xref: /openbmc/qemu/hw/ssi/xilinx_spips.c (revision 80adf54e)
1 /*
2  * QEMU model of the Xilinx Zynq SPI controller
3  *
4  * Copyright (c) 2012 Peter A. G. Crosthwaite
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "sysemu/sysemu.h"
28 #include "hw/ptimer.h"
29 #include "qemu/log.h"
30 #include "qemu/fifo8.h"
31 #include "hw/ssi/ssi.h"
32 #include "qemu/bitops.h"
33 #include "hw/ssi/xilinx_spips.h"
34 #include "qapi/error.h"
35 #include "migration/blocker.h"
36 
37 #ifndef XILINX_SPIPS_ERR_DEBUG
38 #define XILINX_SPIPS_ERR_DEBUG 0
39 #endif
40 
41 #define DB_PRINT_L(level, ...) do { \
42     if (XILINX_SPIPS_ERR_DEBUG > (level)) { \
43         fprintf(stderr,  ": %s: ", __func__); \
44         fprintf(stderr, ## __VA_ARGS__); \
45     } \
46 } while (0);
47 
48 /* config register */
49 #define R_CONFIG            (0x00 / 4)
50 #define IFMODE              (1U << 31)
51 #define ENDIAN              (1 << 26)
52 #define MODEFAIL_GEN_EN     (1 << 17)
53 #define MAN_START_COM       (1 << 16)
54 #define MAN_START_EN        (1 << 15)
55 #define MANUAL_CS           (1 << 14)
56 #define CS                  (0xF << 10)
57 #define CS_SHIFT            (10)
58 #define PERI_SEL            (1 << 9)
59 #define REF_CLK             (1 << 8)
60 #define FIFO_WIDTH          (3 << 6)
61 #define BAUD_RATE_DIV       (7 << 3)
62 #define CLK_PH              (1 << 2)
63 #define CLK_POL             (1 << 1)
64 #define MODE_SEL            (1 << 0)
65 #define R_CONFIG_RSVD       (0x7bf40000)
66 
67 /* interrupt mechanism */
68 #define R_INTR_STATUS       (0x04 / 4)
69 #define R_INTR_EN           (0x08 / 4)
70 #define R_INTR_DIS          (0x0C / 4)
71 #define R_INTR_MASK         (0x10 / 4)
72 #define IXR_TX_FIFO_UNDERFLOW   (1 << 6)
73 #define IXR_RX_FIFO_FULL        (1 << 5)
74 #define IXR_RX_FIFO_NOT_EMPTY   (1 << 4)
75 #define IXR_TX_FIFO_FULL        (1 << 3)
76 #define IXR_TX_FIFO_NOT_FULL    (1 << 2)
77 #define IXR_TX_FIFO_MODE_FAIL   (1 << 1)
78 #define IXR_RX_FIFO_OVERFLOW    (1 << 0)
79 #define IXR_ALL                 ((IXR_TX_FIFO_UNDERFLOW<<1)-1)
80 
81 #define R_EN                (0x14 / 4)
82 #define R_DELAY             (0x18 / 4)
83 #define R_TX_DATA           (0x1C / 4)
84 #define R_RX_DATA           (0x20 / 4)
85 #define R_SLAVE_IDLE_COUNT  (0x24 / 4)
86 #define R_TX_THRES          (0x28 / 4)
87 #define R_RX_THRES          (0x2C / 4)
88 #define R_TXD1              (0x80 / 4)
89 #define R_TXD2              (0x84 / 4)
90 #define R_TXD3              (0x88 / 4)
91 
92 #define R_LQSPI_CFG         (0xa0 / 4)
93 #define R_LQSPI_CFG_RESET       0x03A002EB
94 #define LQSPI_CFG_LQ_MODE       (1U << 31)
95 #define LQSPI_CFG_TWO_MEM       (1 << 30)
96 #define LQSPI_CFG_SEP_BUS       (1 << 30)
97 #define LQSPI_CFG_U_PAGE        (1 << 28)
98 #define LQSPI_CFG_MODE_EN       (1 << 25)
99 #define LQSPI_CFG_MODE_WIDTH    8
100 #define LQSPI_CFG_MODE_SHIFT    16
101 #define LQSPI_CFG_DUMMY_WIDTH   3
102 #define LQSPI_CFG_DUMMY_SHIFT   8
103 #define LQSPI_CFG_INST_CODE     0xFF
104 
105 #define R_LQSPI_STS         (0xA4 / 4)
106 #define LQSPI_STS_WR_RECVD      (1 << 1)
107 
108 #define R_MOD_ID            (0xFC / 4)
109 
110 /* size of TXRX FIFOs */
111 #define RXFF_A          32
112 #define TXFF_A          32
113 
114 #define RXFF_A_Q          (64 * 4)
115 #define TXFF_A_Q          (64 * 4)
116 
117 /* 16MB per linear region */
118 #define LQSPI_ADDRESS_BITS 24
119 /* Bite off 4k chunks at a time */
120 #define LQSPI_CACHE_SIZE 1024
121 
122 #define SNOOP_CHECKING 0xFF
123 #define SNOOP_NONE 0xFE
124 #define SNOOP_STRIPING 0
125 
126 typedef enum {
127     READ = 0x3,
128     FAST_READ = 0xb,
129     DOR = 0x3b,
130     QOR = 0x6b,
131     DIOR = 0xbb,
132     QIOR = 0xeb,
133 
134     PP = 0x2,
135     DPP = 0xa2,
136     QPP = 0x32,
137 } FlashCMD;
138 
139 typedef struct {
140     XilinxSPIPS parent_obj;
141 
142     uint8_t lqspi_buf[LQSPI_CACHE_SIZE];
143     hwaddr lqspi_cached_addr;
144     Error *migration_blocker;
145     bool mmio_execution_enabled;
146 } XilinxQSPIPS;
147 
148 typedef struct XilinxSPIPSClass {
149     SysBusDeviceClass parent_class;
150 
151     const MemoryRegionOps *reg_ops;
152 
153     uint32_t rx_fifo_size;
154     uint32_t tx_fifo_size;
155 } XilinxSPIPSClass;
156 
157 static inline int num_effective_busses(XilinxSPIPS *s)
158 {
159     return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS &&
160             s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
161 }
162 
163 static inline bool xilinx_spips_cs_is_set(XilinxSPIPS *s, int i, int field)
164 {
165     return ~field & (1 << i) && (s->regs[R_CONFIG] & MANUAL_CS
166                     || !fifo8_is_empty(&s->tx_fifo));
167 }
168 
169 static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
170 {
171     int i, j;
172     bool found = false;
173     int field = s->regs[R_CONFIG] >> CS_SHIFT;
174 
175     for (i = 0; i < s->num_cs; i++) {
176         for (j = 0; j < num_effective_busses(s); j++) {
177             int upage = !!(s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE);
178             int cs_to_set = (j * s->num_cs + i + upage) %
179                                 (s->num_cs * s->num_busses);
180 
181             if (xilinx_spips_cs_is_set(s, i, field) && !found) {
182                 DB_PRINT_L(0, "selecting slave %d\n", i);
183                 qemu_set_irq(s->cs_lines[cs_to_set], 0);
184             } else {
185                 DB_PRINT_L(0, "deselecting slave %d\n", i);
186                 qemu_set_irq(s->cs_lines[cs_to_set], 1);
187             }
188         }
189         if (xilinx_spips_cs_is_set(s, i, field)) {
190             found = true;
191         }
192     }
193     if (!found) {
194         s->snoop_state = SNOOP_CHECKING;
195         DB_PRINT_L(1, "moving to snoop check state\n");
196     }
197 }
198 
199 static void xilinx_spips_update_ixr(XilinxSPIPS *s)
200 {
201     if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE) {
202         return;
203     }
204     /* These are set/cleared as they occur */
205     s->regs[R_INTR_STATUS] &= (IXR_TX_FIFO_UNDERFLOW | IXR_RX_FIFO_OVERFLOW |
206                                 IXR_TX_FIFO_MODE_FAIL);
207     /* these are pure functions of fifo state, set them here */
208     s->regs[R_INTR_STATUS] |=
209         (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
210         (s->rx_fifo.num >= s->regs[R_RX_THRES] ? IXR_RX_FIFO_NOT_EMPTY : 0) |
211         (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
212         (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
213     /* drive external interrupt pin */
214     int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
215                                                                 IXR_ALL);
216     if (new_irqline != s->irqline) {
217         s->irqline = new_irqline;
218         qemu_set_irq(s->irq, s->irqline);
219     }
220 }
221 
222 static void xilinx_spips_reset(DeviceState *d)
223 {
224     XilinxSPIPS *s = XILINX_SPIPS(d);
225 
226     int i;
227     for (i = 0; i < XLNX_SPIPS_R_MAX; i++) {
228         s->regs[i] = 0;
229     }
230 
231     fifo8_reset(&s->rx_fifo);
232     fifo8_reset(&s->rx_fifo);
233     /* non zero resets */
234     s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
235     s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
236     s->regs[R_TX_THRES] = 1;
237     s->regs[R_RX_THRES] = 1;
238     /* FIXME: move magic number definition somewhere sensible */
239     s->regs[R_MOD_ID] = 0x01090106;
240     s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
241     s->snoop_state = SNOOP_CHECKING;
242     xilinx_spips_update_ixr(s);
243     xilinx_spips_update_cs_lines(s);
244 }
245 
246 /* N way (num) in place bit striper. Lay out row wise bits (LSB to MSB)
247  * column wise (from element 0 to N-1). num is the length of x, and dir
248  * reverses the direction of the transform. Best illustrated by example:
249  * Each digit in the below array is a single bit (num == 3):
250  *
251  * {{ 76543210, }  ----- stripe (dir == false) -----> {{ FCheb630, }
252  *  { hgfedcba, }                                      { GDAfc741, }
253  *  { HGFEDCBA, }} <---- upstripe (dir == true) -----  { HEBgda52, }}
254  */
255 
256 static inline void stripe8(uint8_t *x, int num, bool dir)
257 {
258     uint8_t r[num];
259     memset(r, 0, sizeof(uint8_t) * num);
260     int idx[2] = {0, 0};
261     int bit[2] = {0, 0};
262     int d = dir;
263 
264     for (idx[0] = 0; idx[0] < num; ++idx[0]) {
265         for (bit[0] = 0; bit[0] < 8; ++bit[0]) {
266             r[idx[d]] |= x[idx[!d]] & 1 << bit[!d] ? 1 << bit[d] : 0;
267             idx[1] = (idx[1] + 1) % num;
268             if (!idx[1]) {
269                 bit[1]++;
270             }
271         }
272     }
273     memcpy(x, r, sizeof(uint8_t) * num);
274 }
275 
276 static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
277 {
278     int debug_level = 0;
279 
280     for (;;) {
281         int i;
282         uint8_t tx = 0;
283         uint8_t tx_rx[num_effective_busses(s)];
284 
285         if (fifo8_is_empty(&s->tx_fifo)) {
286             if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
287                 s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW;
288             }
289             xilinx_spips_update_ixr(s);
290             return;
291         } else if (s->snoop_state == SNOOP_STRIPING) {
292             for (i = 0; i < num_effective_busses(s); ++i) {
293                 tx_rx[i] = fifo8_pop(&s->tx_fifo);
294             }
295             stripe8(tx_rx, num_effective_busses(s), false);
296         } else {
297             tx = fifo8_pop(&s->tx_fifo);
298             for (i = 0; i < num_effective_busses(s); ++i) {
299                 tx_rx[i] = tx;
300             }
301         }
302 
303         for (i = 0; i < num_effective_busses(s); ++i) {
304             DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]);
305             tx_rx[i] = ssi_transfer(s->spi[i], (uint32_t)tx_rx[i]);
306             DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]);
307         }
308 
309         if (fifo8_is_full(&s->rx_fifo)) {
310             s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
311             DB_PRINT_L(0, "rx FIFO overflow");
312         } else if (s->snoop_state == SNOOP_STRIPING) {
313             stripe8(tx_rx, num_effective_busses(s), true);
314             for (i = 0; i < num_effective_busses(s); ++i) {
315                 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]);
316             }
317         } else {
318            fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]);
319         }
320 
321         DB_PRINT_L(debug_level, "initial snoop state: %x\n",
322                    (unsigned)s->snoop_state);
323         switch (s->snoop_state) {
324         case (SNOOP_CHECKING):
325             switch (tx) { /* new instruction code */
326             case READ: /* 3 address bytes, no dummy bytes/cycles */
327             case PP:
328             case DPP:
329             case QPP:
330                 s->snoop_state = 3;
331                 break;
332             case FAST_READ: /* 3 address bytes, 1 dummy byte */
333             case DOR:
334             case QOR:
335             case DIOR: /* FIXME: these vary between vendor - set to spansion */
336                 s->snoop_state = 4;
337                 break;
338             case QIOR: /* 3 address bytes, 2 dummy bytes */
339                 s->snoop_state = 6;
340                 break;
341             default:
342                 s->snoop_state = SNOOP_NONE;
343             }
344             break;
345         case (SNOOP_STRIPING):
346         case (SNOOP_NONE):
347             /* Once we hit the boring stuff - squelch debug noise */
348             if (!debug_level) {
349                 DB_PRINT_L(0, "squelching debug info ....\n");
350                 debug_level = 1;
351             }
352             break;
353         default:
354             s->snoop_state--;
355         }
356         DB_PRINT_L(debug_level, "final snoop state: %x\n",
357                    (unsigned)s->snoop_state);
358     }
359 }
360 
361 static inline void rx_data_bytes(XilinxSPIPS *s, uint8_t *value, int max)
362 {
363     int i;
364 
365     for (i = 0; i < max && !fifo8_is_empty(&s->rx_fifo); ++i) {
366         value[i] = fifo8_pop(&s->rx_fifo);
367     }
368 }
369 
370 static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
371                                                         unsigned size)
372 {
373     XilinxSPIPS *s = opaque;
374     uint32_t mask = ~0;
375     uint32_t ret;
376     uint8_t rx_buf[4];
377 
378     addr >>= 2;
379     switch (addr) {
380     case R_CONFIG:
381         mask = ~(R_CONFIG_RSVD | MAN_START_COM);
382         break;
383     case R_INTR_STATUS:
384         ret = s->regs[addr] & IXR_ALL;
385         s->regs[addr] = 0;
386         DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
387         return ret;
388     case R_INTR_MASK:
389         mask = IXR_ALL;
390         break;
391     case  R_EN:
392         mask = 0x1;
393         break;
394     case R_SLAVE_IDLE_COUNT:
395         mask = 0xFF;
396         break;
397     case R_MOD_ID:
398         mask = 0x01FFFFFF;
399         break;
400     case R_INTR_EN:
401     case R_INTR_DIS:
402     case R_TX_DATA:
403         mask = 0;
404         break;
405     case R_RX_DATA:
406         memset(rx_buf, 0, sizeof(rx_buf));
407         rx_data_bytes(s, rx_buf, s->num_txrx_bytes);
408         ret = s->regs[R_CONFIG] & ENDIAN ? cpu_to_be32(*(uint32_t *)rx_buf)
409                         : cpu_to_le32(*(uint32_t *)rx_buf);
410         DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
411         xilinx_spips_update_ixr(s);
412         return ret;
413     }
414     DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4,
415                s->regs[addr] & mask);
416     return s->regs[addr] & mask;
417 
418 }
419 
420 static inline void tx_data_bytes(XilinxSPIPS *s, uint32_t value, int num)
421 {
422     int i;
423     for (i = 0; i < num && !fifo8_is_full(&s->tx_fifo); ++i) {
424         if (s->regs[R_CONFIG] & ENDIAN) {
425             fifo8_push(&s->tx_fifo, (uint8_t)(value >> 24));
426             value <<= 8;
427         } else {
428             fifo8_push(&s->tx_fifo, (uint8_t)value);
429             value >>= 8;
430         }
431     }
432 }
433 
434 static void xilinx_spips_write(void *opaque, hwaddr addr,
435                                         uint64_t value, unsigned size)
436 {
437     int mask = ~0;
438     int man_start_com = 0;
439     XilinxSPIPS *s = opaque;
440 
441     DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
442     addr >>= 2;
443     switch (addr) {
444     case R_CONFIG:
445         mask = ~(R_CONFIG_RSVD | MAN_START_COM);
446         if (value & MAN_START_COM) {
447             man_start_com = 1;
448         }
449         break;
450     case R_INTR_STATUS:
451         mask = IXR_ALL;
452         s->regs[R_INTR_STATUS] &= ~(mask & value);
453         goto no_reg_update;
454     case R_INTR_DIS:
455         mask = IXR_ALL;
456         s->regs[R_INTR_MASK] &= ~(mask & value);
457         goto no_reg_update;
458     case R_INTR_EN:
459         mask = IXR_ALL;
460         s->regs[R_INTR_MASK] |= mask & value;
461         goto no_reg_update;
462     case R_EN:
463         mask = 0x1;
464         break;
465     case R_SLAVE_IDLE_COUNT:
466         mask = 0xFF;
467         break;
468     case R_RX_DATA:
469     case R_INTR_MASK:
470     case R_MOD_ID:
471         mask = 0;
472         break;
473     case R_TX_DATA:
474         tx_data_bytes(s, (uint32_t)value, s->num_txrx_bytes);
475         goto no_reg_update;
476     case R_TXD1:
477         tx_data_bytes(s, (uint32_t)value, 1);
478         goto no_reg_update;
479     case R_TXD2:
480         tx_data_bytes(s, (uint32_t)value, 2);
481         goto no_reg_update;
482     case R_TXD3:
483         tx_data_bytes(s, (uint32_t)value, 3);
484         goto no_reg_update;
485     }
486     s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
487 no_reg_update:
488     xilinx_spips_update_cs_lines(s);
489     if ((man_start_com && s->regs[R_CONFIG] & MAN_START_EN) ||
490             (fifo8_is_empty(&s->tx_fifo) && s->regs[R_CONFIG] & MAN_START_EN)) {
491         xilinx_spips_flush_txfifo(s);
492     }
493     xilinx_spips_update_cs_lines(s);
494     xilinx_spips_update_ixr(s);
495 }
496 
497 static const MemoryRegionOps spips_ops = {
498     .read = xilinx_spips_read,
499     .write = xilinx_spips_write,
500     .endianness = DEVICE_LITTLE_ENDIAN,
501 };
502 
503 static void xilinx_qspips_invalidate_mmio_ptr(XilinxQSPIPS *q)
504 {
505     XilinxSPIPS *s = &q->parent_obj;
506 
507     if ((q->mmio_execution_enabled) && (q->lqspi_cached_addr != ~0ULL)) {
508         /* Invalidate the current mapped mmio */
509         memory_region_invalidate_mmio_ptr(&s->mmlqspi, q->lqspi_cached_addr,
510                                           LQSPI_CACHE_SIZE);
511     }
512 
513     q->lqspi_cached_addr = ~0ULL;
514 }
515 
516 static void xilinx_qspips_write(void *opaque, hwaddr addr,
517                                 uint64_t value, unsigned size)
518 {
519     XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
520 
521     xilinx_spips_write(opaque, addr, value, size);
522     addr >>= 2;
523 
524     if (addr == R_LQSPI_CFG) {
525         xilinx_qspips_invalidate_mmio_ptr(q);
526     }
527 }
528 
529 static const MemoryRegionOps qspips_ops = {
530     .read = xilinx_spips_read,
531     .write = xilinx_qspips_write,
532     .endianness = DEVICE_LITTLE_ENDIAN,
533 };
534 
535 #define LQSPI_CACHE_SIZE 1024
536 
537 static void lqspi_load_cache(void *opaque, hwaddr addr)
538 {
539     XilinxQSPIPS *q = opaque;
540     XilinxSPIPS *s = opaque;
541     int i;
542     int flash_addr = ((addr & ~(LQSPI_CACHE_SIZE - 1))
543                    / num_effective_busses(s));
544     int slave = flash_addr >> LQSPI_ADDRESS_BITS;
545     int cache_entry = 0;
546     uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE;
547 
548     if (addr < q->lqspi_cached_addr ||
549             addr > q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
550         xilinx_qspips_invalidate_mmio_ptr(q);
551         s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
552         s->regs[R_LQSPI_STS] |= slave ? LQSPI_CFG_U_PAGE : 0;
553 
554         DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
555 
556         fifo8_reset(&s->tx_fifo);
557         fifo8_reset(&s->rx_fifo);
558 
559         /* instruction */
560         DB_PRINT_L(0, "pushing read instruction: %02x\n",
561                    (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] &
562                                        LQSPI_CFG_INST_CODE));
563         fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
564         /* read address */
565         DB_PRINT_L(0, "pushing read address %06x\n", flash_addr);
566         fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
567         fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
568         fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
569         /* mode bits */
570         if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
571             fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
572                                               LQSPI_CFG_MODE_SHIFT,
573                                               LQSPI_CFG_MODE_WIDTH));
574         }
575         /* dummy bytes */
576         for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
577                                    LQSPI_CFG_DUMMY_WIDTH)); ++i) {
578             DB_PRINT_L(0, "pushing dummy byte\n");
579             fifo8_push(&s->tx_fifo, 0);
580         }
581         xilinx_spips_update_cs_lines(s);
582         xilinx_spips_flush_txfifo(s);
583         fifo8_reset(&s->rx_fifo);
584 
585         DB_PRINT_L(0, "starting QSPI data read\n");
586 
587         while (cache_entry < LQSPI_CACHE_SIZE) {
588             for (i = 0; i < 64; ++i) {
589                 tx_data_bytes(s, 0, 1);
590             }
591             xilinx_spips_flush_txfifo(s);
592             for (i = 0; i < 64; ++i) {
593                 rx_data_bytes(s, &q->lqspi_buf[cache_entry++], 1);
594             }
595         }
596 
597         s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
598         s->regs[R_LQSPI_STS] |= u_page_save;
599         xilinx_spips_update_cs_lines(s);
600 
601         q->lqspi_cached_addr = flash_addr * num_effective_busses(s);
602     }
603 }
604 
605 static void *lqspi_request_mmio_ptr(void *opaque, hwaddr addr, unsigned *size,
606                                     unsigned *offset)
607 {
608     XilinxQSPIPS *q = opaque;
609     hwaddr offset_within_the_region;
610 
611     if (!q->mmio_execution_enabled) {
612         return NULL;
613     }
614 
615     offset_within_the_region = addr & ~(LQSPI_CACHE_SIZE - 1);
616     lqspi_load_cache(opaque, offset_within_the_region);
617     *size = LQSPI_CACHE_SIZE;
618     *offset = offset_within_the_region;
619     return q->lqspi_buf;
620 }
621 
622 static uint64_t
623 lqspi_read(void *opaque, hwaddr addr, unsigned int size)
624 {
625     XilinxQSPIPS *q = opaque;
626     uint32_t ret;
627 
628     if (addr >= q->lqspi_cached_addr &&
629             addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
630         uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr];
631         ret = cpu_to_le32(*(uint32_t *)retp);
632         DB_PRINT_L(1, "addr: %08x, data: %08x\n", (unsigned)addr,
633                    (unsigned)ret);
634         return ret;
635     } else {
636         lqspi_load_cache(opaque, addr);
637         return lqspi_read(opaque, addr, size);
638     }
639 }
640 
641 static const MemoryRegionOps lqspi_ops = {
642     .read = lqspi_read,
643     .request_ptr = lqspi_request_mmio_ptr,
644     .endianness = DEVICE_NATIVE_ENDIAN,
645     .valid = {
646         .min_access_size = 1,
647         .max_access_size = 4
648     }
649 };
650 
651 static void xilinx_spips_realize(DeviceState *dev, Error **errp)
652 {
653     XilinxSPIPS *s = XILINX_SPIPS(dev);
654     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
655     XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
656     qemu_irq *cs;
657     int i;
658 
659     DB_PRINT_L(0, "realized spips\n");
660 
661     s->spi = g_new(SSIBus *, s->num_busses);
662     for (i = 0; i < s->num_busses; ++i) {
663         char bus_name[16];
664         snprintf(bus_name, 16, "spi%d", i);
665         s->spi[i] = ssi_create_bus(dev, bus_name);
666     }
667 
668     s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses);
669     for (i = 0, cs = s->cs_lines; i < s->num_busses; ++i, cs += s->num_cs) {
670         ssi_auto_connect_slaves(DEVICE(s), cs, s->spi[i]);
671     }
672 
673     sysbus_init_irq(sbd, &s->irq);
674     for (i = 0; i < s->num_cs * s->num_busses; ++i) {
675         sysbus_init_irq(sbd, &s->cs_lines[i]);
676     }
677 
678     memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s,
679                           "spi", XLNX_SPIPS_R_MAX * 4);
680     sysbus_init_mmio(sbd, &s->iomem);
681 
682     s->irqline = -1;
683 
684     fifo8_create(&s->rx_fifo, xsc->rx_fifo_size);
685     fifo8_create(&s->tx_fifo, xsc->tx_fifo_size);
686 }
687 
688 static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
689 {
690     XilinxSPIPS *s = XILINX_SPIPS(dev);
691     XilinxQSPIPS *q = XILINX_QSPIPS(dev);
692     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
693 
694     DB_PRINT_L(0, "realized qspips\n");
695 
696     s->num_busses = 2;
697     s->num_cs = 2;
698     s->num_txrx_bytes = 4;
699 
700     xilinx_spips_realize(dev, errp);
701     memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi",
702                           (1 << LQSPI_ADDRESS_BITS) * 2);
703     sysbus_init_mmio(sbd, &s->mmlqspi);
704 
705     q->lqspi_cached_addr = ~0ULL;
706 
707     /* mmio_execution breaks migration better aborting than having strange
708      * bugs.
709      */
710     if (q->mmio_execution_enabled) {
711         error_setg(&q->migration_blocker,
712                    "enabling mmio_execution breaks migration");
713         migrate_add_blocker(q->migration_blocker, &error_fatal);
714     }
715 }
716 
717 static int xilinx_spips_post_load(void *opaque, int version_id)
718 {
719     xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
720     xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
721     return 0;
722 }
723 
724 static const VMStateDescription vmstate_xilinx_spips = {
725     .name = "xilinx_spips",
726     .version_id = 2,
727     .minimum_version_id = 2,
728     .post_load = xilinx_spips_post_load,
729     .fields = (VMStateField[]) {
730         VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
731         VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
732         VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX),
733         VMSTATE_UINT8(snoop_state, XilinxSPIPS),
734         VMSTATE_END_OF_LIST()
735     }
736 };
737 
738 static Property xilinx_qspips_properties[] = {
739     /* We had to turn this off for 2.10 as it is not compatible with migration.
740      * It can be enabled but will prevent the device to be migrated.
741      * This will go aways when a fix will be released.
742      */
743     DEFINE_PROP_BOOL("x-mmio-exec", XilinxQSPIPS, mmio_execution_enabled,
744                      false),
745     DEFINE_PROP_END_OF_LIST(),
746 };
747 
748 static Property xilinx_spips_properties[] = {
749     DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
750     DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
751     DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
752     DEFINE_PROP_END_OF_LIST(),
753 };
754 
755 static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
756 {
757     DeviceClass *dc = DEVICE_CLASS(klass);
758     XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
759 
760     dc->realize = xilinx_qspips_realize;
761     dc->props = xilinx_qspips_properties;
762     xsc->reg_ops = &qspips_ops;
763     xsc->rx_fifo_size = RXFF_A_Q;
764     xsc->tx_fifo_size = TXFF_A_Q;
765 }
766 
767 static void xilinx_spips_class_init(ObjectClass *klass, void *data)
768 {
769     DeviceClass *dc = DEVICE_CLASS(klass);
770     XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
771 
772     dc->realize = xilinx_spips_realize;
773     dc->reset = xilinx_spips_reset;
774     dc->props = xilinx_spips_properties;
775     dc->vmsd = &vmstate_xilinx_spips;
776 
777     xsc->reg_ops = &spips_ops;
778     xsc->rx_fifo_size = RXFF_A;
779     xsc->tx_fifo_size = TXFF_A;
780 }
781 
782 static const TypeInfo xilinx_spips_info = {
783     .name  = TYPE_XILINX_SPIPS,
784     .parent = TYPE_SYS_BUS_DEVICE,
785     .instance_size  = sizeof(XilinxSPIPS),
786     .class_init = xilinx_spips_class_init,
787     .class_size = sizeof(XilinxSPIPSClass),
788 };
789 
790 static const TypeInfo xilinx_qspips_info = {
791     .name  = TYPE_XILINX_QSPIPS,
792     .parent = TYPE_XILINX_SPIPS,
793     .instance_size  = sizeof(XilinxQSPIPS),
794     .class_init = xilinx_qspips_class_init,
795 };
796 
797 static void xilinx_spips_register_types(void)
798 {
799     type_register_static(&xilinx_spips_info);
800     type_register_static(&xilinx_qspips_info);
801 }
802 
803 type_init(xilinx_spips_register_types)
804