELD(GQSPI_CNFG, GEN_FIFO_START, 28, 1)
163     FIELD(GQSPI_CNFG, ENDIAN, 26, 1)
164     /* Poll timeout not implemented */
165     FIELD(GQSPI_CNFG, EN_POLL_TIMEOUT, 20, 1)
166     /* QEMU doesn't care about any of these last three */
167     FIELD(GQSPI_CNFG, BR, 3, 3)
168     FIELD(GQSPI_CNFG, CPH, 2, 1)
169     FIELD(GQSPI_CNFG, CPL, 1, 1)
170 #define R_GQSPI_GEN_FIFO        (0x140 / 4)
171 #define R_GQSPI_TXD             (0x11c / 4)
172 #define R_GQSPI_RXD             (0x120 / 4)
173 #define R_GQSPI_FIFO_CTRL       (0x14c / 4)
174     FIELD(GQSPI_FIFO_CTRL, RX_FIFO_RESET, 2, 1)
175     FIELD(GQSPI_FIFO_CTRL, TX_FIFO_RESET, 1, 1)
176     FIELD(GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET, 0, 1)
177 #define R_GQSPI_GFIFO_THRESH    (0x150 / 4)
178 #define R_GQSPI_DATA_STS (0x15c / 4)
179 /*
180  * We use the snapshot register to hold the core state for the currently
181  * or most recently executed command. So the generic fifo format is defined
182  * for the snapshot register
183  */
184 #define R_GQSPI_GF_SNAPSHOT (0x160 / 4)
185     FIELD(GQSPI_GF_SNAPSHOT, POLL, 19, 1)
186     FIELD(GQSPI_GF_SNAPSHOT, STRIPE, 18, 1)
187     FIELD(GQSPI_GF_SNAPSHOT, RECIEVE, 17, 1)
188     FIELD(GQSPI_GF_SNAPSHOT, TRANSMIT, 16, 1)
189     FIELD(GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT, 14, 2)
190     FIELD(GQSPI_GF_SNAPSHOT, CHIP_SELECT, 12, 2)
191     FIELD(GQSPI_GF_SNAPSHOT, SPI_MODE, 10, 2)
192     FIELD(GQSPI_GF_SNAPSHOT, EXPONENT, 9, 1)
193     FIELD(GQSPI_GF_SNAPSHOT, DATA_XFER, 8, 1)
194     FIELD(GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA, 0, 8)
195 #define R_GQSPI_MOD_ID        (0x1fc / 4)
196 #define R_GQSPI_MOD_ID_RESET  (0x10a0000)
197 
198 /* size of TXRX FIFOs */
199 #define RXFF_A          (128)
200 #define TXFF_A          (128)
201 
202 #define RXFF_A_Q          (64 * 4)
203 #define TXFF_A_Q          (64 * 4)
204 
205 /* 16MB per linear region */
206 #define LQSPI_ADDRESS_BITS 24
207 
208 #define SNOOP_CHECKING 0xFF
209 #define SNOOP_ADDR 0xF0
210 #define SNOOP_NONE 0xEE
211 #define SNOOP_STRIPING 0
212 
213 #define MIN_NUM_BUSSES 1
214 #define MAX_NUM_BUSSES 2
215 
216 static inline int num_effective_busses(XilinxSPIPS *s)
217 {
218     return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS &&
219             s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
220 }
221 
222 static void xilinx_spips_update_cs(XilinxSPIPS *s, int field)
223 {
224     int i;
225 
226     for (i = 0; i < s->num_cs * s->num_busses; i++) {
227         bool old_state = s->cs_lines_state[i];
228         bool new_state = field & (1 << i);
229 
230         if (old_state != new_state) {
231             s->cs_lines_state[i] = new_state;
232             s->rx_discard = ARRAY_FIELD_EX32(s->regs, CMND, RX_DISCARD);
233             DB_PRINT_L(1, "%sselecting peripheral %d\n",
234                        new_state ? "" : "de", i);
235         }
236         qemu_set_irq(s->cs_lines[i], !new_state);
237     }
238     if (!(field & ((1 << (s->num_cs * s->num_busses)) - 1))) {
239         s->snoop_state = SNOOP_CHECKING;
240         s->cmd_dummies = 0;
241         s->link_state = 1;
242         s->link_state_next = 1;
243         s->link_state_next_when = 0;
244         DB_PRINT_L(1, "moving to snoop check state\n");
245     }
246 }
247 
248 static void xlnx_zynqmp_qspips_update_cs_lines(XlnxZynqMPQSPIPS *s)
249 {
250     if (s->regs[R_GQSPI_GF_SNAPSHOT]) {
251         int field = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, CHIP_SELECT);
252         bool upper_cs_sel = field & (1 << 1);
253         bool lower_cs_sel = field & 1;
254         bool bus0_enabled;
255         bool bus1_enabled;
256         uint8_t buses;
257         int cs = 0;
258 
259         buses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT);
260         bus0_enabled = buses & 1;
261         bus1_enabled = buses & (1 << 1);
262 
263         if (bus0_enabled && bus1_enabled) {
264             if (lower_cs_sel) {
265                 cs |= 1;
266             }
267             if (upper_cs_sel) {
268                 cs |= 1 << 3;
269             }
270         } else if (bus0_enabled) {
271             if (lower_cs_sel) {
272                 cs |= 1;
273             }
274             if (upper_cs_sel) {
275                 cs |= 1 << 1;
276             }
277         } else if (bus1_enabled) {
278             if (lower_cs_sel) {
279                 cs |= 1 << 2;
280             }
281             if (upper_cs_sel) {
282                 cs |= 1 << 3;
283             }
284         }
285         xilinx_spips_update_cs(XILINX_SPIPS(s), cs);
286     }
287 }
288 
289 static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
290 {
291     int field = ~((s->regs[R_CONFIG] & CS) >> CS_SHIFT);
292 
293     /* In dual parallel, mirror low CS to both */
294     if (num_effective_busses(s) == 2) {
295         /* Single bit chip-select for qspi */
296         field &= 0x1;
297         field |= field << 3;
298     /* Dual stack U-Page */
299     } else if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM &&
300                s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE) {
301         /* Single bit chip-select for qspi */
302         field &= 0x1;
303         /* change from CS0 to CS1 */
304         field <<= 1;
305     }
306     /* Auto CS */
307     if (!(s->regs[R_CONFIG] & MANUAL_CS) &&
308         fifo8_is_empty(&s->tx_fifo)) {
309         field = 0;
310     }
311     xilinx_spips_update_cs(s, field);
312 }
313 
314 static void xilinx_spips_update_ixr(XilinxSPIPS *s)
315 {
316     if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
317         s->regs[R_INTR_STATUS] &= ~IXR_SELF_CLEAR;
318         s->regs[R_INTR_STATUS] |=
319             (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
320             (s->rx_fifo.num >= s->regs[R_RX_THRES] ?
321                                     IXR_RX_FIFO_NOT_EMPTY : 0) |
322             (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
323             (fifo8_is_empty(&s->tx_fifo) ? IXR_TX_FIFO_EMPTY : 0) |
324             (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
325     }
326     int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
327                                                                 IXR_ALL);
328     if (new_irqline != s->irqline) {
329         s->irqline = new_irqline;
330         qemu_set_irq(s->irq, s->irqline);
331     }
332 }
333 
334 static void xlnx_zynqmp_qspips_update_ixr(XlnxZynqMPQSPIPS *s)
335 {
336     uint32_t gqspi_int;
337     int new_irqline;
338 
339     s->regs[R_GQSPI_ISR] &= ~IXR_SELF_CLEAR;
340     s->regs[R_GQSPI_ISR] |=
341         (fifo32_is_empty(&s->fifo_g) ? IXR_GENERIC_FIFO_EMPTY : 0) |
342         (fifo32_is_full(&s->fifo_g) ? IXR_GENERIC_FIFO_FULL : 0) |
343         (s->fifo_g.fifo.num < s->regs[R_GQSPI_GFIFO_THRESH] ?
344                                     IXR_GENERIC_FIFO_NOT_FULL : 0) |
345         (fifo8_is_empty(&s->rx_fifo_g) ? IXR_RX_FIFO_EMPTY : 0) |
346         (fifo8_is_full(&s->rx_fifo_g) ? IXR_RX_FIFO_FULL : 0) |
347         (s->rx_fifo_g.num >= s->regs[R_GQSPI_RX_THRESH] ?
348                                     IXR_RX_FIFO_NOT_EMPTY : 0) |
349         (fifo8_is_empty(&s->tx_fifo_g) ? IXR_TX_FIFO_EMPTY : 0) |
350         (fifo8_is_full(&s->tx_fifo_g) ? IXR_TX_FIFO_FULL : 0) |
351         (s->tx_fifo_g.num < s->regs[R_GQSPI_TX_THRESH] ?
352                                     IXR_TX_FIFO_NOT_FULL : 0);
353 
354     /* GQSPI Interrupt Trigger Status */
355     gqspi_int = (~s->regs[R_GQSPI_IMR]) & s->regs[R_GQSPI_ISR] & GQSPI_IXR_MASK;
356     new_irqline = !!(gqspi_int & IXR_ALL);
357 
358     /* drive external interrupt pin */
359     if (new_irqline != s->gqspi_irqline) {
360         s->gqspi_irqline = new_irqline;
361         qemu_set_irq(XILINX_SPIPS(s)->irq, s->gqspi_irqline);
362     }
363 }
364 
365 static void xilinx_spips_reset(DeviceState *d)
366 {
367     XilinxSPIPS *s = XILINX_SPIPS(d);
368 
369     memset(s->regs, 0, sizeof(s->regs));
370 
371     fifo8_reset(&s->rx_fifo);
372     fifo8_reset(&s->rx_fifo);
373     /* non zero resets */
374     s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
375     s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
376     s->regs[R_TX_THRES] = 1;
377     s->regs[R_RX_THRES] = 1;
378     /* FIXME: move magic number definition somewhere sensible */
379     s->regs[R_MOD_ID] = 0x01090106;
380     s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
381     s->link_state = 1;
382     s->link_state_next = 1;
383     s->link_state_next_when = 0;
384     s->snoop_state = SNOOP_CHECKING;
385     s->cmd_dummies = 0;
386     s->man_start_com = false;
387     xilinx_spips_update_ixr(s);
388     xilinx_spips_update_cs_lines(s);
389 }
390 
391 static void xlnx_zynqmp_qspips_reset(DeviceState *d)
392 {
393     XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(d);
394 
395     xilinx_spips_reset(d);
396 
397     memset(s->regs, 0, sizeof(s->regs));
398 
399     fifo8_reset(&s->rx_fifo_g);
400     fifo8_reset(&s->rx_fifo_g);
401     fifo32_reset(&s->fifo_g);
402     s->regs[R_INTR_STATUS] = R_INTR_STATUS_RESET;
403     s->regs[R_GPIO] = 1;
404     s->regs[R_LPBK_DLY_ADJ] = R_LPBK_DLY_ADJ_RESET;
405     s->regs[R_GQSPI_GFIFO_THRESH] = 0x10;
406     s->regs[R_MOD_ID] = 0x01090101;
407     s->regs[R_GQSPI_IMR] = R_GQSPI_IMR_RESET;
408     s->regs[R_GQSPI_TX_THRESH] = 1;
409     s->regs[R_GQSPI_RX_THRESH] = 1;
410     s->regs[R_GQSPI_GPIO] = 1;
411     s->regs[R_GQSPI_LPBK_DLY_ADJ] = R_GQSPI_LPBK_DLY_ADJ_RESET;
412     s->regs[R_GQSPI_MOD_ID] = R_GQSPI_MOD_ID_RESET;
413     s->man_start_com_g = false;
414     s->gqspi_irqline = 0;
415     xlnx_zynqmp_qspips_update_ixr(s);
416 }
417 
418 /*
419  * N way (num) in place bit striper. Lay out row wise bits (MSB to LSB)
420  * column wise (from element 0 to N-1). num is the length of x, and dir
421  * reverses the direction of the transform. Best illustrated by example:
422  * Each digit in the below array is a single bit (num == 3):
423  *
424  * {{ 76543210, }  ----- stripe (dir == false) -----> {{ 741gdaFC, }
425  *  { hgfedcba, }                                      { 630fcHEB, }
426  *  { HGFEDCBA, }} <---- upstripe (dir == true) -----  { 52hebGDA, }}
427  */
428 
429 static inline void stripe8(uint8_t *x, int num, bool dir)
430 {
431     uint8_t r[MAX_NUM_BUSSES];
432     int idx[2] = {0, 0};
433     int bit[2] = {0, 7};
434     int d = dir;
435 
436     assert(num <= MAX_NUM_BUSSES);
437     memset(r, 0, sizeof(uint8_t) * num);
438 
439     for (idx[0] = 0; idx[0] < num; ++idx[0]) {
440         for (bit[0] = 7; bit[0] >= 0; bit[0]--) {
441             r[idx[!d]] |= x[idx[d]] & 1 << bit[d] ? 1 << bit[!d] : 0;
442             idx[1] = (idx[1] + 1) % num;
443             if (!idx[1]) {
444                 bit[1]--;
445             }
446         }
447     }
448     memcpy(x, r, sizeof(uint8_t) * num);
449 }
450 
451 static void xlnx_zynqmp_qspips_flush_fifo_g(XlnxZynqMPQSPIPS *s)
452 {
453     while (s->regs[R_GQSPI_DATA_STS] || !fifo32_is_empty(&s->fifo_g)) {
454         uint8_t tx_rx[2] = { 0 };
455         int num_stripes = 1;
456         uint8_t busses;
457         int i;
458 
459         if (!s->regs[R_GQSPI_DATA_STS]) {
460             uint8_t imm;
461 
462             s->regs[R_GQSPI_GF_SNAPSHOT] = fifo32_pop(&s->fifo_g);
463             DB_PRINT_L(0, "GQSPI command: %x\n", s->regs[R_GQSPI_GF_SNAPSHOT]);
464             if (!s->regs[R_GQSPI_GF_SNAPSHOT]) {
465                 DB_PRINT_L(0, "Dummy GQSPI Delay Command Entry, Do nothing");
466                 continue;
467             }
468             xlnx_zynqmp_qspips_update_cs_lines(s);
469 
470             imm = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA);
471             if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) {
472                 /* immediate transfer */
473                 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) ||
474                     ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) {
475                     s->regs[R_GQSPI_DATA_STS] = 1;
476                 /* CS setup/hold - do nothing */
477                 } else {
478                     s->regs[R_GQSPI_DATA_STS] = 0;
479                 }
480             } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, EXPONENT)) {
481                 if (imm > 31) {
482                     qemu_log_mask(LOG_UNIMP, "QSPI exponential transfer too"
483                                   " long - 2 ^ %" PRId8 " requested\n", imm);
484                 }
485                 s->regs[R_GQSPI_DATA_STS] = 1ul << imm;
486             } else {
487                 s->regs[R_GQSPI_DATA_STS] = imm;
488             }
489         }
490         /* Zero length transfer check */
491         if (!s->regs[R_GQSPI_DATA_STS]) {
492             continue;
493         }
494         if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE) &&
495             fifo8_is_full(&s->rx_fifo_g)) {
496             /* No space in RX fifo for transfer - try again later */
497             return;
498         }
499         if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, STRIPE) &&
500             (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) ||
501              ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE))) {
502             num_stripes = 2;
503         }
504         if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) {
505             tx_rx[0] = ARRAY_FIELD_EX32(s->regs,
506                                         GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA);
507         } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT)) {
508             for (i = 0; i < num_stripes; ++i) {
509                 if (!fifo8_is_empty(&s->tx_fifo_g)) {
510                     tx_rx[i] = fifo8_pop(&s->tx_fifo_g);
511                     s->tx_fifo_g_align++;
512                 } else {
513                     return;
514                 }
515             }
516         }
517         if (num_stripes == 1) {
518             /* mirror */
519             tx_rx[1] = tx_rx[0];
520         }
521         busses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT);
522         for (i = 0; i < 2; ++i) {
523             DB_PRINT_L(1, "bus %d tx = %02x\n", i, tx_rx[i]);
524             tx_rx[i] = ssi_transfer(XILINX_SPIPS(s)->spi[i], tx_rx[i]);
525             DB_PRINT_L(1, "bus %d rx = %02x\n", i, tx_rx[i]);
526         }
527         if (s->regs[R_GQSPI_DATA_STS] > 1 &&
528             busses == 0x3 && num_stripes == 2) {
529             s->regs[R_GQSPI_DATA_STS] -= 2;
530         } else if (s->regs[R_GQSPI_DATA_STS] > 0) {
531             s->regs[R_GQSPI_DATA_STS]--;
532         }
533         if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) {
534             for (i = 0; i < 2; ++i) {
535                 if (busses & (1 << i)) {
536                     DB_PRINT_L(1, "bus %d push_byte = %02x\n", i, tx_rx[i]);
537                     fifo8_push(&s->rx_fifo_g, tx_rx[i]);
538                     s->rx_fifo_g_align++;
539                 }
540             }
541         }
542         if (!s->regs[R_GQSPI_DATA_STS]) {
543             for (; s->tx_fifo_g_align % 4; s->tx_fifo_g_align++) {
544                 fifo8_pop(&s->tx_fifo_g);
545             }
546             for (; s->rx_fifo_g_align % 4; s->rx_fifo_g_align++) {
547                 fifo8_push(&s->rx_fifo_g, 0);
548             }
549         }
550     }
551 }
552 
553 static int xilinx_spips_num_dummies(XilinxQSPIPS *qs, uint8_t command)
554 {
555     if (!qs) {
556         /* The SPI device is not a QSPI device */
557         return -1;
558     }
559 
560     switch (command) { /* check for dummies */
561     case READ: /* no dummy bytes/cycles */
562     case PP:
563     case DPP:
564     case QPP:
565     case READ_4:
566     case PP_4:
567     case QPP_4:
568         return 0;
569     case FAST_READ:
570     case DOR:
571     case QOR:
572     case FAST_READ_4:
573     case DOR_4:
574     case QOR_4:
575         return 1;
576     case DIOR:
577     case DIOR_4:
578         return 2;
579     case QIOR:
580     case QIOR_4:
581         return 4;
582     default:
583         return -1;
584     }
585 }
586 
587 static inline uint8_t get_addr_length(XilinxSPIPS *s, uint8_t cmd)
588 {
589    switch (cmd) {
590    case PP_4:
591    case QPP_4:
592    case READ_4:
593    case QIOR_4:
594    case FAST_READ_4:
595    case DOR_4:
596    case QOR_4:
597    case DIOR_4:
598        return 4;
599    default:
600        return (s->regs[R_CMND] & R_CMND_EXT_ADD) ? 4 : 3;
601    }
602 }
603 
604 static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
605 {
606     int debug_level = 0;
607     XilinxQSPIPS *q = (XilinxQSPIPS *) object_dynamic_cast(OBJECT(s),
608                                                            TYPE_XILINX_QSPIPS);
609 
610     for (;;) {
611         int i;
612         uint8_t tx = 0;
613         uint8_t tx_rx[MAX_NUM_BUSSES] = { 0 };
614         uint8_t dummy_cycles = 0;
615         uint8_t addr_length;
616 
617         if (fifo8_is_empty(&s->tx_fifo)) {
618             xilinx_spips_update_ixr(s);
619             return;
620         } else if (s->snoop_state == SNOOP_STRIPING ||
621                    s->snoop_state == SNOOP_NONE) {
622             for (i = 0; i < num_effective_busses(s); ++i) {
623                 if (!fifo8_is_empty(&s->tx_fifo)) {
624                     tx_rx[i] = fifo8_pop(&s->tx_fifo);
625                 }
626             }
627             stripe8(tx_rx, num_effective_busses(s), false);
628         } else if (s->snoop_state >= SNOOP_ADDR) {
629             tx = fifo8_pop(&s->tx_fifo);
630             for (i = 0; i < num_effective_busses(s); ++i) {
631                 tx_rx[i] = tx;
632             }
633         } else {
634             /*
635              * Extract a dummy byte and generate dummy cycles according to the
636              * link state
637              */
638             tx = fifo8_pop(&s->tx_fifo);
639             dummy_cycles = 8 / s->link_state;
640         }
641 
642         for (i = 0; i < num_effective_busses(s); ++i) {
643             int bus = num_effective_busses(s) - 1 - i;
644             if (dummy_cycles) {
645                 int d;
646                 for (d = 0; d < dummy_cycles; ++d) {
647                     tx_rx[0] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[0]);
648                 }
649             } else {
650                 DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]);
651                 tx_rx[i] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[i]);
652                 DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]);
653             }
654         }
655 
656         if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) {
657             DB_PRINT_L(debug_level, "dircarding drained rx byte\n");
658             /* Do nothing */
659         } else if (s->rx_discard) {
660             DB_PRINT_L(debug_level, "dircarding discarded rx byte\n");
661             s->rx_discard -= 8 / s->link_state;
662         } else if (fifo8_is_full(&s->rx_fifo)) {
663             s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
664             DB_PRINT_L(0, "rx FIFO overflow");
665         } else if (s->snoop_state == SNOOP_STRIPING) {
666             stripe8(tx_rx, num_effective_busses(s), true);
667             for (i = 0; i < num_effective_busses(s); ++i) {
668                 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]);
669                 DB_PRINT_L(debug_level, "pushing striped rx byte\n");
670             }
671         } else {
672            DB_PRINT_L(debug_level, "pushing unstriped rx byte\n");
673            fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]);
674         }
675 
676         if (s->link_state_next_when) {
677             s->link_state_next_when--;
678             if (!s->link_state_next_when) {
679                 s->link_state = s->link_state_next;
680             }
681         }
682 
683         DB_PRINT_L(debug_level, "initial snoop state: %x\n",
684                    (unsigned)s->snoop_state);
685         switch (s->snoop_state) {
686         case (SNOOP_CHECKING):
687             /* Store the count of dummy bytes in the txfifo */
688             s->cmd_dummies = xilinx_spips_num_dummies(q, tx);
689             addr_length = get_addr_length(s, tx);
690             if (s->cmd_dummies < 0) {
691                 s->snoop_state = SNOOP_NONE;
692             } else {
693                 s->snoop_state = SNOOP_ADDR + addr_length - 1;
694             }
695             switch (tx) {
696             case DPP:
697             case DOR:
698             case DOR_4:
699                 s->link_state_next = 2;
700                 s->link_state_next_when = addr_length + s->cmd_dummies;
701                 break;
702             case QPP:
703             case QPP_4:
704             case QOR:
705             case QOR_4:
706                 s->link_state_next = 4;
707                 s->link_state_next_when = addr_length + s->cmd_dummies;
708                 break;
709             case DIOR:
710             case DIOR_4:
711                 s->link_state = 2;
712                 break;
713             case QIOR:
714             case QIOR_4:
715                 s->link_state = 4;
716                 break;
717             }
718             break;
719         case (SNOOP_ADDR):
720             /*
721              * Address has been transmitted, transmit dummy cycles now if needed
722              */
723             if (s->cmd_dummies < 0) {
724                 s->snoop_state = SNOOP_NONE;
725             } else {
726                 s->snoop_state = s->cmd_dummies;
727             }
728             break;
729         case (SNOOP_STRIPING):
730         case (SNOOP_NONE):
731             /* Once we hit the boring stuff - squelch debug noise */
732             if (!debug_level) {
733                 DB_PRINT_L(0, "squelching debug info ....\n");
734                 debug_level = 1;
735             }
736             break;
737         default:
738             s->snoop_state--;
739         }
740         DB_PRINT_L(debug_level, "final snoop state: %x\n",
741                    (unsigned)s->snoop_state);
742     }
743 }
744 
745 static inline void tx_data_bytes(Fifo8 *fifo, uint32_t value, int num, bool be)
746 {
747     int i;
748     for (i = 0; i < num && !fifo8_is_full(fifo); ++i) {
749         if (be) {
750             fifo8_push(fifo, (uint8_t)(value >> 24));
751             value <<= 8;
752         } else {
753             fifo8_push(fifo, (uint8_t)value);
754             value >>= 8;
755         }
756     }
757 }
758 
759 static void xilinx_spips_check_zero_pump(XilinxSPIPS *s)
760 {
761     if (!s->regs[R_TRANSFER_SIZE]) {
762         return;
763     }
764     if (!fifo8_is_empty(&s->tx_fifo) && s->regs[R_CMND] & R_CMND_PUSH_WAIT) {
765         return;
766     }
767     /*
768      * The zero pump must never fill tx fifo such that rx overflow is
769      * possible
770      */
771     while (s->regs[R_TRANSFER_SIZE] &&
772            s->rx_fifo.num + s->tx_fifo.num < RXFF_A_Q - 3) {
773         /* endianness just doesn't matter when zero pumping */
774         tx_data_bytes(&s->tx_fifo, 0, 4, false);
775         s->regs[R_TRANSFER_SIZE] &= ~0x03ull;
776         s->regs[R_TRANSFER_SIZE] -= 4;
777     }
778 }
779 
780 static void xilinx_spips_check_flush(XilinxSPIPS *s)
781 {
782     if (s->man_start_com ||
783         (!fifo8_is_empty(&s->tx_fifo) &&
784          !(s->regs[R_CONFIG] & MAN_START_EN))) {
785         xilinx_spips_check_zero_pump(s);
786         xilinx_spips_flush_txfifo(s);
787     }
788     if (fifo8_is_empty(&s->tx_fifo) && !s->regs[R_TRANSFER_SIZE]) {
789         s->man_start_com = false;
790     }
791     xilinx_spips_update_ixr(s);
792 }
793 
794 static void xlnx_zynqmp_qspips_check_flush(XlnxZynqMPQSPIPS *s)
795 {
796     bool gqspi_has_work = s->regs[R_GQSPI_DATA_STS] ||
797                           !fifo32_is_empty(&s->fifo_g);
798 
799     if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) {
800         if (s->man_start_com_g || (gqspi_has_work &&
801              !ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE))) {
802             xlnx_zynqmp_qspips_flush_fifo_g(s);
803         }
804     } else {
805         xilinx_spips_check_flush(XILINX_SPIPS(s));
806     }
807     if (!gqspi_has_work) {
808         s->man_start_com_g = false;
809     }
810     xlnx_zynqmp_qspips_update_ixr(s);
811 }
812 
813 static inline int rx_data_bytes(Fifo8 *fifo, uint8_t *value, int max)
814 {
815     int i;
816 
817     for (i = 0; i < max && !fifo8_is_empty(fifo); ++i) {
818         value[i] = fifo8_pop(fifo);
819     }
820     return max - i;
821 }
822 
823 static const void *pop_buf(Fifo8 *fifo, uint32_t max, uint32_t *num)
824 {
825     void *ret;
826 
827     if (max == 0 || max > fifo->num) {
828         abort();
829     }
830     *num = MIN(fifo->capacity - fifo->head, max);
831     ret = &fifo->data[fifo->head];
832     fifo->head += *num;
833     fifo->head %= fifo->capacity;
834     fifo->num -= *num;
835     return ret;
836 }
837 
838 static void xlnx_zynqmp_qspips_notify(void *opaque)
839 {
840     XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(opaque);
841     XilinxSPIPS *s = XILINX_SPIPS(rq);
842     Fifo8 *recv_fifo;
843 
844     if (ARRAY_FIELD_EX32(rq->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) {
845         if (!(ARRAY_FIELD_EX32(rq->regs, GQSPI_CNFG, MODE_EN) == 2)) {
846             return;
847         }
848         recv_fifo = &rq->rx_fifo_g;
849     } else {
850         if (!(s->regs[R_CMND] & R_CMND_DMA_EN)) {
851             return;
852         }
853         recv_fifo = &s->rx_fifo;
854     }
855     while (recv_fifo->num >= 4
856            && stream_can_push(rq->dma, xlnx_zynqmp_qspips_notify, rq))
857     {
858         size_t ret;
859         uint32_t num;
860         const void *rxd;
861         int len;
862 
863         len = recv_fifo->num >= rq->dma_burst_size ? rq->dma_burst_size :
864                                                    recv_fifo->num;
865         rxd = pop_buf(recv_fifo, len, &num);
866 
867         memcpy(rq->dma_buf, rxd, num);
868 
869         ret = stream_push(rq->dma, rq->dma_buf, num, false);
870         assert(ret == num);
871         xlnx_zynqmp_qspips_check_flush(rq);
872     }
873 }
874 
875 static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
876                                   unsigned size)
877 {
878     XilinxSPIPS *s = opaque;
879     uint32_t mask = ~0;
880     uint32_t ret;
881     uint8_t rx_buf[4];
882     int shortfall;
883 
884     addr >>= 2;
885     switch (addr) {
886     case R_CONFIG:
887         mask = ~(R_CONFIG_RSVD | MAN_START_COM);
888         break;
889     case R_INTR_STATUS:
890         ret = s->regs[addr] & IXR_ALL;
891         s->regs[addr] = 0;
892         DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr * 4, ret);
893         xilinx_spips_update_ixr(s);
894         return ret;
895     case R_INTR_MASK:
896         mask = IXR_ALL;
897         break;
898     case  R_EN:
899         mask = 0x1;
900         break;
901     case R_SLAVE_IDLE_COUNT:
902         mask = 0xFF;
903         break;
904     case R_MOD_ID:
905         mask = 0x01FFFFFF;
906         break;
907     case R_INTR_EN:
908     case R_INTR_DIS:
909     case R_TX_DATA:
910         mask = 0;
911         break;
912     case R_RX_DATA:
913         memset(rx_buf, 0, sizeof(rx_buf));
914         shortfall = rx_data_bytes(&s->rx_fifo, rx_buf, s->num_txrx_bytes);
915         ret = s->regs[R_CONFIG] & R_CONFIG_ENDIAN ?
916                         cpu_to_be32(*(uint32_t *)rx_buf) :
917                         cpu_to_le32(*(uint32_t *)rx_buf);
918         if (!(s->regs[R_CONFIG] & R_CONFIG_ENDIAN)) {
919             ret <<= 8 * shortfall;
920         }
921         DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr * 4, ret);
922         xilinx_spips_check_flush(s);
923         xilinx_spips_update_ixr(s);
924         return ret;
925     }
926     DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr * 4,
927                s->regs[addr] & mask);
928     return s->regs[addr] & mask;
929 
930 }
931 
932 static uint64_t xlnx_zynqmp_qspips_read(void *opaque,
933                                         hwaddr addr, unsigned size)
934 {
935     XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque);
936     uint32_t reg = addr / 4;
937     uint32_t ret;
938     uint8_t rx_buf[4];
939     int shortfall;
940 
941     if (reg <= R_MOD_ID) {
942         return xilinx_spips_read(opaque, addr, size);
943     } else {
944         switch (reg) {
945         case R_GQSPI_RXD:
946             if (fifo8_is_empty(&s->rx_fifo_g)) {
947                 qemu_log_mask(LOG_GUEST_ERROR,
948                               "Read from empty GQSPI RX FIFO\n");
949                 return 0;
950             }
951             memset(rx_buf, 0, sizeof(rx_buf));
952             shortfall = rx_data_bytes(&s->rx_fifo_g, rx_buf,
953                                       XILINX_SPIPS(s)->num_txrx_bytes);
954             ret = ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN) ?
955                   cpu_to_be32(*(uint32_t *)rx_buf) :
956                   cpu_to_le32(*(uint32_t *)rx_buf);
957             if (!ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)) {
958                 ret <<= 8 * shortfall;
959             }
960             xlnx_zynqmp_qspips_check_flush(s);
961             xlnx_zynqmp_qspips_update_ixr(s);
962             return ret;
963         default:
964             return s->regs[reg];
965         }
966     }
967 }
968 
969 static void xilinx_spips_write(void *opaque, hwaddr addr,
970                                uint64_t value, unsigned size)
971 {
972     int mask = ~0;
973     XilinxSPIPS *s = opaque;
974     bool try_flush = true;
975 
976     DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr, (unsigned)value);
977     addr >>= 2;
978     assert(addr < XLNX_SPIPS_R_MAX);
979 
980     switch (addr) {
981     case R_CONFIG:
982         mask = ~(R_CONFIG_RSVD | MAN_START_COM);
983         if ((value & MAN_START_COM) && (s->regs[R_CONFIG] & MAN_START_EN)) {
984             s->man_start_com = true;
985         }
986         break;
987     case R_INTR_STATUS:
988         mask = IXR_ALL;
989         s->regs[R_INTR_STATUS] &= ~(mask & value);
990         goto no_reg_update;
991     case R_INTR_DIS:
992         mask = IXR_ALL;
993         s->regs[R_INTR_MASK] &= ~(mask & value);
994         goto no_reg_update;
995     case R_INTR_EN:
996         mask = IXR_ALL;
997         s->regs[R_INTR_MASK] |= mask & value;
998         goto no_reg_update;
999     case R_EN:
1000         mask = 0x1;
1001         break;
1002     case R_SLAVE_IDLE_COUNT:
1003         mask = 0xFF;
1004         break;
1005     case R_RX_DATA:
1006     case R_INTR_MASK:
1007     case R_MOD_ID:
1008         mask = 0;
1009         break;
1010     case R_TX_DATA:
1011         tx_data_bytes(&s->tx_fifo, (uint32_t)value, s->num_txrx_bytes,
1012                       s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1013         goto no_reg_update;
1014     case R_TXD1:
1015         tx_data_bytes(&s->tx_fifo, (uint32_t)value, 1,
1016                       s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1017         goto no_reg_update;
1018     case R_TXD2:
1019         tx_data_bytes(&s->tx_fifo, (uint32_t)value, 2,
1020                       s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1021         goto no_reg_update;
1022     case R_TXD3:
1023         tx_data_bytes(&s->tx_fifo, (uint32_t)value, 3,
1024                       s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
1025         goto no_reg_update;
1026     /* Skip SPI bus update for below registers writes */
1027     case R_GPIO:
1028     case R_LPBK_DLY_ADJ:
1029     case R_IOU_TAPDLY_BYPASS:
1030     case R_DUMMY_CYCLE_EN:
1031     case R_ECO:
1032         try_flush = false;
1033         break;
1034     }
1035     s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
1036 no_reg_update:
1037     if (try_flush) {
1038         xilinx_spips_update_cs_lines(s);
1039         xilinx_spips_check_flush(s);
1040         xilinx_spips_update_cs_lines(s);
1041         xilinx_spips_update_ixr(s);
1042     }
1043 }
1044 
1045 static const MemoryRegionOps spips_ops = {
1046     .read = xilinx_spips_read,
1047     .write = xilinx_spips_write,
1048     .endianness = DEVICE_LITTLE_ENDIAN,
1049 };
1050 
1051 static void xilinx_qspips_invalidate_mmio_ptr(XilinxQSPIPS *q)
1052 {
1053     q->lqspi_cached_addr = ~0ULL;
1054 }
1055 
1056 static void xilinx_qspips_write(void *opaque, hwaddr addr,
1057                                 uint64_t value, unsigned size)
1058 {
1059     XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
1060     XilinxSPIPS *s = XILINX_SPIPS(opaque);
1061 
1062     xilinx_spips_write(opaque, addr, value, size);
1063     addr >>= 2;
1064 
1065     if (addr == R_LQSPI_CFG) {
1066         xilinx_qspips_invalidate_mmio_ptr(q);
1067     }
1068     if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) {
1069         fifo8_reset(&s->rx_fifo);
1070     }
1071 }
1072 
1073 static void xlnx_zynqmp_qspips_write(void *opaque, hwaddr addr,
1074                                      uint64_t value, unsigned size)
1075 {
1076     XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque);
1077     uint32_t reg = addr / 4;
1078 
1079     if (reg <= R_MOD_ID) {
1080         xilinx_qspips_write(opaque, addr, value, size);
1081     } else {
1082         switch (reg) {
1083         case R_GQSPI_CNFG:
1084             if (FIELD_EX32(value, GQSPI_CNFG, GEN_FIFO_START) &&
1085                 ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE)) {
1086                 s->man_start_com_g = true;
1087             }
1088             s->regs[reg] = value & ~(R_GQSPI_CNFG_GEN_FIFO_START_MASK);
1089             break;
1090         case R_GQSPI_GEN_FIFO:
1091             if (!fifo32_is_full(&s->fifo_g)) {
1092                 fifo32_push(&s->fifo_g, value);
1093             }
1094             break;
1095         case R_GQSPI_TXD:
1096             tx_data_bytes(&s->tx_fifo_g, (uint32_t)value, 4,
1097                           ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN));
1098             break;
1099         case R_GQSPI_FIFO_CTRL:
1100             if (FIELD_EX32(value, GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET)) {
1101                 fifo32_reset(&s->fifo_g);
1102             }
1103             if (FIELD_EX32(value, GQSPI_FIFO_CTRL, TX_FIFO_RESET)) {
1104                 fifo8_reset(&s->tx_fifo_g);
1105             }
1106             if (FIELD_EX32(value, GQSPI_FIFO_CTRL, RX_FIFO_RESET)) {
1107                 fifo8_reset(&s->rx_fifo_g);
1108             }
1109             break;
1110         case R_GQSPI_IDR:
1111             s->regs[R_GQSPI_IMR] |= value;
1112             break;
1113         case R_GQSPI_IER:
1114             s->regs[R_GQSPI_IMR] &= ~value;
1115             break;
1116         case R_GQSPI_ISR:
1117             s->regs[R_GQSPI_ISR] &= ~value;
1118             break;
1119         case R_GQSPI_IMR:
1120         case R_GQSPI_RXD:
1121         case R_GQSPI_GF_SNAPSHOT:
1122         case R_GQSPI_MOD_ID:
1123             break;
1124         default:
1125             s->regs[reg] = value;
1126             break;
1127         }
1128         xlnx_zynqmp_qspips_update_cs_lines(s);
1129         xlnx_zynqmp_qspips_check_flush(s);
1130         xlnx_zynqmp_qspips_update_cs_lines(s);
1131         xlnx_zynqmp_qspips_update_ixr(s);
1132     }
1133     xlnx_zynqmp_qspips_notify(s);
1134 }
1135 
1136 static const MemoryRegionOps qspips_ops = {
1137     .read = xilinx_spips_read,
1138     .write = xilinx_qspips_write,
1139     .endianness = DEVICE_LITTLE_ENDIAN,
1140 };
1141 
1142 static const MemoryRegionOps xlnx_zynqmp_qspips_ops = {
1143     .read = xlnx_zynqmp_qspips_read,
1144     .write = xlnx_zynqmp_qspips_write,
1145     .endianness = DEVICE_LITTLE_ENDIAN,
1146 };
1147 
1148 #define LQSPI_CACHE_SIZE 1024
1149 
1150 static void lqspi_load_cache(void *opaque, hwaddr addr)
1151 {
1152     XilinxQSPIPS *q = opaque;
1153     XilinxSPIPS *s = opaque;
1154     int i;
1155     int flash_addr = ((addr & ~(LQSPI_CACHE_SIZE - 1))
1156                    / num_effective_busses(s));
1157     int peripheral = flash_addr >> LQSPI_ADDRESS_BITS;
1158     int cache_entry = 0;
1159     uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE;
1160 
1161     if (addr < q->lqspi_cached_addr ||
1162             addr > q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
1163         xilinx_qspips_invalidate_mmio_ptr(q);
1164         s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
1165         s->regs[R_LQSPI_STS] |= peripheral ? LQSPI_CFG_U_PAGE : 0;
1166 
1167         DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
1168 
1169         fifo8_reset(&s->tx_fifo);
1170         fifo8_reset(&s->rx_fifo);
1171 
1172         /* instruction */
1173         DB_PRINT_L(0, "pushing read instruction: %02x\n",
1174                    (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] &
1175                                        LQSPI_CFG_INST_CODE));
1176         fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
1177         /* read address */
1178         DB_PRINT_L(0, "pushing read address %06x\n", flash_addr);
1179         if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_ADDR4) {
1180             fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 24));
1181         }
1182         fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
1183         fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
1184         fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
1185         /* mode bits */
1186         if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
1187             fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
1188                                               LQSPI_CFG_MODE_SHIFT,
1189                                               LQSPI_CFG_MODE_WIDTH));
1190         }
1191         /* dummy bytes */
1192         for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
1193                                    LQSPI_CFG_DUMMY_WIDTH)); ++i) {
1194             DB_PRINT_L(0, "pushing dummy byte\n");
1195             fifo8_push(&s->tx_fifo, 0);
1196         }
1197         xilinx_spips_update_cs_lines(s);
1198         xilinx_spips_flush_txfifo(s);
1199         fifo8_reset(&s->rx_fifo);
1200 
1201         DB_PRINT_L(0, "starting QSPI data read\n");
1202 
1203         while (cache_entry < LQSPI_CACHE_SIZE) {
1204             for (i = 0; i < 64; ++i) {
1205                 tx_data_bytes(&s->tx_fifo, 0, 1, false);
1206             }
1207             xilinx_spips_flush_txfifo(s);
1208             for (i = 0; i < 64; ++i) {
1209                 rx_data_bytes(&s->rx_fifo, &q->lqspi_buf[cache_entry++], 1);
1210             }
1211         }
1212 
1213         s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
1214         s->regs[R_LQSPI_STS] |= u_page_save;
1215         xilinx_spips_update_cs_lines(s);
1216 
1217         q->lqspi_cached_addr = flash_addr * num_effective_busses(s);
1218     }
1219 }
1220 
1221 static MemTxResult lqspi_read(void *opaque, hwaddr addr, uint64_t *value,
1222                               unsigned size, MemTxAttrs attrs)
1223 {
1224     XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
1225 
1226     if (addr >= q->lqspi_cached_addr &&
1227             addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
1228         uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr];
1229         *value = cpu_to_le32(*(uint32_t *)retp);
1230         DB_PRINT_L(1, "addr: %08" HWADDR_PRIx ", data: %08" PRIx64 "\n",
1231                    addr, *value);
1232         return MEMTX_OK;
1233     }
1234 
1235     lqspi_load_cache(opaque, addr);
1236     return lqspi_read(opaque, addr, value, size, attrs);
1237 }
1238 
1239 static MemTxResult lqspi_write(void *opaque, hwaddr offset, uint64_t value,
1240                                unsigned size, MemTxAttrs attrs)
1241 {
1242     /*
1243      * From UG1085, Chapter 24 (Quad-SPI controllers):
1244      * - Writes are ignored
1245      * - AXI writes generate an external AXI slave error (SLVERR)
1246      */
1247     qemu_log_mask(LOG_GUEST_ERROR, "%s Unexpected %u-bit access to 0x%" PRIx64
1248                                    " (value: 0x%" PRIx64 "\n",
1249                   __func__, size << 3, offset, value);
1250 
1251     return MEMTX_ERROR;
1252 }
1253 
1254 static const MemoryRegionOps lqspi_ops = {
1255     .read_with_attrs = lqspi_read,
1256     .write_with_attrs = lqspi_write,
1257     .endianness = DEVICE_NATIVE_ENDIAN,
1258     .impl = {
1259         .min_access_size = 4,
1260         .max_access_size = 4,
1261     },
1262     .valid = {
1263         .min_access_size = 1,
1264         .max_access_size = 4
1265     }
1266 };
1267 
1268 static void xilinx_spips_realize(DeviceState *dev, Error **errp)
1269 {
1270     XilinxSPIPS *s = XILINX_SPIPS(dev);
1271     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1272     XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
1273     int i;
1274 
1275     DB_PRINT_L(0, "realized spips\n");
1276 
1277     if (s->num_busses > MAX_NUM_BUSSES) {
1278         error_setg(errp,
1279                    "requested number of SPI busses %u exceeds maximum %d",
1280                    s->num_busses, MAX_NUM_BUSSES);
1281         return;
1282     }
1283     if (s->num_busses < MIN_NUM_BUSSES) {
1284         error_setg(errp,
1285                    "requested number of SPI busses %u is below minimum %d",
1286                    s->num_busses, MIN_NUM_BUSSES);
1287         return;
1288     }
1289 
1290     s->spi = g_new(SSIBus *, s->num_busses);
1291     for (i = 0; i < s->num_busses; ++i) {
1292         char bus_name[16];
1293         snprintf(bus_name, 16, "spi%d", i);
1294         s->spi[i] = ssi_create_bus(dev, bus_name);
1295     }
1296 
1297     s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses);
1298     s->cs_lines_state = g_new0(bool, s->num_cs * s->num_busses);
1299 
1300     sysbus_init_irq(sbd, &s->irq);
1301     for (i = 0; i < s->num_cs * s->num_busses; ++i) {
1302         sysbus_init_irq(sbd, &s->cs_lines[i]);
1303     }
1304 
1305     memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s,
1306                           "spi", xsc->reg_size);
1307     sysbus_init_mmio(sbd, &s->iomem);
1308 
1309     s->irqline = -1;
1310 
1311     fifo8_create(&s->rx_fifo, xsc->rx_fifo_size);
1312     fifo8_create(&s->tx_fifo, xsc->tx_fifo_size);
1313 }
1314 
1315 static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
1316 {
1317     XilinxSPIPS *s = XILINX_SPIPS(dev);
1318     XilinxQSPIPS *q = XILINX_QSPIPS(dev);
1319     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1320 
1321     DB_PRINT_L(0, "realized qspips\n");
1322 
1323     s->num_busses = 2;
1324     s->num_cs = 2;
1325     s->num_txrx_bytes = 4;
1326 
1327     xilinx_spips_realize(dev, errp);
1328     memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi",
1329                           (1 << LQSPI_ADDRESS_BITS) * 2);
1330     sysbus_init_mmio(sbd, &s->mmlqspi);
1331 
1332     q->lqspi_cached_addr = ~0ULL;
1333 }
1334 
1335 static void xlnx_zynqmp_qspips_realize(DeviceState *dev, Error **errp)
1336 {
1337     XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(dev);
1338     XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
1339 
1340     if (s->dma_burst_size > QSPI_DMA_MAX_BURST_SIZE) {
1341         error_setg(errp,
1342                    "qspi dma burst size %u exceeds maximum limit %d",
1343                    s->dma_burst_size, QSPI_DMA_MAX_BURST_SIZE);
1344         return;
1345     }
1346     xilinx_qspips_realize(dev, errp);
1347     fifo8_create(&s->rx_fifo_g, xsc->rx_fifo_size);
1348     fifo8_create(&s->tx_fifo_g, xsc->tx_fifo_size);
1349     fifo32_create(&s->fifo_g, 32);
1350 }
1351 
1352 static void xlnx_zynqmp_qspips_init(Object *obj)
1353 {
1354     XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(obj);
1355 
1356     object_property_add_link(obj, "stream-connected-dma", TYPE_STREAM_SINK,
1357                              (Object **)&rq->dma,
1358                              object_property_allow_set_link,
1359                              OBJ_PROP_LINK_STRONG);
1360 }
1361 
1362 static int xilinx_spips_post_load(void *opaque, int version_id)
1363 {
1364     xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
1365     xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
1366     return 0;
1367 }
1368 
1369 static const VMStateDescription vmstate_xilinx_spips = {
1370     .name = "xilinx_spips",
1371     .version_id = 2,
1372     .minimum_version_id = 2,
1373     .post_load = xilinx_spips_post_load,
1374     .fields = (const VMStateField[]) {
1375         VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
1376         VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
1377         VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX),
1378         VMSTATE_UINT8(snoop_state, XilinxSPIPS),
1379         VMSTATE_END_OF_LIST()
1380     }
1381 };
1382 
1383 static int xlnx_zynqmp_qspips_post_load(void *opaque, int version_id)
1384 {
1385     XlnxZynqMPQSPIPS *s = (XlnxZynqMPQSPIPS *)opaque;
1386     XilinxSPIPS *qs = XILINX_SPIPS(s);
1387 
1388     if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN) &&
1389         fifo8_is_empty(&qs->rx_fifo) && fifo8_is_empty(&qs->tx_fifo)) {
1390         xlnx_zynqmp_qspips_update_ixr(s);
1391         xlnx_zynqmp_qspips_update_cs_lines(s);
1392     }
1393     return 0;
1394 }
1395 
1396 static const VMStateDescription vmstate_xilinx_qspips = {
1397     .name = "xilinx_qspips",
1398     .version_id = 1,
1399     .minimum_version_id = 1,
1400     .fields = (const VMStateField[]) {
1401         VMSTATE_STRUCT(parent_obj, XilinxQSPIPS, 0,
1402                        vmstate_xilinx_spips, XilinxSPIPS),
1403         VMSTATE_END_OF_LIST()
1404     }
1405 };
1406 
1407 static const VMStateDescription vmstate_xlnx_zynqmp_qspips = {
1408     .name = "xlnx_zynqmp_qspips",
1409     .version_id = 1,
1410     .minimum_version_id = 1,
1411     .post_load = xlnx_zynqmp_qspips_post_load,
1412     .fields = (const VMStateField[]) {
1413         VMSTATE_STRUCT(parent_obj, XlnxZynqMPQSPIPS, 0,
1414                        vmstate_xilinx_qspips, XilinxQSPIPS),
1415         VMSTATE_FIFO8(tx_fifo_g, XlnxZynqMPQSPIPS),
1416         VMSTATE_FIFO8(rx_fifo_g, XlnxZynqMPQSPIPS),
1417         VMSTATE_FIFO32(fifo_g, XlnxZynqMPQSPIPS),
1418         VMSTATE_UINT32_ARRAY(regs, XlnxZynqMPQSPIPS, XLNX_ZYNQMP_SPIPS_R_MAX),
1419         VMSTATE_END_OF_LIST()
1420     }
1421 };
1422 
1423 static Property xilinx_zynqmp_qspips_properties[] = {
1424     DEFINE_PROP_UINT32("dma-burst-size", XlnxZynqMPQSPIPS, dma_burst_size, 64),
1425     DEFINE_PROP_END_OF_LIST(),
1426 };
1427 
1428 static Property xilinx_spips_properties[] = {
1429     DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
1430     DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
1431     DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
1432     DEFINE_PROP_END_OF_LIST(),
1433 };
1434 
1435 static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
1436 {
1437     DeviceClass *dc = DEVICE_CLASS(klass);
1438     XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
1439 
1440     dc->realize = xilinx_qspips_realize;
1441     xsc->reg_ops = &qspips_ops;
1442     xsc->reg_size = XLNX_SPIPS_R_MAX * 4;
1443     xsc->rx_fifo_size = RXFF_A_Q;
1444     xsc->tx_fifo_size = TXFF_A_Q;
1445 }
1446 
1447 static void xilinx_spips_class_init(ObjectClass *klass, void *data)
1448 {
1449     DeviceClass *dc = DEVICE_CLASS(klass);
1450     XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
1451 
1452     dc->realize = xilinx_spips_realize;
1453     device_class_set_legacy_reset(dc, xilinx_spips_reset);
1454     device_class_set_props(dc, xilinx_spips_properties);
1455     dc->vmsd = &vmstate_xilinx_spips;
1456 
1457     xsc->reg_ops = &spips_ops;
1458     xsc->reg_size = XLNX_SPIPS_R_MAX * 4;
1459     xsc->rx_fifo_size = RXFF_A;
1460     xsc->tx_fifo_size = TXFF_A;
1461 }
1462 
1463 static void xlnx_zynqmp_qspips_class_init(ObjectClass *klass, void * data)
1464 {
1465     DeviceClass *dc = DEVICE_CLASS(klass);
1466     XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
1467 
1468     dc->realize = xlnx_zynqmp_qspips_realize;
1469     device_class_set_legacy_reset(dc, xlnx_zynqmp_qspips_reset);
1470     dc->vmsd = &vmstate_xlnx_zynqmp_qspips;
1471     device_class_set_props(dc, xilinx_zynqmp_qspips_properties);
1472     xsc->reg_ops = &xlnx_zynqmp_qspips_ops;
1473     xsc->reg_size = XLNX_ZYNQMP_SPIPS_R_MAX * 4;
1474     xsc->rx_fifo_size = RXFF_A_Q;
1475     xsc->tx_fifo_size = TXFF_A_Q;
1476 }
1477 
1478 static const TypeInfo xilinx_spips_info = {
1479     .name  = TYPE_XILINX_SPIPS,
1480     .parent = TYPE_SYS_BUS_DEVICE,
1481     .instance_size  = sizeof(XilinxSPIPS),
1482     .class_init = xilinx_spips_class_init,
1483     .class_size = sizeof(XilinxSPIPSClass),
1484 };
1485 
1486 static const TypeInfo xilinx_qspips_info = {
1487     .name  = TYPE_XILINX_QSPIPS,
1488     .parent = TYPE_XILINX_SPIPS,
1489     .instance_size  = sizeof(XilinxQSPIPS),
1490     .class_init = xilinx_qspips_class_init,
1491 };
1492 
1493 static const TypeInfo xlnx_zynqmp_qspips_info = {
1494     .name  = TYPE_XLNX_ZYNQMP_QSPIPS,
1495     .parent = TYPE_XILINX_QSPIPS,
1496     .instance_size  = sizeof(XlnxZynqMPQSPIPS),
1497     .instance_init  = xlnx_zynqmp_qspips_init,
1498     .class_init = xlnx_zynqmp_qspips_class_init,
1499 };
1500 
1501 static void xilinx_spips_register_types(void)
1502 {
1503     type_register_static(&xilinx_spips_info);
1504     type_register_static(&xilinx_qspips_info);
1505     type_register_static(&xlnx_zynqmp_qspips_info);
1506 }
1507 
1508 type_init(xilinx_spips_register_types)
1509