1 /* 2 * QEMU model of the Xilinx Zynq SPI controller 3 * 4 * Copyright (c) 2012 Peter A. G. Crosthwaite 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/sysbus.h" 27 #include "sysemu/sysemu.h" 28 #include "hw/ptimer.h" 29 #include "qemu/log.h" 30 #include "qemu/bitops.h" 31 #include "hw/ssi/xilinx_spips.h" 32 #include "qapi/error.h" 33 #include "hw/register.h" 34 #include "sysemu/dma.h" 35 #include "migration/blocker.h" 36 37 #ifndef XILINX_SPIPS_ERR_DEBUG 38 #define XILINX_SPIPS_ERR_DEBUG 0 39 #endif 40 41 #define DB_PRINT_L(level, ...) do { \ 42 if (XILINX_SPIPS_ERR_DEBUG > (level)) { \ 43 fprintf(stderr, ": %s: ", __func__); \ 44 fprintf(stderr, ## __VA_ARGS__); \ 45 } \ 46 } while (0) 47 48 /* config register */ 49 #define R_CONFIG (0x00 / 4) 50 #define IFMODE (1U << 31) 51 #define R_CONFIG_ENDIAN (1 << 26) 52 #define MODEFAIL_GEN_EN (1 << 17) 53 #define MAN_START_COM (1 << 16) 54 #define MAN_START_EN (1 << 15) 55 #define MANUAL_CS (1 << 14) 56 #define CS (0xF << 10) 57 #define CS_SHIFT (10) 58 #define PERI_SEL (1 << 9) 59 #define REF_CLK (1 << 8) 60 #define FIFO_WIDTH (3 << 6) 61 #define BAUD_RATE_DIV (7 << 3) 62 #define CLK_PH (1 << 2) 63 #define CLK_POL (1 << 1) 64 #define MODE_SEL (1 << 0) 65 #define R_CONFIG_RSVD (0x7bf40000) 66 67 /* interrupt mechanism */ 68 #define R_INTR_STATUS (0x04 / 4) 69 #define R_INTR_STATUS_RESET (0x104) 70 #define R_INTR_EN (0x08 / 4) 71 #define R_INTR_DIS (0x0C / 4) 72 #define R_INTR_MASK (0x10 / 4) 73 #define IXR_TX_FIFO_UNDERFLOW (1 << 6) 74 /* Poll timeout not implemented */ 75 #define IXR_RX_FIFO_EMPTY (1 << 11) 76 #define IXR_GENERIC_FIFO_FULL (1 << 10) 77 #define IXR_GENERIC_FIFO_NOT_FULL (1 << 9) 78 #define IXR_TX_FIFO_EMPTY (1 << 8) 79 #define IXR_GENERIC_FIFO_EMPTY (1 << 7) 80 #define IXR_RX_FIFO_FULL (1 << 5) 81 #define IXR_RX_FIFO_NOT_EMPTY (1 << 4) 82 #define IXR_TX_FIFO_FULL (1 << 3) 83 #define IXR_TX_FIFO_NOT_FULL (1 << 2) 84 #define IXR_TX_FIFO_MODE_FAIL (1 << 1) 85 #define IXR_RX_FIFO_OVERFLOW (1 << 0) 86 #define IXR_ALL ((1 << 13) - 1) 87 #define GQSPI_IXR_MASK 0xFBE 88 #define IXR_SELF_CLEAR \ 89 (IXR_GENERIC_FIFO_EMPTY \ 90 | IXR_GENERIC_FIFO_FULL \ 91 | IXR_GENERIC_FIFO_NOT_FULL \ 92 | IXR_TX_FIFO_EMPTY \ 93 | IXR_TX_FIFO_FULL \ 94 | IXR_TX_FIFO_NOT_FULL \ 95 | IXR_RX_FIFO_EMPTY \ 96 | IXR_RX_FIFO_FULL \ 97 | IXR_RX_FIFO_NOT_EMPTY) 98 99 #define R_EN (0x14 / 4) 100 #define R_DELAY (0x18 / 4) 101 #define R_TX_DATA (0x1C / 4) 102 #define R_RX_DATA (0x20 / 4) 103 #define R_SLAVE_IDLE_COUNT (0x24 / 4) 104 #define R_TX_THRES (0x28 / 4) 105 #define R_RX_THRES (0x2C / 4) 106 #define R_GPIO (0x30 / 4) 107 #define R_LPBK_DLY_ADJ (0x38 / 4) 108 #define R_LPBK_DLY_ADJ_RESET (0x33) 109 #define R_TXD1 (0x80 / 4) 110 #define R_TXD2 (0x84 / 4) 111 #define R_TXD3 (0x88 / 4) 112 113 #define R_LQSPI_CFG (0xa0 / 4) 114 #define R_LQSPI_CFG_RESET 0x03A002EB 115 #define LQSPI_CFG_LQ_MODE (1U << 31) 116 #define LQSPI_CFG_TWO_MEM (1 << 30) 117 #define LQSPI_CFG_SEP_BUS (1 << 29) 118 #define LQSPI_CFG_U_PAGE (1 << 28) 119 #define LQSPI_CFG_ADDR4 (1 << 27) 120 #define LQSPI_CFG_MODE_EN (1 << 25) 121 #define LQSPI_CFG_MODE_WIDTH 8 122 #define LQSPI_CFG_MODE_SHIFT 16 123 #define LQSPI_CFG_DUMMY_WIDTH 3 124 #define LQSPI_CFG_DUMMY_SHIFT 8 125 #define LQSPI_CFG_INST_CODE 0xFF 126 127 #define R_CMND (0xc0 / 4) 128 #define R_CMND_RXFIFO_DRAIN (1 << 19) 129 FIELD(CMND, PARTIAL_BYTE_LEN, 16, 3) 130 #define R_CMND_EXT_ADD (1 << 15) 131 FIELD(CMND, RX_DISCARD, 8, 7) 132 FIELD(CMND, DUMMY_CYCLES, 2, 6) 133 #define R_CMND_DMA_EN (1 << 1) 134 #define R_CMND_PUSH_WAIT (1 << 0) 135 #define R_TRANSFER_SIZE (0xc4 / 4) 136 #define R_LQSPI_STS (0xA4 / 4) 137 #define LQSPI_STS_WR_RECVD (1 << 1) 138 139 #define R_MOD_ID (0xFC / 4) 140 141 #define R_GQSPI_SELECT (0x144 / 4) 142 FIELD(GQSPI_SELECT, GENERIC_QSPI_EN, 0, 1) 143 #define R_GQSPI_ISR (0x104 / 4) 144 #define R_GQSPI_IER (0x108 / 4) 145 #define R_GQSPI_IDR (0x10c / 4) 146 #define R_GQSPI_IMR (0x110 / 4) 147 #define R_GQSPI_IMR_RESET (0xfbe) 148 #define R_GQSPI_TX_THRESH (0x128 / 4) 149 #define R_GQSPI_RX_THRESH (0x12c / 4) 150 #define R_GQSPI_GPIO (0x130 / 4) 151 #define R_GQSPI_LPBK_DLY_ADJ (0x138 / 4) 152 #define R_GQSPI_LPBK_DLY_ADJ_RESET (0x33) 153 #define R_GQSPI_CNFG (0x100 / 4) 154 FIELD(GQSPI_CNFG, MODE_EN, 30, 2) 155 FIELD(GQSPI_CNFG, GEN_FIFO_START_MODE, 29, 1) 156 FIELD(GQSPI_CNFG, GEN_FIFO_START, 28, 1) 157 FIELD(GQSPI_CNFG, ENDIAN, 26, 1) 158 /* Poll timeout not implemented */ 159 FIELD(GQSPI_CNFG, EN_POLL_TIMEOUT, 20, 1) 160 /* QEMU doesnt care about any of these last three */ 161 FIELD(GQSPI_CNFG, BR, 3, 3) 162 FIELD(GQSPI_CNFG, CPH, 2, 1) 163 FIELD(GQSPI_CNFG, CPL, 1, 1) 164 #define R_GQSPI_GEN_FIFO (0x140 / 4) 165 #define R_GQSPI_TXD (0x11c / 4) 166 #define R_GQSPI_RXD (0x120 / 4) 167 #define R_GQSPI_FIFO_CTRL (0x14c / 4) 168 FIELD(GQSPI_FIFO_CTRL, RX_FIFO_RESET, 2, 1) 169 FIELD(GQSPI_FIFO_CTRL, TX_FIFO_RESET, 1, 1) 170 FIELD(GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET, 0, 1) 171 #define R_GQSPI_GFIFO_THRESH (0x150 / 4) 172 #define R_GQSPI_DATA_STS (0x15c / 4) 173 /* We use the snapshot register to hold the core state for the currently 174 * or most recently executed command. So the generic fifo format is defined 175 * for the snapshot register 176 */ 177 #define R_GQSPI_GF_SNAPSHOT (0x160 / 4) 178 FIELD(GQSPI_GF_SNAPSHOT, POLL, 19, 1) 179 FIELD(GQSPI_GF_SNAPSHOT, STRIPE, 18, 1) 180 FIELD(GQSPI_GF_SNAPSHOT, RECIEVE, 17, 1) 181 FIELD(GQSPI_GF_SNAPSHOT, TRANSMIT, 16, 1) 182 FIELD(GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT, 14, 2) 183 FIELD(GQSPI_GF_SNAPSHOT, CHIP_SELECT, 12, 2) 184 FIELD(GQSPI_GF_SNAPSHOT, SPI_MODE, 10, 2) 185 FIELD(GQSPI_GF_SNAPSHOT, EXPONENT, 9, 1) 186 FIELD(GQSPI_GF_SNAPSHOT, DATA_XFER, 8, 1) 187 FIELD(GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA, 0, 8) 188 #define R_GQSPI_MOD_ID (0x1fc / 4) 189 #define R_GQSPI_MOD_ID_RESET (0x10a0000) 190 191 #define R_QSPIDMA_DST_CTRL (0x80c / 4) 192 #define R_QSPIDMA_DST_CTRL_RESET (0x803ffa00) 193 #define R_QSPIDMA_DST_I_MASK (0x820 / 4) 194 #define R_QSPIDMA_DST_I_MASK_RESET (0xfe) 195 #define R_QSPIDMA_DST_CTRL2 (0x824 / 4) 196 #define R_QSPIDMA_DST_CTRL2_RESET (0x081bfff8) 197 198 /* size of TXRX FIFOs */ 199 #define RXFF_A (128) 200 #define TXFF_A (128) 201 202 #define RXFF_A_Q (64 * 4) 203 #define TXFF_A_Q (64 * 4) 204 205 /* 16MB per linear region */ 206 #define LQSPI_ADDRESS_BITS 24 207 208 #define SNOOP_CHECKING 0xFF 209 #define SNOOP_ADDR 0xF0 210 #define SNOOP_NONE 0xEE 211 #define SNOOP_STRIPING 0 212 213 static inline int num_effective_busses(XilinxSPIPS *s) 214 { 215 return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS && 216 s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1; 217 } 218 219 static void xilinx_spips_update_cs(XilinxSPIPS *s, int field) 220 { 221 int i; 222 223 for (i = 0; i < s->num_cs; i++) { 224 bool old_state = s->cs_lines_state[i]; 225 bool new_state = field & (1 << i); 226 227 if (old_state != new_state) { 228 s->cs_lines_state[i] = new_state; 229 s->rx_discard = ARRAY_FIELD_EX32(s->regs, CMND, RX_DISCARD); 230 DB_PRINT_L(1, "%sselecting slave %d\n", new_state ? "" : "de", i); 231 } 232 qemu_set_irq(s->cs_lines[i], !new_state); 233 } 234 if (!(field & ((1 << s->num_cs) - 1))) { 235 s->snoop_state = SNOOP_CHECKING; 236 s->cmd_dummies = 0; 237 s->link_state = 1; 238 s->link_state_next = 1; 239 s->link_state_next_when = 0; 240 DB_PRINT_L(1, "moving to snoop check state\n"); 241 } 242 } 243 244 static void xlnx_zynqmp_qspips_update_cs_lines(XlnxZynqMPQSPIPS *s) 245 { 246 if (s->regs[R_GQSPI_GF_SNAPSHOT]) { 247 int field = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, CHIP_SELECT); 248 xilinx_spips_update_cs(XILINX_SPIPS(s), field); 249 } 250 } 251 252 static void xilinx_spips_update_cs_lines(XilinxSPIPS *s) 253 { 254 int field = ~((s->regs[R_CONFIG] & CS) >> CS_SHIFT); 255 256 /* In dual parallel, mirror low CS to both */ 257 if (num_effective_busses(s) == 2) { 258 /* Single bit chip-select for qspi */ 259 field &= 0x1; 260 field |= field << 1; 261 /* Dual stack U-Page */ 262 } else if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM && 263 s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE) { 264 /* Single bit chip-select for qspi */ 265 field &= 0x1; 266 /* change from CS0 to CS1 */ 267 field <<= 1; 268 } 269 /* Auto CS */ 270 if (!(s->regs[R_CONFIG] & MANUAL_CS) && 271 fifo8_is_empty(&s->tx_fifo)) { 272 field = 0; 273 } 274 xilinx_spips_update_cs(s, field); 275 } 276 277 static void xilinx_spips_update_ixr(XilinxSPIPS *s) 278 { 279 if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) { 280 s->regs[R_INTR_STATUS] &= ~IXR_SELF_CLEAR; 281 s->regs[R_INTR_STATUS] |= 282 (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) | 283 (s->rx_fifo.num >= s->regs[R_RX_THRES] ? 284 IXR_RX_FIFO_NOT_EMPTY : 0) | 285 (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) | 286 (fifo8_is_empty(&s->tx_fifo) ? IXR_TX_FIFO_EMPTY : 0) | 287 (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0); 288 } 289 int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] & 290 IXR_ALL); 291 if (new_irqline != s->irqline) { 292 s->irqline = new_irqline; 293 qemu_set_irq(s->irq, s->irqline); 294 } 295 } 296 297 static void xlnx_zynqmp_qspips_update_ixr(XlnxZynqMPQSPIPS *s) 298 { 299 uint32_t gqspi_int; 300 int new_irqline; 301 302 s->regs[R_GQSPI_ISR] &= ~IXR_SELF_CLEAR; 303 s->regs[R_GQSPI_ISR] |= 304 (fifo32_is_empty(&s->fifo_g) ? IXR_GENERIC_FIFO_EMPTY : 0) | 305 (fifo32_is_full(&s->fifo_g) ? IXR_GENERIC_FIFO_FULL : 0) | 306 (s->fifo_g.fifo.num < s->regs[R_GQSPI_GFIFO_THRESH] ? 307 IXR_GENERIC_FIFO_NOT_FULL : 0) | 308 (fifo8_is_empty(&s->rx_fifo_g) ? IXR_RX_FIFO_EMPTY : 0) | 309 (fifo8_is_full(&s->rx_fifo_g) ? IXR_RX_FIFO_FULL : 0) | 310 (s->rx_fifo_g.num >= s->regs[R_GQSPI_RX_THRESH] ? 311 IXR_RX_FIFO_NOT_EMPTY : 0) | 312 (fifo8_is_empty(&s->tx_fifo_g) ? IXR_TX_FIFO_EMPTY : 0) | 313 (fifo8_is_full(&s->tx_fifo_g) ? IXR_TX_FIFO_FULL : 0) | 314 (s->tx_fifo_g.num < s->regs[R_GQSPI_TX_THRESH] ? 315 IXR_TX_FIFO_NOT_FULL : 0); 316 317 /* GQSPI Interrupt Trigger Status */ 318 gqspi_int = (~s->regs[R_GQSPI_IMR]) & s->regs[R_GQSPI_ISR] & GQSPI_IXR_MASK; 319 new_irqline = !!(gqspi_int & IXR_ALL); 320 321 /* drive external interrupt pin */ 322 if (new_irqline != s->gqspi_irqline) { 323 s->gqspi_irqline = new_irqline; 324 qemu_set_irq(XILINX_SPIPS(s)->irq, s->gqspi_irqline); 325 } 326 } 327 328 static void xilinx_spips_reset(DeviceState *d) 329 { 330 XilinxSPIPS *s = XILINX_SPIPS(d); 331 332 memset(s->regs, 0, sizeof(s->regs)); 333 334 fifo8_reset(&s->rx_fifo); 335 fifo8_reset(&s->rx_fifo); 336 /* non zero resets */ 337 s->regs[R_CONFIG] |= MODEFAIL_GEN_EN; 338 s->regs[R_SLAVE_IDLE_COUNT] = 0xFF; 339 s->regs[R_TX_THRES] = 1; 340 s->regs[R_RX_THRES] = 1; 341 /* FIXME: move magic number definition somewhere sensible */ 342 s->regs[R_MOD_ID] = 0x01090106; 343 s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET; 344 s->link_state = 1; 345 s->link_state_next = 1; 346 s->link_state_next_when = 0; 347 s->snoop_state = SNOOP_CHECKING; 348 s->cmd_dummies = 0; 349 s->man_start_com = false; 350 xilinx_spips_update_ixr(s); 351 xilinx_spips_update_cs_lines(s); 352 } 353 354 static void xlnx_zynqmp_qspips_reset(DeviceState *d) 355 { 356 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(d); 357 358 xilinx_spips_reset(d); 359 360 memset(s->regs, 0, sizeof(s->regs)); 361 362 fifo8_reset(&s->rx_fifo_g); 363 fifo8_reset(&s->rx_fifo_g); 364 fifo32_reset(&s->fifo_g); 365 s->regs[R_INTR_STATUS] = R_INTR_STATUS_RESET; 366 s->regs[R_GPIO] = 1; 367 s->regs[R_LPBK_DLY_ADJ] = R_LPBK_DLY_ADJ_RESET; 368 s->regs[R_GQSPI_GFIFO_THRESH] = 0x10; 369 s->regs[R_MOD_ID] = 0x01090101; 370 s->regs[R_GQSPI_IMR] = R_GQSPI_IMR_RESET; 371 s->regs[R_GQSPI_TX_THRESH] = 1; 372 s->regs[R_GQSPI_RX_THRESH] = 1; 373 s->regs[R_GQSPI_GPIO] = 1; 374 s->regs[R_GQSPI_LPBK_DLY_ADJ] = R_GQSPI_LPBK_DLY_ADJ_RESET; 375 s->regs[R_GQSPI_MOD_ID] = R_GQSPI_MOD_ID_RESET; 376 s->regs[R_QSPIDMA_DST_CTRL] = R_QSPIDMA_DST_CTRL_RESET; 377 s->regs[R_QSPIDMA_DST_I_MASK] = R_QSPIDMA_DST_I_MASK_RESET; 378 s->regs[R_QSPIDMA_DST_CTRL2] = R_QSPIDMA_DST_CTRL2_RESET; 379 s->man_start_com_g = false; 380 s->gqspi_irqline = 0; 381 xlnx_zynqmp_qspips_update_ixr(s); 382 } 383 384 /* N way (num) in place bit striper. Lay out row wise bits (MSB to LSB) 385 * column wise (from element 0 to N-1). num is the length of x, and dir 386 * reverses the direction of the transform. Best illustrated by example: 387 * Each digit in the below array is a single bit (num == 3): 388 * 389 * {{ 76543210, } ----- stripe (dir == false) -----> {{ 741gdaFC, } 390 * { hgfedcba, } { 630fcHEB, } 391 * { HGFEDCBA, }} <---- upstripe (dir == true) ----- { 52hebGDA, }} 392 */ 393 394 static inline void stripe8(uint8_t *x, int num, bool dir) 395 { 396 uint8_t r[num]; 397 memset(r, 0, sizeof(uint8_t) * num); 398 int idx[2] = {0, 0}; 399 int bit[2] = {0, 7}; 400 int d = dir; 401 402 for (idx[0] = 0; idx[0] < num; ++idx[0]) { 403 for (bit[0] = 7; bit[0] >= 0; bit[0]--) { 404 r[idx[!d]] |= x[idx[d]] & 1 << bit[d] ? 1 << bit[!d] : 0; 405 idx[1] = (idx[1] + 1) % num; 406 if (!idx[1]) { 407 bit[1]--; 408 } 409 } 410 } 411 memcpy(x, r, sizeof(uint8_t) * num); 412 } 413 414 static void xlnx_zynqmp_qspips_flush_fifo_g(XlnxZynqMPQSPIPS *s) 415 { 416 while (s->regs[R_GQSPI_DATA_STS] || !fifo32_is_empty(&s->fifo_g)) { 417 uint8_t tx_rx[2] = { 0 }; 418 int num_stripes = 1; 419 uint8_t busses; 420 int i; 421 422 if (!s->regs[R_GQSPI_DATA_STS]) { 423 uint8_t imm; 424 425 s->regs[R_GQSPI_GF_SNAPSHOT] = fifo32_pop(&s->fifo_g); 426 DB_PRINT_L(0, "GQSPI command: %x\n", s->regs[R_GQSPI_GF_SNAPSHOT]); 427 if (!s->regs[R_GQSPI_GF_SNAPSHOT]) { 428 DB_PRINT_L(0, "Dummy GQSPI Delay Command Entry, Do nothing"); 429 continue; 430 } 431 xlnx_zynqmp_qspips_update_cs_lines(s); 432 433 imm = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA); 434 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) { 435 /* immedate transfer */ 436 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) || 437 ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) { 438 s->regs[R_GQSPI_DATA_STS] = 1; 439 /* CS setup/hold - do nothing */ 440 } else { 441 s->regs[R_GQSPI_DATA_STS] = 0; 442 } 443 } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, EXPONENT)) { 444 if (imm > 31) { 445 qemu_log_mask(LOG_UNIMP, "QSPI exponential transfer too" 446 " long - 2 ^ %" PRId8 " requested\n", imm); 447 } 448 s->regs[R_GQSPI_DATA_STS] = 1ul << imm; 449 } else { 450 s->regs[R_GQSPI_DATA_STS] = imm; 451 } 452 } 453 /* Zero length transfer check */ 454 if (!s->regs[R_GQSPI_DATA_STS]) { 455 continue; 456 } 457 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE) && 458 fifo8_is_full(&s->rx_fifo_g)) { 459 /* No space in RX fifo for transfer - try again later */ 460 return; 461 } 462 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, STRIPE) && 463 (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) || 464 ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE))) { 465 num_stripes = 2; 466 } 467 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) { 468 tx_rx[0] = ARRAY_FIELD_EX32(s->regs, 469 GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA); 470 } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT)) { 471 for (i = 0; i < num_stripes; ++i) { 472 if (!fifo8_is_empty(&s->tx_fifo_g)) { 473 tx_rx[i] = fifo8_pop(&s->tx_fifo_g); 474 s->tx_fifo_g_align++; 475 } else { 476 return; 477 } 478 } 479 } 480 if (num_stripes == 1) { 481 /* mirror */ 482 tx_rx[1] = tx_rx[0]; 483 } 484 busses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT); 485 for (i = 0; i < 2; ++i) { 486 DB_PRINT_L(1, "bus %d tx = %02x\n", i, tx_rx[i]); 487 tx_rx[i] = ssi_transfer(XILINX_SPIPS(s)->spi[i], tx_rx[i]); 488 DB_PRINT_L(1, "bus %d rx = %02x\n", i, tx_rx[i]); 489 } 490 if (s->regs[R_GQSPI_DATA_STS] > 1 && 491 busses == 0x3 && num_stripes == 2) { 492 s->regs[R_GQSPI_DATA_STS] -= 2; 493 } else if (s->regs[R_GQSPI_DATA_STS] > 0) { 494 s->regs[R_GQSPI_DATA_STS]--; 495 } 496 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) { 497 for (i = 0; i < 2; ++i) { 498 if (busses & (1 << i)) { 499 DB_PRINT_L(1, "bus %d push_byte = %02x\n", i, tx_rx[i]); 500 fifo8_push(&s->rx_fifo_g, tx_rx[i]); 501 s->rx_fifo_g_align++; 502 } 503 } 504 } 505 if (!s->regs[R_GQSPI_DATA_STS]) { 506 for (; s->tx_fifo_g_align % 4; s->tx_fifo_g_align++) { 507 fifo8_pop(&s->tx_fifo_g); 508 } 509 for (; s->rx_fifo_g_align % 4; s->rx_fifo_g_align++) { 510 fifo8_push(&s->rx_fifo_g, 0); 511 } 512 } 513 } 514 } 515 516 static int xilinx_spips_num_dummies(XilinxQSPIPS *qs, uint8_t command) 517 { 518 if (!qs) { 519 /* The SPI device is not a QSPI device */ 520 return -1; 521 } 522 523 switch (command) { /* check for dummies */ 524 case READ: /* no dummy bytes/cycles */ 525 case PP: 526 case DPP: 527 case QPP: 528 case READ_4: 529 case PP_4: 530 case QPP_4: 531 return 0; 532 case FAST_READ: 533 case DOR: 534 case QOR: 535 case DOR_4: 536 case QOR_4: 537 return 1; 538 case DIOR: 539 case FAST_READ_4: 540 case DIOR_4: 541 return 2; 542 case QIOR: 543 case QIOR_4: 544 return 5; 545 default: 546 return -1; 547 } 548 } 549 550 static inline uint8_t get_addr_length(XilinxSPIPS *s, uint8_t cmd) 551 { 552 switch (cmd) { 553 case PP_4: 554 case QPP_4: 555 case READ_4: 556 case QIOR_4: 557 case FAST_READ_4: 558 case DOR_4: 559 case QOR_4: 560 case DIOR_4: 561 return 4; 562 default: 563 return (s->regs[R_CMND] & R_CMND_EXT_ADD) ? 4 : 3; 564 } 565 } 566 567 static void xilinx_spips_flush_txfifo(XilinxSPIPS *s) 568 { 569 int debug_level = 0; 570 XilinxQSPIPS *q = (XilinxQSPIPS *) object_dynamic_cast(OBJECT(s), 571 TYPE_XILINX_QSPIPS); 572 573 for (;;) { 574 int i; 575 uint8_t tx = 0; 576 uint8_t tx_rx[num_effective_busses(s)]; 577 uint8_t dummy_cycles = 0; 578 uint8_t addr_length; 579 580 if (fifo8_is_empty(&s->tx_fifo)) { 581 xilinx_spips_update_ixr(s); 582 return; 583 } else if (s->snoop_state == SNOOP_STRIPING) { 584 for (i = 0; i < num_effective_busses(s); ++i) { 585 tx_rx[i] = fifo8_pop(&s->tx_fifo); 586 } 587 stripe8(tx_rx, num_effective_busses(s), false); 588 } else if (s->snoop_state >= SNOOP_ADDR) { 589 tx = fifo8_pop(&s->tx_fifo); 590 for (i = 0; i < num_effective_busses(s); ++i) { 591 tx_rx[i] = tx; 592 } 593 } else { 594 /* Extract a dummy byte and generate dummy cycles according to the 595 * link state */ 596 tx = fifo8_pop(&s->tx_fifo); 597 dummy_cycles = 8 / s->link_state; 598 } 599 600 for (i = 0; i < num_effective_busses(s); ++i) { 601 int bus = num_effective_busses(s) - 1 - i; 602 if (dummy_cycles) { 603 int d; 604 for (d = 0; d < dummy_cycles; ++d) { 605 tx_rx[0] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[0]); 606 } 607 } else { 608 DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]); 609 tx_rx[i] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[i]); 610 DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]); 611 } 612 } 613 614 if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) { 615 DB_PRINT_L(debug_level, "dircarding drained rx byte\n"); 616 /* Do nothing */ 617 } else if (s->rx_discard) { 618 DB_PRINT_L(debug_level, "dircarding discarded rx byte\n"); 619 s->rx_discard -= 8 / s->link_state; 620 } else if (fifo8_is_full(&s->rx_fifo)) { 621 s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW; 622 DB_PRINT_L(0, "rx FIFO overflow"); 623 } else if (s->snoop_state == SNOOP_STRIPING) { 624 stripe8(tx_rx, num_effective_busses(s), true); 625 for (i = 0; i < num_effective_busses(s); ++i) { 626 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]); 627 DB_PRINT_L(debug_level, "pushing striped rx byte\n"); 628 } 629 } else { 630 DB_PRINT_L(debug_level, "pushing unstriped rx byte\n"); 631 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]); 632 } 633 634 if (s->link_state_next_when) { 635 s->link_state_next_when--; 636 if (!s->link_state_next_when) { 637 s->link_state = s->link_state_next; 638 } 639 } 640 641 DB_PRINT_L(debug_level, "initial snoop state: %x\n", 642 (unsigned)s->snoop_state); 643 switch (s->snoop_state) { 644 case (SNOOP_CHECKING): 645 /* Store the count of dummy bytes in the txfifo */ 646 s->cmd_dummies = xilinx_spips_num_dummies(q, tx); 647 addr_length = get_addr_length(s, tx); 648 if (s->cmd_dummies < 0) { 649 s->snoop_state = SNOOP_NONE; 650 } else { 651 s->snoop_state = SNOOP_ADDR + addr_length - 1; 652 } 653 switch (tx) { 654 case DPP: 655 case DOR: 656 case DOR_4: 657 s->link_state_next = 2; 658 s->link_state_next_when = addr_length + s->cmd_dummies; 659 break; 660 case QPP: 661 case QPP_4: 662 case QOR: 663 case QOR_4: 664 s->link_state_next = 4; 665 s->link_state_next_when = addr_length + s->cmd_dummies; 666 break; 667 case DIOR: 668 case DIOR_4: 669 s->link_state = 2; 670 break; 671 case QIOR: 672 case QIOR_4: 673 s->link_state = 4; 674 break; 675 } 676 break; 677 case (SNOOP_ADDR): 678 /* Address has been transmitted, transmit dummy cycles now if 679 * needed */ 680 if (s->cmd_dummies < 0) { 681 s->snoop_state = SNOOP_NONE; 682 } else { 683 s->snoop_state = s->cmd_dummies; 684 } 685 break; 686 case (SNOOP_STRIPING): 687 case (SNOOP_NONE): 688 /* Once we hit the boring stuff - squelch debug noise */ 689 if (!debug_level) { 690 DB_PRINT_L(0, "squelching debug info ....\n"); 691 debug_level = 1; 692 } 693 break; 694 default: 695 s->snoop_state--; 696 } 697 DB_PRINT_L(debug_level, "final snoop state: %x\n", 698 (unsigned)s->snoop_state); 699 } 700 } 701 702 static inline void tx_data_bytes(Fifo8 *fifo, uint32_t value, int num, bool be) 703 { 704 int i; 705 for (i = 0; i < num && !fifo8_is_full(fifo); ++i) { 706 if (be) { 707 fifo8_push(fifo, (uint8_t)(value >> 24)); 708 value <<= 8; 709 } else { 710 fifo8_push(fifo, (uint8_t)value); 711 value >>= 8; 712 } 713 } 714 } 715 716 static void xilinx_spips_check_zero_pump(XilinxSPIPS *s) 717 { 718 if (!s->regs[R_TRANSFER_SIZE]) { 719 return; 720 } 721 if (!fifo8_is_empty(&s->tx_fifo) && s->regs[R_CMND] & R_CMND_PUSH_WAIT) { 722 return; 723 } 724 /* 725 * The zero pump must never fill tx fifo such that rx overflow is 726 * possible 727 */ 728 while (s->regs[R_TRANSFER_SIZE] && 729 s->rx_fifo.num + s->tx_fifo.num < RXFF_A_Q - 3) { 730 /* endianess just doesn't matter when zero pumping */ 731 tx_data_bytes(&s->tx_fifo, 0, 4, false); 732 s->regs[R_TRANSFER_SIZE] &= ~0x03ull; 733 s->regs[R_TRANSFER_SIZE] -= 4; 734 } 735 } 736 737 static void xilinx_spips_check_flush(XilinxSPIPS *s) 738 { 739 if (s->man_start_com || 740 (!fifo8_is_empty(&s->tx_fifo) && 741 !(s->regs[R_CONFIG] & MAN_START_EN))) { 742 xilinx_spips_check_zero_pump(s); 743 xilinx_spips_flush_txfifo(s); 744 } 745 if (fifo8_is_empty(&s->tx_fifo) && !s->regs[R_TRANSFER_SIZE]) { 746 s->man_start_com = false; 747 } 748 xilinx_spips_update_ixr(s); 749 } 750 751 static void xlnx_zynqmp_qspips_check_flush(XlnxZynqMPQSPIPS *s) 752 { 753 bool gqspi_has_work = s->regs[R_GQSPI_DATA_STS] || 754 !fifo32_is_empty(&s->fifo_g); 755 756 if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) { 757 if (s->man_start_com_g || (gqspi_has_work && 758 !ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE))) { 759 xlnx_zynqmp_qspips_flush_fifo_g(s); 760 } 761 } else { 762 xilinx_spips_check_flush(XILINX_SPIPS(s)); 763 } 764 if (!gqspi_has_work) { 765 s->man_start_com_g = false; 766 } 767 xlnx_zynqmp_qspips_update_ixr(s); 768 } 769 770 static inline int rx_data_bytes(Fifo8 *fifo, uint8_t *value, int max) 771 { 772 int i; 773 774 for (i = 0; i < max && !fifo8_is_empty(fifo); ++i) { 775 value[i] = fifo8_pop(fifo); 776 } 777 return max - i; 778 } 779 780 static const void *pop_buf(Fifo8 *fifo, uint32_t max, uint32_t *num) 781 { 782 void *ret; 783 784 if (max == 0 || max > fifo->num) { 785 abort(); 786 } 787 *num = MIN(fifo->capacity - fifo->head, max); 788 ret = &fifo->data[fifo->head]; 789 fifo->head += *num; 790 fifo->head %= fifo->capacity; 791 fifo->num -= *num; 792 return ret; 793 } 794 795 static void xlnx_zynqmp_qspips_notify(void *opaque) 796 { 797 XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(opaque); 798 XilinxSPIPS *s = XILINX_SPIPS(rq); 799 Fifo8 *recv_fifo; 800 801 if (ARRAY_FIELD_EX32(rq->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) { 802 if (!(ARRAY_FIELD_EX32(rq->regs, GQSPI_CNFG, MODE_EN) == 2)) { 803 return; 804 } 805 recv_fifo = &rq->rx_fifo_g; 806 } else { 807 if (!(s->regs[R_CMND] & R_CMND_DMA_EN)) { 808 return; 809 } 810 recv_fifo = &s->rx_fifo; 811 } 812 while (recv_fifo->num >= 4 813 && stream_can_push(rq->dma, xlnx_zynqmp_qspips_notify, rq)) 814 { 815 size_t ret; 816 uint32_t num; 817 const void *rxd = pop_buf(recv_fifo, 4, &num); 818 819 memcpy(rq->dma_buf, rxd, num); 820 821 ret = stream_push(rq->dma, rq->dma_buf, 4); 822 assert(ret == 4); 823 xlnx_zynqmp_qspips_check_flush(rq); 824 } 825 } 826 827 static uint64_t xilinx_spips_read(void *opaque, hwaddr addr, 828 unsigned size) 829 { 830 XilinxSPIPS *s = opaque; 831 uint32_t mask = ~0; 832 uint32_t ret; 833 uint8_t rx_buf[4]; 834 int shortfall; 835 836 addr >>= 2; 837 switch (addr) { 838 case R_CONFIG: 839 mask = ~(R_CONFIG_RSVD | MAN_START_COM); 840 break; 841 case R_INTR_STATUS: 842 ret = s->regs[addr] & IXR_ALL; 843 s->regs[addr] = 0; 844 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret); 845 xilinx_spips_update_ixr(s); 846 return ret; 847 case R_INTR_MASK: 848 mask = IXR_ALL; 849 break; 850 case R_EN: 851 mask = 0x1; 852 break; 853 case R_SLAVE_IDLE_COUNT: 854 mask = 0xFF; 855 break; 856 case R_MOD_ID: 857 mask = 0x01FFFFFF; 858 break; 859 case R_INTR_EN: 860 case R_INTR_DIS: 861 case R_TX_DATA: 862 mask = 0; 863 break; 864 case R_RX_DATA: 865 memset(rx_buf, 0, sizeof(rx_buf)); 866 shortfall = rx_data_bytes(&s->rx_fifo, rx_buf, s->num_txrx_bytes); 867 ret = s->regs[R_CONFIG] & R_CONFIG_ENDIAN ? 868 cpu_to_be32(*(uint32_t *)rx_buf) : 869 cpu_to_le32(*(uint32_t *)rx_buf); 870 if (!(s->regs[R_CONFIG] & R_CONFIG_ENDIAN)) { 871 ret <<= 8 * shortfall; 872 } 873 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret); 874 xilinx_spips_check_flush(s); 875 xilinx_spips_update_ixr(s); 876 return ret; 877 } 878 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, 879 s->regs[addr] & mask); 880 return s->regs[addr] & mask; 881 882 } 883 884 static uint64_t xlnx_zynqmp_qspips_read(void *opaque, 885 hwaddr addr, unsigned size) 886 { 887 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque); 888 uint32_t reg = addr / 4; 889 uint32_t ret; 890 uint8_t rx_buf[4]; 891 int shortfall; 892 893 if (reg <= R_MOD_ID) { 894 return xilinx_spips_read(opaque, addr, size); 895 } else { 896 switch (reg) { 897 case R_GQSPI_RXD: 898 if (fifo8_is_empty(&s->rx_fifo_g)) { 899 qemu_log_mask(LOG_GUEST_ERROR, 900 "Read from empty GQSPI RX FIFO\n"); 901 return 0; 902 } 903 memset(rx_buf, 0, sizeof(rx_buf)); 904 shortfall = rx_data_bytes(&s->rx_fifo_g, rx_buf, 905 XILINX_SPIPS(s)->num_txrx_bytes); 906 ret = ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN) ? 907 cpu_to_be32(*(uint32_t *)rx_buf) : 908 cpu_to_le32(*(uint32_t *)rx_buf); 909 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)) { 910 ret <<= 8 * shortfall; 911 } 912 xlnx_zynqmp_qspips_check_flush(s); 913 xlnx_zynqmp_qspips_update_ixr(s); 914 return ret; 915 default: 916 return s->regs[reg]; 917 } 918 } 919 } 920 921 static void xilinx_spips_write(void *opaque, hwaddr addr, 922 uint64_t value, unsigned size) 923 { 924 int mask = ~0; 925 XilinxSPIPS *s = opaque; 926 927 DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value); 928 addr >>= 2; 929 switch (addr) { 930 case R_CONFIG: 931 mask = ~(R_CONFIG_RSVD | MAN_START_COM); 932 if ((value & MAN_START_COM) && (s->regs[R_CONFIG] & MAN_START_EN)) { 933 s->man_start_com = true; 934 } 935 break; 936 case R_INTR_STATUS: 937 mask = IXR_ALL; 938 s->regs[R_INTR_STATUS] &= ~(mask & value); 939 goto no_reg_update; 940 case R_INTR_DIS: 941 mask = IXR_ALL; 942 s->regs[R_INTR_MASK] &= ~(mask & value); 943 goto no_reg_update; 944 case R_INTR_EN: 945 mask = IXR_ALL; 946 s->regs[R_INTR_MASK] |= mask & value; 947 goto no_reg_update; 948 case R_EN: 949 mask = 0x1; 950 break; 951 case R_SLAVE_IDLE_COUNT: 952 mask = 0xFF; 953 break; 954 case R_RX_DATA: 955 case R_INTR_MASK: 956 case R_MOD_ID: 957 mask = 0; 958 break; 959 case R_TX_DATA: 960 tx_data_bytes(&s->tx_fifo, (uint32_t)value, s->num_txrx_bytes, 961 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 962 goto no_reg_update; 963 case R_TXD1: 964 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 1, 965 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 966 goto no_reg_update; 967 case R_TXD2: 968 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 2, 969 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 970 goto no_reg_update; 971 case R_TXD3: 972 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 3, 973 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 974 goto no_reg_update; 975 } 976 s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask); 977 no_reg_update: 978 xilinx_spips_update_cs_lines(s); 979 xilinx_spips_check_flush(s); 980 xilinx_spips_update_cs_lines(s); 981 xilinx_spips_update_ixr(s); 982 } 983 984 static const MemoryRegionOps spips_ops = { 985 .read = xilinx_spips_read, 986 .write = xilinx_spips_write, 987 .endianness = DEVICE_LITTLE_ENDIAN, 988 }; 989 990 static void xilinx_qspips_invalidate_mmio_ptr(XilinxQSPIPS *q) 991 { 992 XilinxSPIPS *s = &q->parent_obj; 993 994 if ((q->mmio_execution_enabled) && (q->lqspi_cached_addr != ~0ULL)) { 995 /* Invalidate the current mapped mmio */ 996 memory_region_invalidate_mmio_ptr(&s->mmlqspi, q->lqspi_cached_addr, 997 LQSPI_CACHE_SIZE); 998 } 999 1000 q->lqspi_cached_addr = ~0ULL; 1001 } 1002 1003 static void xilinx_qspips_write(void *opaque, hwaddr addr, 1004 uint64_t value, unsigned size) 1005 { 1006 XilinxQSPIPS *q = XILINX_QSPIPS(opaque); 1007 XilinxSPIPS *s = XILINX_SPIPS(opaque); 1008 1009 xilinx_spips_write(opaque, addr, value, size); 1010 addr >>= 2; 1011 1012 if (addr == R_LQSPI_CFG) { 1013 xilinx_qspips_invalidate_mmio_ptr(q); 1014 } 1015 if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) { 1016 fifo8_reset(&s->rx_fifo); 1017 } 1018 } 1019 1020 static void xlnx_zynqmp_qspips_write(void *opaque, hwaddr addr, 1021 uint64_t value, unsigned size) 1022 { 1023 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque); 1024 uint32_t reg = addr / 4; 1025 1026 if (reg <= R_MOD_ID) { 1027 xilinx_qspips_write(opaque, addr, value, size); 1028 } else { 1029 switch (reg) { 1030 case R_GQSPI_CNFG: 1031 if (FIELD_EX32(value, GQSPI_CNFG, GEN_FIFO_START) && 1032 ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE)) { 1033 s->man_start_com_g = true; 1034 } 1035 s->regs[reg] = value & ~(R_GQSPI_CNFG_GEN_FIFO_START_MASK); 1036 break; 1037 case R_GQSPI_GEN_FIFO: 1038 if (!fifo32_is_full(&s->fifo_g)) { 1039 fifo32_push(&s->fifo_g, value); 1040 } 1041 break; 1042 case R_GQSPI_TXD: 1043 tx_data_bytes(&s->tx_fifo_g, (uint32_t)value, 4, 1044 ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)); 1045 break; 1046 case R_GQSPI_FIFO_CTRL: 1047 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET)) { 1048 fifo32_reset(&s->fifo_g); 1049 } 1050 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, TX_FIFO_RESET)) { 1051 fifo8_reset(&s->tx_fifo_g); 1052 } 1053 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, RX_FIFO_RESET)) { 1054 fifo8_reset(&s->rx_fifo_g); 1055 } 1056 break; 1057 case R_GQSPI_IDR: 1058 s->regs[R_GQSPI_IMR] |= value; 1059 break; 1060 case R_GQSPI_IER: 1061 s->regs[R_GQSPI_IMR] &= ~value; 1062 break; 1063 case R_GQSPI_ISR: 1064 s->regs[R_GQSPI_ISR] &= ~value; 1065 break; 1066 case R_GQSPI_IMR: 1067 case R_GQSPI_RXD: 1068 case R_GQSPI_GF_SNAPSHOT: 1069 case R_GQSPI_MOD_ID: 1070 break; 1071 default: 1072 s->regs[reg] = value; 1073 break; 1074 } 1075 xlnx_zynqmp_qspips_update_cs_lines(s); 1076 xlnx_zynqmp_qspips_check_flush(s); 1077 xlnx_zynqmp_qspips_update_cs_lines(s); 1078 xlnx_zynqmp_qspips_update_ixr(s); 1079 } 1080 xlnx_zynqmp_qspips_notify(s); 1081 } 1082 1083 static const MemoryRegionOps qspips_ops = { 1084 .read = xilinx_spips_read, 1085 .write = xilinx_qspips_write, 1086 .endianness = DEVICE_LITTLE_ENDIAN, 1087 }; 1088 1089 static const MemoryRegionOps xlnx_zynqmp_qspips_ops = { 1090 .read = xlnx_zynqmp_qspips_read, 1091 .write = xlnx_zynqmp_qspips_write, 1092 .endianness = DEVICE_LITTLE_ENDIAN, 1093 }; 1094 1095 #define LQSPI_CACHE_SIZE 1024 1096 1097 static void lqspi_load_cache(void *opaque, hwaddr addr) 1098 { 1099 XilinxQSPIPS *q = opaque; 1100 XilinxSPIPS *s = opaque; 1101 int i; 1102 int flash_addr = ((addr & ~(LQSPI_CACHE_SIZE - 1)) 1103 / num_effective_busses(s)); 1104 int slave = flash_addr >> LQSPI_ADDRESS_BITS; 1105 int cache_entry = 0; 1106 uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE; 1107 1108 if (addr < q->lqspi_cached_addr || 1109 addr > q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) { 1110 xilinx_qspips_invalidate_mmio_ptr(q); 1111 s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE; 1112 s->regs[R_LQSPI_STS] |= slave ? LQSPI_CFG_U_PAGE : 0; 1113 1114 DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]); 1115 1116 fifo8_reset(&s->tx_fifo); 1117 fifo8_reset(&s->rx_fifo); 1118 1119 /* instruction */ 1120 DB_PRINT_L(0, "pushing read instruction: %02x\n", 1121 (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] & 1122 LQSPI_CFG_INST_CODE)); 1123 fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE); 1124 /* read address */ 1125 DB_PRINT_L(0, "pushing read address %06x\n", flash_addr); 1126 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_ADDR4) { 1127 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 24)); 1128 } 1129 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16)); 1130 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8)); 1131 fifo8_push(&s->tx_fifo, (uint8_t)flash_addr); 1132 /* mode bits */ 1133 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) { 1134 fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG], 1135 LQSPI_CFG_MODE_SHIFT, 1136 LQSPI_CFG_MODE_WIDTH)); 1137 } 1138 /* dummy bytes */ 1139 for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT, 1140 LQSPI_CFG_DUMMY_WIDTH)); ++i) { 1141 DB_PRINT_L(0, "pushing dummy byte\n"); 1142 fifo8_push(&s->tx_fifo, 0); 1143 } 1144 xilinx_spips_update_cs_lines(s); 1145 xilinx_spips_flush_txfifo(s); 1146 fifo8_reset(&s->rx_fifo); 1147 1148 DB_PRINT_L(0, "starting QSPI data read\n"); 1149 1150 while (cache_entry < LQSPI_CACHE_SIZE) { 1151 for (i = 0; i < 64; ++i) { 1152 tx_data_bytes(&s->tx_fifo, 0, 1, false); 1153 } 1154 xilinx_spips_flush_txfifo(s); 1155 for (i = 0; i < 64; ++i) { 1156 rx_data_bytes(&s->rx_fifo, &q->lqspi_buf[cache_entry++], 1); 1157 } 1158 } 1159 1160 s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE; 1161 s->regs[R_LQSPI_STS] |= u_page_save; 1162 xilinx_spips_update_cs_lines(s); 1163 1164 q->lqspi_cached_addr = flash_addr * num_effective_busses(s); 1165 } 1166 } 1167 1168 static void *lqspi_request_mmio_ptr(void *opaque, hwaddr addr, unsigned *size, 1169 unsigned *offset) 1170 { 1171 XilinxQSPIPS *q = opaque; 1172 hwaddr offset_within_the_region; 1173 1174 if (!q->mmio_execution_enabled) { 1175 return NULL; 1176 } 1177 1178 offset_within_the_region = addr & ~(LQSPI_CACHE_SIZE - 1); 1179 lqspi_load_cache(opaque, offset_within_the_region); 1180 *size = LQSPI_CACHE_SIZE; 1181 *offset = offset_within_the_region; 1182 return q->lqspi_buf; 1183 } 1184 1185 static uint64_t 1186 lqspi_read(void *opaque, hwaddr addr, unsigned int size) 1187 { 1188 XilinxQSPIPS *q = opaque; 1189 uint32_t ret; 1190 1191 if (addr >= q->lqspi_cached_addr && 1192 addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) { 1193 uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr]; 1194 ret = cpu_to_le32(*(uint32_t *)retp); 1195 DB_PRINT_L(1, "addr: %08x, data: %08x\n", (unsigned)addr, 1196 (unsigned)ret); 1197 return ret; 1198 } else { 1199 lqspi_load_cache(opaque, addr); 1200 return lqspi_read(opaque, addr, size); 1201 } 1202 } 1203 1204 static const MemoryRegionOps lqspi_ops = { 1205 .read = lqspi_read, 1206 .request_ptr = lqspi_request_mmio_ptr, 1207 .endianness = DEVICE_NATIVE_ENDIAN, 1208 .valid = { 1209 .min_access_size = 1, 1210 .max_access_size = 4 1211 } 1212 }; 1213 1214 static void xilinx_spips_realize(DeviceState *dev, Error **errp) 1215 { 1216 XilinxSPIPS *s = XILINX_SPIPS(dev); 1217 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1218 XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s); 1219 qemu_irq *cs; 1220 int i; 1221 1222 DB_PRINT_L(0, "realized spips\n"); 1223 1224 s->spi = g_new(SSIBus *, s->num_busses); 1225 for (i = 0; i < s->num_busses; ++i) { 1226 char bus_name[16]; 1227 snprintf(bus_name, 16, "spi%d", i); 1228 s->spi[i] = ssi_create_bus(dev, bus_name); 1229 } 1230 1231 s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses); 1232 s->cs_lines_state = g_new0(bool, s->num_cs * s->num_busses); 1233 for (i = 0, cs = s->cs_lines; i < s->num_busses; ++i, cs += s->num_cs) { 1234 ssi_auto_connect_slaves(DEVICE(s), cs, s->spi[i]); 1235 } 1236 1237 sysbus_init_irq(sbd, &s->irq); 1238 for (i = 0; i < s->num_cs * s->num_busses; ++i) { 1239 sysbus_init_irq(sbd, &s->cs_lines[i]); 1240 } 1241 1242 memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s, 1243 "spi", XLNX_ZYNQMP_SPIPS_R_MAX * 4); 1244 sysbus_init_mmio(sbd, &s->iomem); 1245 1246 s->irqline = -1; 1247 1248 fifo8_create(&s->rx_fifo, xsc->rx_fifo_size); 1249 fifo8_create(&s->tx_fifo, xsc->tx_fifo_size); 1250 } 1251 1252 static void xilinx_qspips_realize(DeviceState *dev, Error **errp) 1253 { 1254 XilinxSPIPS *s = XILINX_SPIPS(dev); 1255 XilinxQSPIPS *q = XILINX_QSPIPS(dev); 1256 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1257 1258 DB_PRINT_L(0, "realized qspips\n"); 1259 1260 s->num_busses = 2; 1261 s->num_cs = 2; 1262 s->num_txrx_bytes = 4; 1263 1264 xilinx_spips_realize(dev, errp); 1265 memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi", 1266 (1 << LQSPI_ADDRESS_BITS) * 2); 1267 sysbus_init_mmio(sbd, &s->mmlqspi); 1268 1269 q->lqspi_cached_addr = ~0ULL; 1270 1271 /* mmio_execution breaks migration better aborting than having strange 1272 * bugs. 1273 */ 1274 if (q->mmio_execution_enabled) { 1275 error_setg(&q->migration_blocker, 1276 "enabling mmio_execution breaks migration"); 1277 migrate_add_blocker(q->migration_blocker, &error_fatal); 1278 } 1279 } 1280 1281 static void xlnx_zynqmp_qspips_realize(DeviceState *dev, Error **errp) 1282 { 1283 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(dev); 1284 XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s); 1285 1286 xilinx_qspips_realize(dev, errp); 1287 fifo8_create(&s->rx_fifo_g, xsc->rx_fifo_size); 1288 fifo8_create(&s->tx_fifo_g, xsc->tx_fifo_size); 1289 fifo32_create(&s->fifo_g, 32); 1290 } 1291 1292 static void xlnx_zynqmp_qspips_init(Object *obj) 1293 { 1294 XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(obj); 1295 1296 object_property_add_link(obj, "stream-connected-dma", TYPE_STREAM_SLAVE, 1297 (Object **)&rq->dma, 1298 object_property_allow_set_link, 1299 OBJ_PROP_LINK_UNREF_ON_RELEASE, 1300 NULL); 1301 } 1302 1303 static int xilinx_spips_post_load(void *opaque, int version_id) 1304 { 1305 xilinx_spips_update_ixr((XilinxSPIPS *)opaque); 1306 xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque); 1307 return 0; 1308 } 1309 1310 static const VMStateDescription vmstate_xilinx_spips = { 1311 .name = "xilinx_spips", 1312 .version_id = 2, 1313 .minimum_version_id = 2, 1314 .post_load = xilinx_spips_post_load, 1315 .fields = (VMStateField[]) { 1316 VMSTATE_FIFO8(tx_fifo, XilinxSPIPS), 1317 VMSTATE_FIFO8(rx_fifo, XilinxSPIPS), 1318 VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX), 1319 VMSTATE_UINT8(snoop_state, XilinxSPIPS), 1320 VMSTATE_END_OF_LIST() 1321 } 1322 }; 1323 1324 static int xlnx_zynqmp_qspips_post_load(void *opaque, int version_id) 1325 { 1326 XlnxZynqMPQSPIPS *s = (XlnxZynqMPQSPIPS *)opaque; 1327 XilinxSPIPS *qs = XILINX_SPIPS(s); 1328 1329 if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN) && 1330 fifo8_is_empty(&qs->rx_fifo) && fifo8_is_empty(&qs->tx_fifo)) { 1331 xlnx_zynqmp_qspips_update_ixr(s); 1332 xlnx_zynqmp_qspips_update_cs_lines(s); 1333 } 1334 return 0; 1335 } 1336 1337 static const VMStateDescription vmstate_xilinx_qspips = { 1338 .name = "xilinx_qspips", 1339 .version_id = 1, 1340 .minimum_version_id = 1, 1341 .fields = (VMStateField[]) { 1342 VMSTATE_STRUCT(parent_obj, XilinxQSPIPS, 0, 1343 vmstate_xilinx_spips, XilinxSPIPS), 1344 VMSTATE_END_OF_LIST() 1345 } 1346 }; 1347 1348 static const VMStateDescription vmstate_xlnx_zynqmp_qspips = { 1349 .name = "xlnx_zynqmp_qspips", 1350 .version_id = 1, 1351 .minimum_version_id = 1, 1352 .post_load = xlnx_zynqmp_qspips_post_load, 1353 .fields = (VMStateField[]) { 1354 VMSTATE_STRUCT(parent_obj, XlnxZynqMPQSPIPS, 0, 1355 vmstate_xilinx_qspips, XilinxQSPIPS), 1356 VMSTATE_FIFO8(tx_fifo_g, XlnxZynqMPQSPIPS), 1357 VMSTATE_FIFO8(rx_fifo_g, XlnxZynqMPQSPIPS), 1358 VMSTATE_FIFO32(fifo_g, XlnxZynqMPQSPIPS), 1359 VMSTATE_UINT32_ARRAY(regs, XlnxZynqMPQSPIPS, XLNX_ZYNQMP_SPIPS_R_MAX), 1360 VMSTATE_END_OF_LIST() 1361 } 1362 }; 1363 1364 static Property xilinx_qspips_properties[] = { 1365 /* We had to turn this off for 2.10 as it is not compatible with migration. 1366 * It can be enabled but will prevent the device to be migrated. 1367 * This will go aways when a fix will be released. 1368 */ 1369 DEFINE_PROP_BOOL("x-mmio-exec", XilinxQSPIPS, mmio_execution_enabled, 1370 false), 1371 DEFINE_PROP_END_OF_LIST(), 1372 }; 1373 1374 static Property xilinx_spips_properties[] = { 1375 DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1), 1376 DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4), 1377 DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1), 1378 DEFINE_PROP_END_OF_LIST(), 1379 }; 1380 1381 static void xilinx_qspips_class_init(ObjectClass *klass, void * data) 1382 { 1383 DeviceClass *dc = DEVICE_CLASS(klass); 1384 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); 1385 1386 dc->realize = xilinx_qspips_realize; 1387 dc->props = xilinx_qspips_properties; 1388 xsc->reg_ops = &qspips_ops; 1389 xsc->rx_fifo_size = RXFF_A_Q; 1390 xsc->tx_fifo_size = TXFF_A_Q; 1391 } 1392 1393 static void xilinx_spips_class_init(ObjectClass *klass, void *data) 1394 { 1395 DeviceClass *dc = DEVICE_CLASS(klass); 1396 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); 1397 1398 dc->realize = xilinx_spips_realize; 1399 dc->reset = xilinx_spips_reset; 1400 dc->props = xilinx_spips_properties; 1401 dc->vmsd = &vmstate_xilinx_spips; 1402 1403 xsc->reg_ops = &spips_ops; 1404 xsc->rx_fifo_size = RXFF_A; 1405 xsc->tx_fifo_size = TXFF_A; 1406 } 1407 1408 static void xlnx_zynqmp_qspips_class_init(ObjectClass *klass, void * data) 1409 { 1410 DeviceClass *dc = DEVICE_CLASS(klass); 1411 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); 1412 1413 dc->realize = xlnx_zynqmp_qspips_realize; 1414 dc->reset = xlnx_zynqmp_qspips_reset; 1415 dc->vmsd = &vmstate_xlnx_zynqmp_qspips; 1416 xsc->reg_ops = &xlnx_zynqmp_qspips_ops; 1417 xsc->rx_fifo_size = RXFF_A_Q; 1418 xsc->tx_fifo_size = TXFF_A_Q; 1419 } 1420 1421 static const TypeInfo xilinx_spips_info = { 1422 .name = TYPE_XILINX_SPIPS, 1423 .parent = TYPE_SYS_BUS_DEVICE, 1424 .instance_size = sizeof(XilinxSPIPS), 1425 .class_init = xilinx_spips_class_init, 1426 .class_size = sizeof(XilinxSPIPSClass), 1427 }; 1428 1429 static const TypeInfo xilinx_qspips_info = { 1430 .name = TYPE_XILINX_QSPIPS, 1431 .parent = TYPE_XILINX_SPIPS, 1432 .instance_size = sizeof(XilinxQSPIPS), 1433 .class_init = xilinx_qspips_class_init, 1434 }; 1435 1436 static const TypeInfo xlnx_zynqmp_qspips_info = { 1437 .name = TYPE_XLNX_ZYNQMP_QSPIPS, 1438 .parent = TYPE_XILINX_QSPIPS, 1439 .instance_size = sizeof(XlnxZynqMPQSPIPS), 1440 .instance_init = xlnx_zynqmp_qspips_init, 1441 .class_init = xlnx_zynqmp_qspips_class_init, 1442 }; 1443 1444 static void xilinx_spips_register_types(void) 1445 { 1446 type_register_static(&xilinx_spips_info); 1447 type_register_static(&xilinx_qspips_info); 1448 type_register_static(&xlnx_zynqmp_qspips_info); 1449 } 1450 1451 type_init(xilinx_spips_register_types) 1452