1 /* 2 * QEMU model of the Xilinx Zynq SPI controller 3 * 4 * Copyright (c) 2012 Peter A. G. Crosthwaite 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "hw/sysbus.h" 27 #include "hw/irq.h" 28 #include "hw/ptimer.h" 29 #include "hw/qdev-properties.h" 30 #include "qemu/log.h" 31 #include "qemu/module.h" 32 #include "qemu/bitops.h" 33 #include "hw/ssi/xilinx_spips.h" 34 #include "qapi/error.h" 35 #include "hw/register.h" 36 #include "sysemu/dma.h" 37 #include "migration/blocker.h" 38 #include "migration/vmstate.h" 39 40 #ifndef XILINX_SPIPS_ERR_DEBUG 41 #define XILINX_SPIPS_ERR_DEBUG 0 42 #endif 43 44 #define DB_PRINT_L(level, ...) do { \ 45 if (XILINX_SPIPS_ERR_DEBUG > (level)) { \ 46 fprintf(stderr, ": %s: ", __func__); \ 47 fprintf(stderr, ## __VA_ARGS__); \ 48 } \ 49 } while (0) 50 51 /* config register */ 52 #define R_CONFIG (0x00 / 4) 53 #define IFMODE (1U << 31) 54 #define R_CONFIG_ENDIAN (1 << 26) 55 #define MODEFAIL_GEN_EN (1 << 17) 56 #define MAN_START_COM (1 << 16) 57 #define MAN_START_EN (1 << 15) 58 #define MANUAL_CS (1 << 14) 59 #define CS (0xF << 10) 60 #define CS_SHIFT (10) 61 #define PERI_SEL (1 << 9) 62 #define REF_CLK (1 << 8) 63 #define FIFO_WIDTH (3 << 6) 64 #define BAUD_RATE_DIV (7 << 3) 65 #define CLK_PH (1 << 2) 66 #define CLK_POL (1 << 1) 67 #define MODE_SEL (1 << 0) 68 #define R_CONFIG_RSVD (0x7bf40000) 69 70 /* interrupt mechanism */ 71 #define R_INTR_STATUS (0x04 / 4) 72 #define R_INTR_STATUS_RESET (0x104) 73 #define R_INTR_EN (0x08 / 4) 74 #define R_INTR_DIS (0x0C / 4) 75 #define R_INTR_MASK (0x10 / 4) 76 #define IXR_TX_FIFO_UNDERFLOW (1 << 6) 77 /* Poll timeout not implemented */ 78 #define IXR_RX_FIFO_EMPTY (1 << 11) 79 #define IXR_GENERIC_FIFO_FULL (1 << 10) 80 #define IXR_GENERIC_FIFO_NOT_FULL (1 << 9) 81 #define IXR_TX_FIFO_EMPTY (1 << 8) 82 #define IXR_GENERIC_FIFO_EMPTY (1 << 7) 83 #define IXR_RX_FIFO_FULL (1 << 5) 84 #define IXR_RX_FIFO_NOT_EMPTY (1 << 4) 85 #define IXR_TX_FIFO_FULL (1 << 3) 86 #define IXR_TX_FIFO_NOT_FULL (1 << 2) 87 #define IXR_TX_FIFO_MODE_FAIL (1 << 1) 88 #define IXR_RX_FIFO_OVERFLOW (1 << 0) 89 #define IXR_ALL ((1 << 13) - 1) 90 #define GQSPI_IXR_MASK 0xFBE 91 #define IXR_SELF_CLEAR \ 92 (IXR_GENERIC_FIFO_EMPTY \ 93 | IXR_GENERIC_FIFO_FULL \ 94 | IXR_GENERIC_FIFO_NOT_FULL \ 95 | IXR_TX_FIFO_EMPTY \ 96 | IXR_TX_FIFO_FULL \ 97 | IXR_TX_FIFO_NOT_FULL \ 98 | IXR_RX_FIFO_EMPTY \ 99 | IXR_RX_FIFO_FULL \ 100 | IXR_RX_FIFO_NOT_EMPTY) 101 102 #define R_EN (0x14 / 4) 103 #define R_DELAY (0x18 / 4) 104 #define R_TX_DATA (0x1C / 4) 105 #define R_RX_DATA (0x20 / 4) 106 #define R_SLAVE_IDLE_COUNT (0x24 / 4) 107 #define R_TX_THRES (0x28 / 4) 108 #define R_RX_THRES (0x2C / 4) 109 #define R_GPIO (0x30 / 4) 110 #define R_LPBK_DLY_ADJ (0x38 / 4) 111 #define R_LPBK_DLY_ADJ_RESET (0x33) 112 #define R_IOU_TAPDLY_BYPASS (0x3C / 4) 113 #define R_TXD1 (0x80 / 4) 114 #define R_TXD2 (0x84 / 4) 115 #define R_TXD3 (0x88 / 4) 116 117 #define R_LQSPI_CFG (0xa0 / 4) 118 #define R_LQSPI_CFG_RESET 0x03A002EB 119 #define LQSPI_CFG_LQ_MODE (1U << 31) 120 #define LQSPI_CFG_TWO_MEM (1 << 30) 121 #define LQSPI_CFG_SEP_BUS (1 << 29) 122 #define LQSPI_CFG_U_PAGE (1 << 28) 123 #define LQSPI_CFG_ADDR4 (1 << 27) 124 #define LQSPI_CFG_MODE_EN (1 << 25) 125 #define LQSPI_CFG_MODE_WIDTH 8 126 #define LQSPI_CFG_MODE_SHIFT 16 127 #define LQSPI_CFG_DUMMY_WIDTH 3 128 #define LQSPI_CFG_DUMMY_SHIFT 8 129 #define LQSPI_CFG_INST_CODE 0xFF 130 131 #define R_CMND (0xc0 / 4) 132 #define R_CMND_RXFIFO_DRAIN (1 << 19) 133 FIELD(CMND, PARTIAL_BYTE_LEN, 16, 3) 134 #define R_CMND_EXT_ADD (1 << 15) 135 FIELD(CMND, RX_DISCARD, 8, 7) 136 FIELD(CMND, DUMMY_CYCLES, 2, 6) 137 #define R_CMND_DMA_EN (1 << 1) 138 #define R_CMND_PUSH_WAIT (1 << 0) 139 #define R_TRANSFER_SIZE (0xc4 / 4) 140 #define R_LQSPI_STS (0xA4 / 4) 141 #define LQSPI_STS_WR_RECVD (1 << 1) 142 143 #define R_DUMMY_CYCLE_EN (0xC8 / 4) 144 #define R_ECO (0xF8 / 4) 145 #define R_MOD_ID (0xFC / 4) 146 147 #define R_GQSPI_SELECT (0x144 / 4) 148 FIELD(GQSPI_SELECT, GENERIC_QSPI_EN, 0, 1) 149 #define R_GQSPI_ISR (0x104 / 4) 150 #define R_GQSPI_IER (0x108 / 4) 151 #define R_GQSPI_IDR (0x10c / 4) 152 #define R_GQSPI_IMR (0x110 / 4) 153 #define R_GQSPI_IMR_RESET (0xfbe) 154 #define R_GQSPI_TX_THRESH (0x128 / 4) 155 #define R_GQSPI_RX_THRESH (0x12c / 4) 156 #define R_GQSPI_GPIO (0x130 / 4) 157 #define R_GQSPI_LPBK_DLY_ADJ (0x138 / 4) 158 #define R_GQSPI_LPBK_DLY_ADJ_RESET (0x33) 159 #define R_GQSPI_CNFG (0x100 / 4) 160 FIELD(GQSPI_CNFG, MODE_EN, 30, 2) 161 FIELD(GQSPI_CNFG, GEN_FIFO_START_MODE, 29, 1) 162 FIELD(GQSPI_CNFG, GEN_FIFO_START, 28, 1) 163 FIELD(GQSPI_CNFG, ENDIAN, 26, 1) 164 /* Poll timeout not implemented */ 165 FIELD(GQSPI_CNFG, EN_POLL_TIMEOUT, 20, 1) 166 /* QEMU doesn't care about any of these last three */ 167 FIELD(GQSPI_CNFG, BR, 3, 3) 168 FIELD(GQSPI_CNFG, CPH, 2, 1) 169 FIELD(GQSPI_CNFG, CPL, 1, 1) 170 #define R_GQSPI_GEN_FIFO (0x140 / 4) 171 #define R_GQSPI_TXD (0x11c / 4) 172 #define R_GQSPI_RXD (0x120 / 4) 173 #define R_GQSPI_FIFO_CTRL (0x14c / 4) 174 FIELD(GQSPI_FIFO_CTRL, RX_FIFO_RESET, 2, 1) 175 FIELD(GQSPI_FIFO_CTRL, TX_FIFO_RESET, 1, 1) 176 FIELD(GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET, 0, 1) 177 #define R_GQSPI_GFIFO_THRESH (0x150 / 4) 178 #define R_GQSPI_DATA_STS (0x15c / 4) 179 /* 180 * We use the snapshot register to hold the core state for the currently 181 * or most recently executed command. So the generic fifo format is defined 182 * for the snapshot register 183 */ 184 #define R_GQSPI_GF_SNAPSHOT (0x160 / 4) 185 FIELD(GQSPI_GF_SNAPSHOT, POLL, 19, 1) 186 FIELD(GQSPI_GF_SNAPSHOT, STRIPE, 18, 1) 187 FIELD(GQSPI_GF_SNAPSHOT, RECIEVE, 17, 1) 188 FIELD(GQSPI_GF_SNAPSHOT, TRANSMIT, 16, 1) 189 FIELD(GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT, 14, 2) 190 FIELD(GQSPI_GF_SNAPSHOT, CHIP_SELECT, 12, 2) 191 FIELD(GQSPI_GF_SNAPSHOT, SPI_MODE, 10, 2) 192 FIELD(GQSPI_GF_SNAPSHOT, EXPONENT, 9, 1) 193 FIELD(GQSPI_GF_SNAPSHOT, DATA_XFER, 8, 1) 194 FIELD(GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA, 0, 8) 195 #define R_GQSPI_MOD_ID (0x1fc / 4) 196 #define R_GQSPI_MOD_ID_RESET (0x10a0000) 197 198 /* size of TXRX FIFOs */ 199 #define RXFF_A (128) 200 #define TXFF_A (128) 201 202 #define RXFF_A_Q (64 * 4) 203 #define TXFF_A_Q (64 * 4) 204 205 /* 16MB per linear region */ 206 #define LQSPI_ADDRESS_BITS 24 207 208 #define SNOOP_CHECKING 0xFF 209 #define SNOOP_ADDR 0xF0 210 #define SNOOP_NONE 0xEE 211 #define SNOOP_STRIPING 0 212 213 #define MIN_NUM_BUSSES 1 214 #define MAX_NUM_BUSSES 2 215 216 static inline int num_effective_busses(XilinxSPIPS *s) 217 { 218 return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS && 219 s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1; 220 } 221 222 static void xilinx_spips_update_cs(XilinxSPIPS *s, int field) 223 { 224 int i; 225 226 for (i = 0; i < s->num_cs * s->num_busses; i++) { 227 bool old_state = s->cs_lines_state[i]; 228 bool new_state = field & (1 << i); 229 230 if (old_state != new_state) { 231 s->cs_lines_state[i] = new_state; 232 s->rx_discard = ARRAY_FIELD_EX32(s->regs, CMND, RX_DISCARD); 233 DB_PRINT_L(1, "%sselecting peripheral %d\n", 234 new_state ? "" : "de", i); 235 } 236 qemu_set_irq(s->cs_lines[i], !new_state); 237 } 238 if (!(field & ((1 << (s->num_cs * s->num_busses)) - 1))) { 239 s->snoop_state = SNOOP_CHECKING; 240 s->cmd_dummies = 0; 241 s->link_state = 1; 242 s->link_state_next = 1; 243 s->link_state_next_when = 0; 244 DB_PRINT_L(1, "moving to snoop check state\n"); 245 } 246 } 247 248 static void xlnx_zynqmp_qspips_update_cs_lines(XlnxZynqMPQSPIPS *s) 249 { 250 if (s->regs[R_GQSPI_GF_SNAPSHOT]) { 251 int field = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, CHIP_SELECT); 252 bool upper_cs_sel = field & (1 << 1); 253 bool lower_cs_sel = field & 1; 254 bool bus0_enabled; 255 bool bus1_enabled; 256 uint8_t buses; 257 int cs = 0; 258 259 buses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT); 260 bus0_enabled = buses & 1; 261 bus1_enabled = buses & (1 << 1); 262 263 if (bus0_enabled && bus1_enabled) { 264 if (lower_cs_sel) { 265 cs |= 1; 266 } 267 if (upper_cs_sel) { 268 cs |= 1 << 3; 269 } 270 } else if (bus0_enabled) { 271 if (lower_cs_sel) { 272 cs |= 1; 273 } 274 if (upper_cs_sel) { 275 cs |= 1 << 1; 276 } 277 } else if (bus1_enabled) { 278 if (lower_cs_sel) { 279 cs |= 1 << 2; 280 } 281 if (upper_cs_sel) { 282 cs |= 1 << 3; 283 } 284 } 285 xilinx_spips_update_cs(XILINX_SPIPS(s), cs); 286 } 287 } 288 289 static void xilinx_spips_update_cs_lines(XilinxSPIPS *s) 290 { 291 int field = ~((s->regs[R_CONFIG] & CS) >> CS_SHIFT); 292 293 /* In dual parallel, mirror low CS to both */ 294 if (num_effective_busses(s) == 2) { 295 /* Single bit chip-select for qspi */ 296 field &= 0x1; 297 field |= field << 3; 298 /* Dual stack U-Page */ 299 } else if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM && 300 s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE) { 301 /* Single bit chip-select for qspi */ 302 field &= 0x1; 303 /* change from CS0 to CS1 */ 304 field <<= 1; 305 } 306 /* Auto CS */ 307 if (!(s->regs[R_CONFIG] & MANUAL_CS) && 308 fifo8_is_empty(&s->tx_fifo)) { 309 field = 0; 310 } 311 xilinx_spips_update_cs(s, field); 312 } 313 314 static void xilinx_spips_update_ixr(XilinxSPIPS *s) 315 { 316 if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) { 317 s->regs[R_INTR_STATUS] &= ~IXR_SELF_CLEAR; 318 s->regs[R_INTR_STATUS] |= 319 (fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) | 320 (s->rx_fifo.num >= s->regs[R_RX_THRES] ? 321 IXR_RX_FIFO_NOT_EMPTY : 0) | 322 (fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) | 323 (fifo8_is_empty(&s->tx_fifo) ? IXR_TX_FIFO_EMPTY : 0) | 324 (s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0); 325 } 326 int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] & 327 IXR_ALL); 328 if (new_irqline != s->irqline) { 329 s->irqline = new_irqline; 330 qemu_set_irq(s->irq, s->irqline); 331 } 332 } 333 334 static void xlnx_zynqmp_qspips_update_ixr(XlnxZynqMPQSPIPS *s) 335 { 336 uint32_t gqspi_int; 337 int new_irqline; 338 339 s->regs[R_GQSPI_ISR] &= ~IXR_SELF_CLEAR; 340 s->regs[R_GQSPI_ISR] |= 341 (fifo32_is_empty(&s->fifo_g) ? IXR_GENERIC_FIFO_EMPTY : 0) | 342 (fifo32_is_full(&s->fifo_g) ? IXR_GENERIC_FIFO_FULL : 0) | 343 (s->fifo_g.fifo.num < s->regs[R_GQSPI_GFIFO_THRESH] ? 344 IXR_GENERIC_FIFO_NOT_FULL : 0) | 345 (fifo8_is_empty(&s->rx_fifo_g) ? IXR_RX_FIFO_EMPTY : 0) | 346 (fifo8_is_full(&s->rx_fifo_g) ? IXR_RX_FIFO_FULL : 0) | 347 (s->rx_fifo_g.num >= s->regs[R_GQSPI_RX_THRESH] ? 348 IXR_RX_FIFO_NOT_EMPTY : 0) | 349 (fifo8_is_empty(&s->tx_fifo_g) ? IXR_TX_FIFO_EMPTY : 0) | 350 (fifo8_is_full(&s->tx_fifo_g) ? IXR_TX_FIFO_FULL : 0) | 351 (s->tx_fifo_g.num < s->regs[R_GQSPI_TX_THRESH] ? 352 IXR_TX_FIFO_NOT_FULL : 0); 353 354 /* GQSPI Interrupt Trigger Status */ 355 gqspi_int = (~s->regs[R_GQSPI_IMR]) & s->regs[R_GQSPI_ISR] & GQSPI_IXR_MASK; 356 new_irqline = !!(gqspi_int & IXR_ALL); 357 358 /* drive external interrupt pin */ 359 if (new_irqline != s->gqspi_irqline) { 360 s->gqspi_irqline = new_irqline; 361 qemu_set_irq(XILINX_SPIPS(s)->irq, s->gqspi_irqline); 362 } 363 } 364 365 static void xilinx_spips_reset(DeviceState *d) 366 { 367 XilinxSPIPS *s = XILINX_SPIPS(d); 368 369 memset(s->regs, 0, sizeof(s->regs)); 370 371 fifo8_reset(&s->rx_fifo); 372 fifo8_reset(&s->rx_fifo); 373 /* non zero resets */ 374 s->regs[R_CONFIG] |= MODEFAIL_GEN_EN; 375 s->regs[R_SLAVE_IDLE_COUNT] = 0xFF; 376 s->regs[R_TX_THRES] = 1; 377 s->regs[R_RX_THRES] = 1; 378 /* FIXME: move magic number definition somewhere sensible */ 379 s->regs[R_MOD_ID] = 0x01090106; 380 s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET; 381 s->link_state = 1; 382 s->link_state_next = 1; 383 s->link_state_next_when = 0; 384 s->snoop_state = SNOOP_CHECKING; 385 s->cmd_dummies = 0; 386 s->man_start_com = false; 387 xilinx_spips_update_ixr(s); 388 xilinx_spips_update_cs_lines(s); 389 } 390 391 static void xlnx_zynqmp_qspips_reset(DeviceState *d) 392 { 393 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(d); 394 395 xilinx_spips_reset(d); 396 397 memset(s->regs, 0, sizeof(s->regs)); 398 399 fifo8_reset(&s->rx_fifo_g); 400 fifo8_reset(&s->rx_fifo_g); 401 fifo32_reset(&s->fifo_g); 402 s->regs[R_INTR_STATUS] = R_INTR_STATUS_RESET; 403 s->regs[R_GPIO] = 1; 404 s->regs[R_LPBK_DLY_ADJ] = R_LPBK_DLY_ADJ_RESET; 405 s->regs[R_GQSPI_GFIFO_THRESH] = 0x10; 406 s->regs[R_MOD_ID] = 0x01090101; 407 s->regs[R_GQSPI_IMR] = R_GQSPI_IMR_RESET; 408 s->regs[R_GQSPI_TX_THRESH] = 1; 409 s->regs[R_GQSPI_RX_THRESH] = 1; 410 s->regs[R_GQSPI_GPIO] = 1; 411 s->regs[R_GQSPI_LPBK_DLY_ADJ] = R_GQSPI_LPBK_DLY_ADJ_RESET; 412 s->regs[R_GQSPI_MOD_ID] = R_GQSPI_MOD_ID_RESET; 413 s->man_start_com_g = false; 414 s->gqspi_irqline = 0; 415 xlnx_zynqmp_qspips_update_ixr(s); 416 } 417 418 /* 419 * N way (num) in place bit striper. Lay out row wise bits (MSB to LSB) 420 * column wise (from element 0 to N-1). num is the length of x, and dir 421 * reverses the direction of the transform. Best illustrated by example: 422 * Each digit in the below array is a single bit (num == 3): 423 * 424 * {{ 76543210, } ----- stripe (dir == false) -----> {{ 741gdaFC, } 425 * { hgfedcba, } { 630fcHEB, } 426 * { HGFEDCBA, }} <---- upstripe (dir == true) ----- { 52hebGDA, }} 427 */ 428 429 static inline void stripe8(uint8_t *x, int num, bool dir) 430 { 431 uint8_t r[MAX_NUM_BUSSES]; 432 int idx[2] = {0, 0}; 433 int bit[2] = {0, 7}; 434 int d = dir; 435 436 assert(num <= MAX_NUM_BUSSES); 437 memset(r, 0, sizeof(uint8_t) * num); 438 439 for (idx[0] = 0; idx[0] < num; ++idx[0]) { 440 for (bit[0] = 7; bit[0] >= 0; bit[0]--) { 441 r[idx[!d]] |= x[idx[d]] & 1 << bit[d] ? 1 << bit[!d] : 0; 442 idx[1] = (idx[1] + 1) % num; 443 if (!idx[1]) { 444 bit[1]--; 445 } 446 } 447 } 448 memcpy(x, r, sizeof(uint8_t) * num); 449 } 450 451 static void xlnx_zynqmp_qspips_flush_fifo_g(XlnxZynqMPQSPIPS *s) 452 { 453 while (s->regs[R_GQSPI_DATA_STS] || !fifo32_is_empty(&s->fifo_g)) { 454 uint8_t tx_rx[2] = { 0 }; 455 int num_stripes = 1; 456 uint8_t busses; 457 int i; 458 459 if (!s->regs[R_GQSPI_DATA_STS]) { 460 uint8_t imm; 461 462 s->regs[R_GQSPI_GF_SNAPSHOT] = fifo32_pop(&s->fifo_g); 463 DB_PRINT_L(0, "GQSPI command: %x\n", s->regs[R_GQSPI_GF_SNAPSHOT]); 464 if (!s->regs[R_GQSPI_GF_SNAPSHOT]) { 465 DB_PRINT_L(0, "Dummy GQSPI Delay Command Entry, Do nothing"); 466 continue; 467 } 468 xlnx_zynqmp_qspips_update_cs_lines(s); 469 470 imm = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA); 471 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) { 472 /* immediate transfer */ 473 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) || 474 ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) { 475 s->regs[R_GQSPI_DATA_STS] = 1; 476 /* CS setup/hold - do nothing */ 477 } else { 478 s->regs[R_GQSPI_DATA_STS] = 0; 479 } 480 } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, EXPONENT)) { 481 if (imm > 31) { 482 qemu_log_mask(LOG_UNIMP, "QSPI exponential transfer too" 483 " long - 2 ^ %" PRId8 " requested\n", imm); 484 } 485 s->regs[R_GQSPI_DATA_STS] = 1ul << imm; 486 } else { 487 s->regs[R_GQSPI_DATA_STS] = imm; 488 } 489 } 490 /* Zero length transfer check */ 491 if (!s->regs[R_GQSPI_DATA_STS]) { 492 continue; 493 } 494 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE) && 495 fifo8_is_full(&s->rx_fifo_g)) { 496 /* No space in RX fifo for transfer - try again later */ 497 return; 498 } 499 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, STRIPE) && 500 (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) || 501 ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE))) { 502 num_stripes = 2; 503 } 504 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) { 505 tx_rx[0] = ARRAY_FIELD_EX32(s->regs, 506 GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA); 507 } else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT)) { 508 for (i = 0; i < num_stripes; ++i) { 509 if (!fifo8_is_empty(&s->tx_fifo_g)) { 510 tx_rx[i] = fifo8_pop(&s->tx_fifo_g); 511 s->tx_fifo_g_align++; 512 } else { 513 return; 514 } 515 } 516 } 517 if (num_stripes == 1) { 518 /* mirror */ 519 tx_rx[1] = tx_rx[0]; 520 } 521 busses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT); 522 for (i = 0; i < 2; ++i) { 523 DB_PRINT_L(1, "bus %d tx = %02x\n", i, tx_rx[i]); 524 tx_rx[i] = ssi_transfer(XILINX_SPIPS(s)->spi[i], tx_rx[i]); 525 DB_PRINT_L(1, "bus %d rx = %02x\n", i, tx_rx[i]); 526 } 527 if (s->regs[R_GQSPI_DATA_STS] > 1 && 528 busses == 0x3 && num_stripes == 2) { 529 s->regs[R_GQSPI_DATA_STS] -= 2; 530 } else if (s->regs[R_GQSPI_DATA_STS] > 0) { 531 s->regs[R_GQSPI_DATA_STS]--; 532 } 533 if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) { 534 for (i = 0; i < 2; ++i) { 535 if (busses & (1 << i)) { 536 DB_PRINT_L(1, "bus %d push_byte = %02x\n", i, tx_rx[i]); 537 fifo8_push(&s->rx_fifo_g, tx_rx[i]); 538 s->rx_fifo_g_align++; 539 } 540 } 541 } 542 if (!s->regs[R_GQSPI_DATA_STS]) { 543 for (; s->tx_fifo_g_align % 4; s->tx_fifo_g_align++) { 544 fifo8_pop(&s->tx_fifo_g); 545 } 546 for (; s->rx_fifo_g_align % 4; s->rx_fifo_g_align++) { 547 fifo8_push(&s->rx_fifo_g, 0); 548 } 549 } 550 } 551 } 552 553 static int xilinx_spips_num_dummies(XilinxQSPIPS *qs, uint8_t command) 554 { 555 if (!qs) { 556 /* The SPI device is not a QSPI device */ 557 return -1; 558 } 559 560 switch (command) { /* check for dummies */ 561 case READ: /* no dummy bytes/cycles */ 562 case PP: 563 case DPP: 564 case QPP: 565 case READ_4: 566 case PP_4: 567 case QPP_4: 568 return 0; 569 case FAST_READ: 570 case DOR: 571 case QOR: 572 case FAST_READ_4: 573 case DOR_4: 574 case QOR_4: 575 return 1; 576 case DIOR: 577 case DIOR_4: 578 return 2; 579 case QIOR: 580 case QIOR_4: 581 return 4; 582 default: 583 return -1; 584 } 585 } 586 587 static inline uint8_t get_addr_length(XilinxSPIPS *s, uint8_t cmd) 588 { 589 switch (cmd) { 590 case PP_4: 591 case QPP_4: 592 case READ_4: 593 case QIOR_4: 594 case FAST_READ_4: 595 case DOR_4: 596 case QOR_4: 597 case DIOR_4: 598 return 4; 599 default: 600 return (s->regs[R_CMND] & R_CMND_EXT_ADD) ? 4 : 3; 601 } 602 } 603 604 static void xilinx_spips_flush_txfifo(XilinxSPIPS *s) 605 { 606 int debug_level = 0; 607 XilinxQSPIPS *q = (XilinxQSPIPS *) object_dynamic_cast(OBJECT(s), 608 TYPE_XILINX_QSPIPS); 609 610 for (;;) { 611 int i; 612 uint8_t tx = 0; 613 uint8_t tx_rx[MAX_NUM_BUSSES] = { 0 }; 614 uint8_t dummy_cycles = 0; 615 uint8_t addr_length; 616 617 if (fifo8_is_empty(&s->tx_fifo)) { 618 xilinx_spips_update_ixr(s); 619 return; 620 } else if (s->snoop_state == SNOOP_STRIPING || 621 s->snoop_state == SNOOP_NONE) { 622 for (i = 0; i < num_effective_busses(s); ++i) { 623 if (!fifo8_is_empty(&s->tx_fifo)) { 624 tx_rx[i] = fifo8_pop(&s->tx_fifo); 625 } 626 } 627 stripe8(tx_rx, num_effective_busses(s), false); 628 } else if (s->snoop_state >= SNOOP_ADDR) { 629 tx = fifo8_pop(&s->tx_fifo); 630 for (i = 0; i < num_effective_busses(s); ++i) { 631 tx_rx[i] = tx; 632 } 633 } else { 634 /* 635 * Extract a dummy byte and generate dummy cycles according to the 636 * link state 637 */ 638 tx = fifo8_pop(&s->tx_fifo); 639 dummy_cycles = 8 / s->link_state; 640 } 641 642 for (i = 0; i < num_effective_busses(s); ++i) { 643 int bus = num_effective_busses(s) - 1 - i; 644 if (dummy_cycles) { 645 int d; 646 for (d = 0; d < dummy_cycles; ++d) { 647 tx_rx[0] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[0]); 648 } 649 } else { 650 DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]); 651 tx_rx[i] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[i]); 652 DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]); 653 } 654 } 655 656 if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) { 657 DB_PRINT_L(debug_level, "dircarding drained rx byte\n"); 658 /* Do nothing */ 659 } else if (s->rx_discard) { 660 DB_PRINT_L(debug_level, "dircarding discarded rx byte\n"); 661 s->rx_discard -= 8 / s->link_state; 662 } else if (fifo8_is_full(&s->rx_fifo)) { 663 s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW; 664 DB_PRINT_L(0, "rx FIFO overflow"); 665 } else if (s->snoop_state == SNOOP_STRIPING) { 666 stripe8(tx_rx, num_effective_busses(s), true); 667 for (i = 0; i < num_effective_busses(s); ++i) { 668 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]); 669 DB_PRINT_L(debug_level, "pushing striped rx byte\n"); 670 } 671 } else { 672 DB_PRINT_L(debug_level, "pushing unstriped rx byte\n"); 673 fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]); 674 } 675 676 if (s->link_state_next_when) { 677 s->link_state_next_when--; 678 if (!s->link_state_next_when) { 679 s->link_state = s->link_state_next; 680 } 681 } 682 683 DB_PRINT_L(debug_level, "initial snoop state: %x\n", 684 (unsigned)s->snoop_state); 685 switch (s->snoop_state) { 686 case (SNOOP_CHECKING): 687 /* Store the count of dummy bytes in the txfifo */ 688 s->cmd_dummies = xilinx_spips_num_dummies(q, tx); 689 addr_length = get_addr_length(s, tx); 690 if (s->cmd_dummies < 0) { 691 s->snoop_state = SNOOP_NONE; 692 } else { 693 s->snoop_state = SNOOP_ADDR + addr_length - 1; 694 } 695 switch (tx) { 696 case DPP: 697 case DOR: 698 case DOR_4: 699 s->link_state_next = 2; 700 s->link_state_next_when = addr_length + s->cmd_dummies; 701 break; 702 case QPP: 703 case QPP_4: 704 case QOR: 705 case QOR_4: 706 s->link_state_next = 4; 707 s->link_state_next_when = addr_length + s->cmd_dummies; 708 break; 709 case DIOR: 710 case DIOR_4: 711 s->link_state = 2; 712 break; 713 case QIOR: 714 case QIOR_4: 715 s->link_state = 4; 716 break; 717 } 718 break; 719 case (SNOOP_ADDR): 720 /* 721 * Address has been transmitted, transmit dummy cycles now if needed 722 */ 723 if (s->cmd_dummies < 0) { 724 s->snoop_state = SNOOP_NONE; 725 } else { 726 s->snoop_state = s->cmd_dummies; 727 } 728 break; 729 case (SNOOP_STRIPING): 730 case (SNOOP_NONE): 731 /* Once we hit the boring stuff - squelch debug noise */ 732 if (!debug_level) { 733 DB_PRINT_L(0, "squelching debug info ....\n"); 734 debug_level = 1; 735 } 736 break; 737 default: 738 s->snoop_state--; 739 } 740 DB_PRINT_L(debug_level, "final snoop state: %x\n", 741 (unsigned)s->snoop_state); 742 } 743 } 744 745 static inline void tx_data_bytes(Fifo8 *fifo, uint32_t value, int num, bool be) 746 { 747 int i; 748 for (i = 0; i < num && !fifo8_is_full(fifo); ++i) { 749 if (be) { 750 fifo8_push(fifo, (uint8_t)(value >> 24)); 751 value <<= 8; 752 } else { 753 fifo8_push(fifo, (uint8_t)value); 754 value >>= 8; 755 } 756 } 757 } 758 759 static void xilinx_spips_check_zero_pump(XilinxSPIPS *s) 760 { 761 if (!s->regs[R_TRANSFER_SIZE]) { 762 return; 763 } 764 if (!fifo8_is_empty(&s->tx_fifo) && s->regs[R_CMND] & R_CMND_PUSH_WAIT) { 765 return; 766 } 767 /* 768 * The zero pump must never fill tx fifo such that rx overflow is 769 * possible 770 */ 771 while (s->regs[R_TRANSFER_SIZE] && 772 s->rx_fifo.num + s->tx_fifo.num < RXFF_A_Q - 3) { 773 /* endianness just doesn't matter when zero pumping */ 774 tx_data_bytes(&s->tx_fifo, 0, 4, false); 775 s->regs[R_TRANSFER_SIZE] &= ~0x03ull; 776 s->regs[R_TRANSFER_SIZE] -= 4; 777 } 778 } 779 780 static void xilinx_spips_check_flush(XilinxSPIPS *s) 781 { 782 if (s->man_start_com || 783 (!fifo8_is_empty(&s->tx_fifo) && 784 !(s->regs[R_CONFIG] & MAN_START_EN))) { 785 xilinx_spips_check_zero_pump(s); 786 xilinx_spips_flush_txfifo(s); 787 } 788 if (fifo8_is_empty(&s->tx_fifo) && !s->regs[R_TRANSFER_SIZE]) { 789 s->man_start_com = false; 790 } 791 xilinx_spips_update_ixr(s); 792 } 793 794 static void xlnx_zynqmp_qspips_check_flush(XlnxZynqMPQSPIPS *s) 795 { 796 bool gqspi_has_work = s->regs[R_GQSPI_DATA_STS] || 797 !fifo32_is_empty(&s->fifo_g); 798 799 if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) { 800 if (s->man_start_com_g || (gqspi_has_work && 801 !ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE))) { 802 xlnx_zynqmp_qspips_flush_fifo_g(s); 803 } 804 } else { 805 xilinx_spips_check_flush(XILINX_SPIPS(s)); 806 } 807 if (!gqspi_has_work) { 808 s->man_start_com_g = false; 809 } 810 xlnx_zynqmp_qspips_update_ixr(s); 811 } 812 813 static inline int rx_data_bytes(Fifo8 *fifo, uint8_t *value, int max) 814 { 815 int i; 816 817 for (i = 0; i < max && !fifo8_is_empty(fifo); ++i) { 818 value[i] = fifo8_pop(fifo); 819 } 820 return max - i; 821 } 822 823 static const void *pop_buf(Fifo8 *fifo, uint32_t max, uint32_t *num) 824 { 825 void *ret; 826 827 if (max == 0 || max > fifo->num) { 828 abort(); 829 } 830 *num = MIN(fifo->capacity - fifo->head, max); 831 ret = &fifo->data[fifo->head]; 832 fifo->head += *num; 833 fifo->head %= fifo->capacity; 834 fifo->num -= *num; 835 return ret; 836 } 837 838 static void xlnx_zynqmp_qspips_notify(void *opaque) 839 { 840 XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(opaque); 841 XilinxSPIPS *s = XILINX_SPIPS(rq); 842 Fifo8 *recv_fifo; 843 844 if (ARRAY_FIELD_EX32(rq->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) { 845 if (!(ARRAY_FIELD_EX32(rq->regs, GQSPI_CNFG, MODE_EN) == 2)) { 846 return; 847 } 848 recv_fifo = &rq->rx_fifo_g; 849 } else { 850 if (!(s->regs[R_CMND] & R_CMND_DMA_EN)) { 851 return; 852 } 853 recv_fifo = &s->rx_fifo; 854 } 855 while (recv_fifo->num >= 4 856 && stream_can_push(rq->dma, xlnx_zynqmp_qspips_notify, rq)) 857 { 858 size_t ret; 859 uint32_t num; 860 const void *rxd; 861 int len; 862 863 len = recv_fifo->num >= rq->dma_burst_size ? rq->dma_burst_size : 864 recv_fifo->num; 865 rxd = pop_buf(recv_fifo, len, &num); 866 867 memcpy(rq->dma_buf, rxd, num); 868 869 ret = stream_push(rq->dma, rq->dma_buf, num, false); 870 assert(ret == num); 871 xlnx_zynqmp_qspips_check_flush(rq); 872 } 873 } 874 875 static uint64_t xilinx_spips_read(void *opaque, hwaddr addr, 876 unsigned size) 877 { 878 XilinxSPIPS *s = opaque; 879 uint32_t mask = ~0; 880 uint32_t ret; 881 uint8_t rx_buf[4]; 882 int shortfall; 883 884 addr >>= 2; 885 switch (addr) { 886 case R_CONFIG: 887 mask = ~(R_CONFIG_RSVD | MAN_START_COM); 888 break; 889 case R_INTR_STATUS: 890 ret = s->regs[addr] & IXR_ALL; 891 s->regs[addr] = 0; 892 DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr * 4, ret); 893 xilinx_spips_update_ixr(s); 894 return ret; 895 case R_INTR_MASK: 896 mask = IXR_ALL; 897 break; 898 case R_EN: 899 mask = 0x1; 900 break; 901 case R_SLAVE_IDLE_COUNT: 902 mask = 0xFF; 903 break; 904 case R_MOD_ID: 905 mask = 0x01FFFFFF; 906 break; 907 case R_INTR_EN: 908 case R_INTR_DIS: 909 case R_TX_DATA: 910 mask = 0; 911 break; 912 case R_RX_DATA: 913 memset(rx_buf, 0, sizeof(rx_buf)); 914 shortfall = rx_data_bytes(&s->rx_fifo, rx_buf, s->num_txrx_bytes); 915 ret = s->regs[R_CONFIG] & R_CONFIG_ENDIAN ? 916 cpu_to_be32(*(uint32_t *)rx_buf) : 917 cpu_to_le32(*(uint32_t *)rx_buf); 918 if (!(s->regs[R_CONFIG] & R_CONFIG_ENDIAN)) { 919 ret <<= 8 * shortfall; 920 } 921 DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr * 4, ret); 922 xilinx_spips_check_flush(s); 923 xilinx_spips_update_ixr(s); 924 return ret; 925 } 926 DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr * 4, 927 s->regs[addr] & mask); 928 return s->regs[addr] & mask; 929 930 } 931 932 static uint64_t xlnx_zynqmp_qspips_read(void *opaque, 933 hwaddr addr, unsigned size) 934 { 935 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque); 936 uint32_t reg = addr / 4; 937 uint32_t ret; 938 uint8_t rx_buf[4]; 939 int shortfall; 940 941 if (reg <= R_MOD_ID) { 942 return xilinx_spips_read(opaque, addr, size); 943 } else { 944 switch (reg) { 945 case R_GQSPI_RXD: 946 if (fifo8_is_empty(&s->rx_fifo_g)) { 947 qemu_log_mask(LOG_GUEST_ERROR, 948 "Read from empty GQSPI RX FIFO\n"); 949 return 0; 950 } 951 memset(rx_buf, 0, sizeof(rx_buf)); 952 shortfall = rx_data_bytes(&s->rx_fifo_g, rx_buf, 953 XILINX_SPIPS(s)->num_txrx_bytes); 954 ret = ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN) ? 955 cpu_to_be32(*(uint32_t *)rx_buf) : 956 cpu_to_le32(*(uint32_t *)rx_buf); 957 if (!ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)) { 958 ret <<= 8 * shortfall; 959 } 960 xlnx_zynqmp_qspips_check_flush(s); 961 xlnx_zynqmp_qspips_update_ixr(s); 962 return ret; 963 default: 964 return s->regs[reg]; 965 } 966 } 967 } 968 969 static void xilinx_spips_write(void *opaque, hwaddr addr, 970 uint64_t value, unsigned size) 971 { 972 int mask = ~0; 973 XilinxSPIPS *s = opaque; 974 bool try_flush = true; 975 976 DB_PRINT_L(0, "addr=" HWADDR_FMT_plx " = %x\n", addr, (unsigned)value); 977 addr >>= 2; 978 assert(addr < XLNX_SPIPS_R_MAX); 979 980 switch (addr) { 981 case R_CONFIG: 982 mask = ~(R_CONFIG_RSVD | MAN_START_COM); 983 if ((value & MAN_START_COM) && (s->regs[R_CONFIG] & MAN_START_EN)) { 984 s->man_start_com = true; 985 } 986 break; 987 case R_INTR_STATUS: 988 mask = IXR_ALL; 989 s->regs[R_INTR_STATUS] &= ~(mask & value); 990 goto no_reg_update; 991 case R_INTR_DIS: 992 mask = IXR_ALL; 993 s->regs[R_INTR_MASK] &= ~(mask & value); 994 goto no_reg_update; 995 case R_INTR_EN: 996 mask = IXR_ALL; 997 s->regs[R_INTR_MASK] |= mask & value; 998 goto no_reg_update; 999 case R_EN: 1000 mask = 0x1; 1001 break; 1002 case R_SLAVE_IDLE_COUNT: 1003 mask = 0xFF; 1004 break; 1005 case R_RX_DATA: 1006 case R_INTR_MASK: 1007 case R_MOD_ID: 1008 mask = 0; 1009 break; 1010 case R_TX_DATA: 1011 tx_data_bytes(&s->tx_fifo, (uint32_t)value, s->num_txrx_bytes, 1012 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 1013 goto no_reg_update; 1014 case R_TXD1: 1015 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 1, 1016 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 1017 goto no_reg_update; 1018 case R_TXD2: 1019 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 2, 1020 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 1021 goto no_reg_update; 1022 case R_TXD3: 1023 tx_data_bytes(&s->tx_fifo, (uint32_t)value, 3, 1024 s->regs[R_CONFIG] & R_CONFIG_ENDIAN); 1025 goto no_reg_update; 1026 /* Skip SPI bus update for below registers writes */ 1027 case R_GPIO: 1028 case R_LPBK_DLY_ADJ: 1029 case R_IOU_TAPDLY_BYPASS: 1030 case R_DUMMY_CYCLE_EN: 1031 case R_ECO: 1032 try_flush = false; 1033 break; 1034 } 1035 s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask); 1036 no_reg_update: 1037 if (try_flush) { 1038 xilinx_spips_update_cs_lines(s); 1039 xilinx_spips_check_flush(s); 1040 xilinx_spips_update_cs_lines(s); 1041 xilinx_spips_update_ixr(s); 1042 } 1043 } 1044 1045 static const MemoryRegionOps spips_ops = { 1046 .read = xilinx_spips_read, 1047 .write = xilinx_spips_write, 1048 .endianness = DEVICE_LITTLE_ENDIAN, 1049 }; 1050 1051 static void xilinx_qspips_invalidate_mmio_ptr(XilinxQSPIPS *q) 1052 { 1053 q->lqspi_cached_addr = ~0ULL; 1054 } 1055 1056 static void xilinx_qspips_write(void *opaque, hwaddr addr, 1057 uint64_t value, unsigned size) 1058 { 1059 XilinxQSPIPS *q = XILINX_QSPIPS(opaque); 1060 XilinxSPIPS *s = XILINX_SPIPS(opaque); 1061 1062 xilinx_spips_write(opaque, addr, value, size); 1063 addr >>= 2; 1064 1065 if (addr == R_LQSPI_CFG) { 1066 xilinx_qspips_invalidate_mmio_ptr(q); 1067 } 1068 if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) { 1069 fifo8_reset(&s->rx_fifo); 1070 } 1071 } 1072 1073 static void xlnx_zynqmp_qspips_write(void *opaque, hwaddr addr, 1074 uint64_t value, unsigned size) 1075 { 1076 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque); 1077 uint32_t reg = addr / 4; 1078 1079 if (reg <= R_MOD_ID) { 1080 xilinx_qspips_write(opaque, addr, value, size); 1081 } else { 1082 switch (reg) { 1083 case R_GQSPI_CNFG: 1084 if (FIELD_EX32(value, GQSPI_CNFG, GEN_FIFO_START) && 1085 ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE)) { 1086 s->man_start_com_g = true; 1087 } 1088 s->regs[reg] = value & ~(R_GQSPI_CNFG_GEN_FIFO_START_MASK); 1089 break; 1090 case R_GQSPI_GEN_FIFO: 1091 if (!fifo32_is_full(&s->fifo_g)) { 1092 fifo32_push(&s->fifo_g, value); 1093 } 1094 break; 1095 case R_GQSPI_TXD: 1096 tx_data_bytes(&s->tx_fifo_g, (uint32_t)value, 4, 1097 ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)); 1098 break; 1099 case R_GQSPI_FIFO_CTRL: 1100 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET)) { 1101 fifo32_reset(&s->fifo_g); 1102 } 1103 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, TX_FIFO_RESET)) { 1104 fifo8_reset(&s->tx_fifo_g); 1105 } 1106 if (FIELD_EX32(value, GQSPI_FIFO_CTRL, RX_FIFO_RESET)) { 1107 fifo8_reset(&s->rx_fifo_g); 1108 } 1109 break; 1110 case R_GQSPI_IDR: 1111 s->regs[R_GQSPI_IMR] |= value; 1112 break; 1113 case R_GQSPI_IER: 1114 s->regs[R_GQSPI_IMR] &= ~value; 1115 break; 1116 case R_GQSPI_ISR: 1117 s->regs[R_GQSPI_ISR] &= ~value; 1118 break; 1119 case R_GQSPI_IMR: 1120 case R_GQSPI_RXD: 1121 case R_GQSPI_GF_SNAPSHOT: 1122 case R_GQSPI_MOD_ID: 1123 break; 1124 default: 1125 s->regs[reg] = value; 1126 break; 1127 } 1128 xlnx_zynqmp_qspips_update_cs_lines(s); 1129 xlnx_zynqmp_qspips_check_flush(s); 1130 xlnx_zynqmp_qspips_update_cs_lines(s); 1131 xlnx_zynqmp_qspips_update_ixr(s); 1132 } 1133 xlnx_zynqmp_qspips_notify(s); 1134 } 1135 1136 static const MemoryRegionOps qspips_ops = { 1137 .read = xilinx_spips_read, 1138 .write = xilinx_qspips_write, 1139 .endianness = DEVICE_LITTLE_ENDIAN, 1140 }; 1141 1142 static const MemoryRegionOps xlnx_zynqmp_qspips_ops = { 1143 .read = xlnx_zynqmp_qspips_read, 1144 .write = xlnx_zynqmp_qspips_write, 1145 .endianness = DEVICE_LITTLE_ENDIAN, 1146 }; 1147 1148 #define LQSPI_CACHE_SIZE 1024 1149 1150 static void lqspi_load_cache(void *opaque, hwaddr addr) 1151 { 1152 XilinxQSPIPS *q = opaque; 1153 XilinxSPIPS *s = opaque; 1154 int i; 1155 int flash_addr = ((addr & ~(LQSPI_CACHE_SIZE - 1)) 1156 / num_effective_busses(s)); 1157 int peripheral = flash_addr >> LQSPI_ADDRESS_BITS; 1158 int cache_entry = 0; 1159 uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE; 1160 1161 if (addr < q->lqspi_cached_addr || 1162 addr > q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) { 1163 xilinx_qspips_invalidate_mmio_ptr(q); 1164 s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE; 1165 s->regs[R_LQSPI_STS] |= peripheral ? LQSPI_CFG_U_PAGE : 0; 1166 1167 DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]); 1168 1169 fifo8_reset(&s->tx_fifo); 1170 fifo8_reset(&s->rx_fifo); 1171 1172 /* instruction */ 1173 DB_PRINT_L(0, "pushing read instruction: %02x\n", 1174 (unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] & 1175 LQSPI_CFG_INST_CODE)); 1176 fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE); 1177 /* read address */ 1178 DB_PRINT_L(0, "pushing read address %06x\n", flash_addr); 1179 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_ADDR4) { 1180 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 24)); 1181 } 1182 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16)); 1183 fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8)); 1184 fifo8_push(&s->tx_fifo, (uint8_t)flash_addr); 1185 /* mode bits */ 1186 if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) { 1187 fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG], 1188 LQSPI_CFG_MODE_SHIFT, 1189 LQSPI_CFG_MODE_WIDTH)); 1190 } 1191 /* dummy bytes */ 1192 for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT, 1193 LQSPI_CFG_DUMMY_WIDTH)); ++i) { 1194 DB_PRINT_L(0, "pushing dummy byte\n"); 1195 fifo8_push(&s->tx_fifo, 0); 1196 } 1197 xilinx_spips_update_cs_lines(s); 1198 xilinx_spips_flush_txfifo(s); 1199 fifo8_reset(&s->rx_fifo); 1200 1201 DB_PRINT_L(0, "starting QSPI data read\n"); 1202 1203 while (cache_entry < LQSPI_CACHE_SIZE) { 1204 for (i = 0; i < 64; ++i) { 1205 tx_data_bytes(&s->tx_fifo, 0, 1, false); 1206 } 1207 xilinx_spips_flush_txfifo(s); 1208 for (i = 0; i < 64; ++i) { 1209 rx_data_bytes(&s->rx_fifo, &q->lqspi_buf[cache_entry++], 1); 1210 } 1211 } 1212 1213 s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE; 1214 s->regs[R_LQSPI_STS] |= u_page_save; 1215 xilinx_spips_update_cs_lines(s); 1216 1217 q->lqspi_cached_addr = flash_addr * num_effective_busses(s); 1218 } 1219 } 1220 1221 static MemTxResult lqspi_read(void *opaque, hwaddr addr, uint64_t *value, 1222 unsigned size, MemTxAttrs attrs) 1223 { 1224 XilinxQSPIPS *q = XILINX_QSPIPS(opaque); 1225 1226 if (addr >= q->lqspi_cached_addr && 1227 addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) { 1228 uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr]; 1229 *value = cpu_to_le32(*(uint32_t *)retp); 1230 DB_PRINT_L(1, "addr: %08" HWADDR_PRIx ", data: %08" PRIx64 "\n", 1231 addr, *value); 1232 return MEMTX_OK; 1233 } 1234 1235 lqspi_load_cache(opaque, addr); 1236 return lqspi_read(opaque, addr, value, size, attrs); 1237 } 1238 1239 static MemTxResult lqspi_write(void *opaque, hwaddr offset, uint64_t value, 1240 unsigned size, MemTxAttrs attrs) 1241 { 1242 /* 1243 * From UG1085, Chapter 24 (Quad-SPI controllers): 1244 * - Writes are ignored 1245 * - AXI writes generate an external AXI slave error (SLVERR) 1246 */ 1247 qemu_log_mask(LOG_GUEST_ERROR, "%s Unexpected %u-bit access to 0x%" PRIx64 1248 " (value: 0x%" PRIx64 "\n", 1249 __func__, size << 3, offset, value); 1250 1251 return MEMTX_ERROR; 1252 } 1253 1254 static const MemoryRegionOps lqspi_ops = { 1255 .read_with_attrs = lqspi_read, 1256 .write_with_attrs = lqspi_write, 1257 .endianness = DEVICE_NATIVE_ENDIAN, 1258 .impl = { 1259 .min_access_size = 4, 1260 .max_access_size = 4, 1261 }, 1262 .valid = { 1263 .min_access_size = 1, 1264 .max_access_size = 4 1265 } 1266 }; 1267 1268 static void xilinx_spips_realize(DeviceState *dev, Error **errp) 1269 { 1270 XilinxSPIPS *s = XILINX_SPIPS(dev); 1271 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1272 XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s); 1273 int i; 1274 1275 DB_PRINT_L(0, "realized spips\n"); 1276 1277 if (s->num_busses > MAX_NUM_BUSSES) { 1278 error_setg(errp, 1279 "requested number of SPI busses %u exceeds maximum %d", 1280 s->num_busses, MAX_NUM_BUSSES); 1281 return; 1282 } 1283 if (s->num_busses < MIN_NUM_BUSSES) { 1284 error_setg(errp, 1285 "requested number of SPI busses %u is below minimum %d", 1286 s->num_busses, MIN_NUM_BUSSES); 1287 return; 1288 } 1289 1290 s->spi = g_new(SSIBus *, s->num_busses); 1291 for (i = 0; i < s->num_busses; ++i) { 1292 char bus_name[16]; 1293 snprintf(bus_name, 16, "spi%d", i); 1294 s->spi[i] = ssi_create_bus(dev, bus_name); 1295 } 1296 1297 s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses); 1298 s->cs_lines_state = g_new0(bool, s->num_cs * s->num_busses); 1299 1300 sysbus_init_irq(sbd, &s->irq); 1301 for (i = 0; i < s->num_cs * s->num_busses; ++i) { 1302 sysbus_init_irq(sbd, &s->cs_lines[i]); 1303 } 1304 1305 memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s, 1306 "spi", xsc->reg_size); 1307 sysbus_init_mmio(sbd, &s->iomem); 1308 1309 s->irqline = -1; 1310 1311 fifo8_create(&s->rx_fifo, xsc->rx_fifo_size); 1312 fifo8_create(&s->tx_fifo, xsc->tx_fifo_size); 1313 } 1314 1315 static void xilinx_qspips_realize(DeviceState *dev, Error **errp) 1316 { 1317 XilinxSPIPS *s = XILINX_SPIPS(dev); 1318 XilinxQSPIPS *q = XILINX_QSPIPS(dev); 1319 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1320 1321 DB_PRINT_L(0, "realized qspips\n"); 1322 1323 s->num_busses = 2; 1324 s->num_cs = 2; 1325 s->num_txrx_bytes = 4; 1326 1327 xilinx_spips_realize(dev, errp); 1328 memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi", 1329 (1 << LQSPI_ADDRESS_BITS) * 2); 1330 sysbus_init_mmio(sbd, &s->mmlqspi); 1331 1332 q->lqspi_cached_addr = ~0ULL; 1333 } 1334 1335 static void xlnx_zynqmp_qspips_realize(DeviceState *dev, Error **errp) 1336 { 1337 XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(dev); 1338 XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s); 1339 1340 if (s->dma_burst_size > QSPI_DMA_MAX_BURST_SIZE) { 1341 error_setg(errp, 1342 "qspi dma burst size %u exceeds maximum limit %d", 1343 s->dma_burst_size, QSPI_DMA_MAX_BURST_SIZE); 1344 return; 1345 } 1346 xilinx_qspips_realize(dev, errp); 1347 fifo8_create(&s->rx_fifo_g, xsc->rx_fifo_size); 1348 fifo8_create(&s->tx_fifo_g, xsc->tx_fifo_size); 1349 fifo32_create(&s->fifo_g, 32); 1350 } 1351 1352 static void xlnx_zynqmp_qspips_init(Object *obj) 1353 { 1354 XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(obj); 1355 1356 object_property_add_link(obj, "stream-connected-dma", TYPE_STREAM_SINK, 1357 (Object **)&rq->dma, 1358 object_property_allow_set_link, 1359 OBJ_PROP_LINK_STRONG); 1360 } 1361 1362 static int xilinx_spips_post_load(void *opaque, int version_id) 1363 { 1364 xilinx_spips_update_ixr((XilinxSPIPS *)opaque); 1365 xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque); 1366 return 0; 1367 } 1368 1369 static const VMStateDescription vmstate_xilinx_spips = { 1370 .name = "xilinx_spips", 1371 .version_id = 2, 1372 .minimum_version_id = 2, 1373 .post_load = xilinx_spips_post_load, 1374 .fields = (const VMStateField[]) { 1375 VMSTATE_FIFO8(tx_fifo, XilinxSPIPS), 1376 VMSTATE_FIFO8(rx_fifo, XilinxSPIPS), 1377 VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX), 1378 VMSTATE_UINT8(snoop_state, XilinxSPIPS), 1379 VMSTATE_END_OF_LIST() 1380 } 1381 }; 1382 1383 static int xlnx_zynqmp_qspips_post_load(void *opaque, int version_id) 1384 { 1385 XlnxZynqMPQSPIPS *s = (XlnxZynqMPQSPIPS *)opaque; 1386 XilinxSPIPS *qs = XILINX_SPIPS(s); 1387 1388 if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN) && 1389 fifo8_is_empty(&qs->rx_fifo) && fifo8_is_empty(&qs->tx_fifo)) { 1390 xlnx_zynqmp_qspips_update_ixr(s); 1391 xlnx_zynqmp_qspips_update_cs_lines(s); 1392 } 1393 return 0; 1394 } 1395 1396 static const VMStateDescription vmstate_xilinx_qspips = { 1397 .name = "xilinx_qspips", 1398 .version_id = 1, 1399 .minimum_version_id = 1, 1400 .fields = (const VMStateField[]) { 1401 VMSTATE_STRUCT(parent_obj, XilinxQSPIPS, 0, 1402 vmstate_xilinx_spips, XilinxSPIPS), 1403 VMSTATE_END_OF_LIST() 1404 } 1405 }; 1406 1407 static const VMStateDescription vmstate_xlnx_zynqmp_qspips = { 1408 .name = "xlnx_zynqmp_qspips", 1409 .version_id = 1, 1410 .minimum_version_id = 1, 1411 .post_load = xlnx_zynqmp_qspips_post_load, 1412 .fields = (const VMStateField[]) { 1413 VMSTATE_STRUCT(parent_obj, XlnxZynqMPQSPIPS, 0, 1414 vmstate_xilinx_qspips, XilinxQSPIPS), 1415 VMSTATE_FIFO8(tx_fifo_g, XlnxZynqMPQSPIPS), 1416 VMSTATE_FIFO8(rx_fifo_g, XlnxZynqMPQSPIPS), 1417 VMSTATE_FIFO32(fifo_g, XlnxZynqMPQSPIPS), 1418 VMSTATE_UINT32_ARRAY(regs, XlnxZynqMPQSPIPS, XLNX_ZYNQMP_SPIPS_R_MAX), 1419 VMSTATE_END_OF_LIST() 1420 } 1421 }; 1422 1423 static Property xilinx_zynqmp_qspips_properties[] = { 1424 DEFINE_PROP_UINT32("dma-burst-size", XlnxZynqMPQSPIPS, dma_burst_size, 64), 1425 DEFINE_PROP_END_OF_LIST(), 1426 }; 1427 1428 static Property xilinx_spips_properties[] = { 1429 DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1), 1430 DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4), 1431 DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1), 1432 DEFINE_PROP_END_OF_LIST(), 1433 }; 1434 1435 static void xilinx_qspips_class_init(ObjectClass *klass, void * data) 1436 { 1437 DeviceClass *dc = DEVICE_CLASS(klass); 1438 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); 1439 1440 dc->realize = xilinx_qspips_realize; 1441 xsc->reg_ops = &qspips_ops; 1442 xsc->reg_size = XLNX_SPIPS_R_MAX * 4; 1443 xsc->rx_fifo_size = RXFF_A_Q; 1444 xsc->tx_fifo_size = TXFF_A_Q; 1445 } 1446 1447 static void xilinx_spips_class_init(ObjectClass *klass, void *data) 1448 { 1449 DeviceClass *dc = DEVICE_CLASS(klass); 1450 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); 1451 1452 dc->realize = xilinx_spips_realize; 1453 device_class_set_legacy_reset(dc, xilinx_spips_reset); 1454 device_class_set_props(dc, xilinx_spips_properties); 1455 dc->vmsd = &vmstate_xilinx_spips; 1456 1457 xsc->reg_ops = &spips_ops; 1458 xsc->reg_size = XLNX_SPIPS_R_MAX * 4; 1459 xsc->rx_fifo_size = RXFF_A; 1460 xsc->tx_fifo_size = TXFF_A; 1461 } 1462 1463 static void xlnx_zynqmp_qspips_class_init(ObjectClass *klass, void * data) 1464 { 1465 DeviceClass *dc = DEVICE_CLASS(klass); 1466 XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); 1467 1468 dc->realize = xlnx_zynqmp_qspips_realize; 1469 device_class_set_legacy_reset(dc, xlnx_zynqmp_qspips_reset); 1470 dc->vmsd = &vmstate_xlnx_zynqmp_qspips; 1471 device_class_set_props(dc, xilinx_zynqmp_qspips_properties); 1472 xsc->reg_ops = &xlnx_zynqmp_qspips_ops; 1473 xsc->reg_size = XLNX_ZYNQMP_SPIPS_R_MAX * 4; 1474 xsc->rx_fifo_size = RXFF_A_Q; 1475 xsc->tx_fifo_size = TXFF_A_Q; 1476 } 1477 1478 static const TypeInfo xilinx_spips_info = { 1479 .name = TYPE_XILINX_SPIPS, 1480 .parent = TYPE_SYS_BUS_DEVICE, 1481 .instance_size = sizeof(XilinxSPIPS), 1482 .class_init = xilinx_spips_class_init, 1483 .class_size = sizeof(XilinxSPIPSClass), 1484 }; 1485 1486 static const TypeInfo xilinx_qspips_info = { 1487 .name = TYPE_XILINX_QSPIPS, 1488 .parent = TYPE_XILINX_SPIPS, 1489 .instance_size = sizeof(XilinxQSPIPS), 1490 .class_init = xilinx_qspips_class_init, 1491 }; 1492 1493 static const TypeInfo xlnx_zynqmp_qspips_info = { 1494 .name = TYPE_XLNX_ZYNQMP_QSPIPS, 1495 .parent = TYPE_XILINX_QSPIPS, 1496 .instance_size = sizeof(XlnxZynqMPQSPIPS), 1497 .instance_init = xlnx_zynqmp_qspips_init, 1498 .class_init = xlnx_zynqmp_qspips_class_init, 1499 }; 1500 1501 static void xilinx_spips_register_types(void) 1502 { 1503 type_register_static(&xilinx_spips_info); 1504 type_register_static(&xilinx_qspips_info); 1505 type_register_static(&xlnx_zynqmp_qspips_info); 1506 } 1507 1508 type_init(xilinx_spips_register_types) 1509