xref: /openbmc/qemu/hw/ssi/xilinx_spi.c (revision a1857ad1)
1 /*
2  * QEMU model of the Xilinx SPI Controller
3  *
4  * Copyright (C) 2010 Edgar E. Iglesias.
5  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
6  * Copyright (C) 2012 PetaLogix
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "hw/sysbus.h"
28 #include "sysemu/sysemu.h"
29 #include "qemu/log.h"
30 #include "qemu/fifo8.h"
31 
32 #include "hw/ssi.h"
33 
34 #ifdef XILINX_SPI_ERR_DEBUG
35 #define DB_PRINT(...) do { \
36     fprintf(stderr,  ": %s: ", __func__); \
37     fprintf(stderr, ## __VA_ARGS__); \
38     } while (0);
39 #else
40     #define DB_PRINT(...)
41 #endif
42 
43 #define R_DGIER     (0x1c / 4)
44 #define R_DGIER_IE  (1 << 31)
45 
46 #define R_IPISR     (0x20 / 4)
47 #define IRQ_DRR_NOT_EMPTY    (1 << (31 - 23))
48 #define IRQ_DRR_OVERRUN      (1 << (31 - 26))
49 #define IRQ_DRR_FULL         (1 << (31 - 27))
50 #define IRQ_TX_FF_HALF_EMPTY (1 << 6)
51 #define IRQ_DTR_UNDERRUN     (1 << 3)
52 #define IRQ_DTR_EMPTY        (1 << (31 - 29))
53 
54 #define R_IPIER     (0x28 / 4)
55 #define R_SRR       (0x40 / 4)
56 #define R_SPICR     (0x60 / 4)
57 #define R_SPICR_TXFF_RST     (1 << 5)
58 #define R_SPICR_RXFF_RST     (1 << 6)
59 #define R_SPICR_MTI          (1 << 8)
60 
61 #define R_SPISR     (0x64 / 4)
62 #define SR_TX_FULL    (1 << 3)
63 #define SR_TX_EMPTY   (1 << 2)
64 #define SR_RX_FULL    (1 << 1)
65 #define SR_RX_EMPTY   (1 << 0)
66 
67 #define R_SPIDTR    (0x68 / 4)
68 #define R_SPIDRR    (0x6C / 4)
69 #define R_SPISSR    (0x70 / 4)
70 #define R_TX_FF_OCY (0x74 / 4)
71 #define R_RX_FF_OCY (0x78 / 4)
72 #define R_MAX       (0x7C / 4)
73 
74 #define FIFO_CAPACITY 256
75 
76 #define TYPE_XILINX_SPI "xlnx.xps-spi"
77 #define XILINX_SPI(obj) OBJECT_CHECK(XilinxSPI, (obj), TYPE_XILINX_SPI)
78 
79 typedef struct XilinxSPI {
80     SysBusDevice parent_obj;
81 
82     MemoryRegion mmio;
83 
84     qemu_irq irq;
85     int irqline;
86 
87     uint8_t num_cs;
88     qemu_irq *cs_lines;
89 
90     SSIBus *spi;
91 
92     Fifo8 rx_fifo;
93     Fifo8 tx_fifo;
94 
95     uint32_t regs[R_MAX];
96 } XilinxSPI;
97 
98 static void txfifo_reset(XilinxSPI *s)
99 {
100     fifo8_reset(&s->tx_fifo);
101 
102     s->regs[R_SPISR] &= ~SR_TX_FULL;
103     s->regs[R_SPISR] |= SR_TX_EMPTY;
104 }
105 
106 static void rxfifo_reset(XilinxSPI *s)
107 {
108     fifo8_reset(&s->rx_fifo);
109 
110     s->regs[R_SPISR] |= SR_RX_EMPTY;
111     s->regs[R_SPISR] &= ~SR_RX_FULL;
112 }
113 
114 static void xlx_spi_update_cs(XilinxSPI *s)
115 {
116     int i;
117 
118     for (i = 0; i < s->num_cs; ++i) {
119         qemu_set_irq(s->cs_lines[i], !(~s->regs[R_SPISSR] & 1 << i));
120     }
121 }
122 
123 static void xlx_spi_update_irq(XilinxSPI *s)
124 {
125     uint32_t pending;
126 
127     s->regs[R_IPISR] |=
128             (!fifo8_is_empty(&s->rx_fifo) ? IRQ_DRR_NOT_EMPTY : 0) |
129             (fifo8_is_full(&s->rx_fifo) ? IRQ_DRR_FULL : 0);
130 
131     pending = s->regs[R_IPISR] & s->regs[R_IPIER];
132 
133     pending = pending && (s->regs[R_DGIER] & R_DGIER_IE);
134     pending = !!pending;
135 
136     /* This call lies right in the data paths so don't call the
137        irq chain unless things really changed.  */
138     if (pending != s->irqline) {
139         s->irqline = pending;
140         DB_PRINT("irq_change of state %d ISR:%x IER:%X\n",
141                     pending, s->regs[R_IPISR], s->regs[R_IPIER]);
142         qemu_set_irq(s->irq, pending);
143     }
144 
145 }
146 
147 static void xlx_spi_do_reset(XilinxSPI *s)
148 {
149     memset(s->regs, 0, sizeof s->regs);
150 
151     rxfifo_reset(s);
152     txfifo_reset(s);
153 
154     s->regs[R_SPISSR] = ~0;
155     xlx_spi_update_irq(s);
156     xlx_spi_update_cs(s);
157 }
158 
159 static void xlx_spi_reset(DeviceState *d)
160 {
161     xlx_spi_do_reset(XILINX_SPI(d));
162 }
163 
164 static inline int spi_master_enabled(XilinxSPI *s)
165 {
166     return !(s->regs[R_SPICR] & R_SPICR_MTI);
167 }
168 
169 static void spi_flush_txfifo(XilinxSPI *s)
170 {
171     uint32_t tx;
172     uint32_t rx;
173 
174     while (!fifo8_is_empty(&s->tx_fifo)) {
175         tx = (uint32_t)fifo8_pop(&s->tx_fifo);
176         DB_PRINT("data tx:%x\n", tx);
177         rx = ssi_transfer(s->spi, tx);
178         DB_PRINT("data rx:%x\n", rx);
179         if (fifo8_is_full(&s->rx_fifo)) {
180             s->regs[R_IPISR] |= IRQ_DRR_OVERRUN;
181         } else {
182             fifo8_push(&s->rx_fifo, (uint8_t)rx);
183             if (fifo8_is_full(&s->rx_fifo)) {
184                 s->regs[R_SPISR] |= SR_RX_FULL;
185                 s->regs[R_IPISR] |= IRQ_DRR_FULL;
186             }
187         }
188 
189         s->regs[R_SPISR] &= ~SR_RX_EMPTY;
190         s->regs[R_SPISR] &= ~SR_TX_FULL;
191         s->regs[R_SPISR] |= SR_TX_EMPTY;
192 
193         s->regs[R_IPISR] |= IRQ_DTR_EMPTY;
194         s->regs[R_IPISR] |= IRQ_DRR_NOT_EMPTY;
195     }
196 
197 }
198 
199 static uint64_t
200 spi_read(void *opaque, hwaddr addr, unsigned int size)
201 {
202     XilinxSPI *s = opaque;
203     uint32_t r = 0;
204 
205     addr >>= 2;
206     switch (addr) {
207     case R_SPIDRR:
208         if (fifo8_is_empty(&s->rx_fifo)) {
209             DB_PRINT("Read from empty FIFO!\n");
210             return 0xdeadbeef;
211         }
212 
213         s->regs[R_SPISR] &= ~SR_RX_FULL;
214         r = fifo8_pop(&s->rx_fifo);
215         if (fifo8_is_empty(&s->rx_fifo)) {
216             s->regs[R_SPISR] |= SR_RX_EMPTY;
217         }
218         break;
219 
220     case R_SPISR:
221         r = s->regs[addr];
222         break;
223 
224     default:
225         if (addr < ARRAY_SIZE(s->regs)) {
226             r = s->regs[addr];
227         }
228         break;
229 
230     }
231     DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, r);
232     xlx_spi_update_irq(s);
233     return r;
234 }
235 
236 static void
237 spi_write(void *opaque, hwaddr addr,
238             uint64_t val64, unsigned int size)
239 {
240     XilinxSPI *s = opaque;
241     uint32_t value = val64;
242 
243     DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, value);
244     addr >>= 2;
245     switch (addr) {
246     case R_SRR:
247         if (value != 0xa) {
248             DB_PRINT("Invalid write to SRR %x\n", value);
249         } else {
250             xlx_spi_do_reset(s);
251         }
252         break;
253 
254     case R_SPIDTR:
255         s->regs[R_SPISR] &= ~SR_TX_EMPTY;
256         fifo8_push(&s->tx_fifo, (uint8_t)value);
257         if (fifo8_is_full(&s->tx_fifo)) {
258             s->regs[R_SPISR] |= SR_TX_FULL;
259         }
260         if (!spi_master_enabled(s)) {
261             goto done;
262         } else {
263             DB_PRINT("DTR and master enabled\n");
264         }
265         spi_flush_txfifo(s);
266         break;
267 
268     case R_SPISR:
269         DB_PRINT("Invalid write to SPISR %x\n", value);
270         break;
271 
272     case R_IPISR:
273         /* Toggle the bits.  */
274         s->regs[addr] ^= value;
275         break;
276 
277     /* Slave Select Register.  */
278     case R_SPISSR:
279         s->regs[addr] = value;
280         xlx_spi_update_cs(s);
281         break;
282 
283     case R_SPICR:
284         /* FIXME: reset irq and sr state to empty queues.  */
285         if (value & R_SPICR_RXFF_RST) {
286             rxfifo_reset(s);
287         }
288 
289         if (value & R_SPICR_TXFF_RST) {
290             txfifo_reset(s);
291         }
292         value &= ~(R_SPICR_RXFF_RST | R_SPICR_TXFF_RST);
293         s->regs[addr] = value;
294 
295         if (!(value & R_SPICR_MTI)) {
296             spi_flush_txfifo(s);
297         }
298         break;
299 
300     default:
301         if (addr < ARRAY_SIZE(s->regs)) {
302             s->regs[addr] = value;
303         }
304         break;
305     }
306 
307 done:
308     xlx_spi_update_irq(s);
309 }
310 
311 static const MemoryRegionOps spi_ops = {
312     .read = spi_read,
313     .write = spi_write,
314     .endianness = DEVICE_NATIVE_ENDIAN,
315     .valid = {
316         .min_access_size = 4,
317         .max_access_size = 4
318     }
319 };
320 
321 static int xilinx_spi_init(SysBusDevice *sbd)
322 {
323     DeviceState *dev = DEVICE(sbd);
324     XilinxSPI *s = XILINX_SPI(dev);
325     int i;
326 
327     DB_PRINT("\n");
328 
329     s->spi = ssi_create_bus(dev, "spi");
330 
331     sysbus_init_irq(sbd, &s->irq);
332     s->cs_lines = g_new0(qemu_irq, s->num_cs);
333     ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
334     for (i = 0; i < s->num_cs; ++i) {
335         sysbus_init_irq(sbd, &s->cs_lines[i]);
336     }
337 
338     memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
339                           "xilinx-spi", R_MAX * 4);
340     sysbus_init_mmio(sbd, &s->mmio);
341 
342     s->irqline = -1;
343 
344     fifo8_create(&s->tx_fifo, FIFO_CAPACITY);
345     fifo8_create(&s->rx_fifo, FIFO_CAPACITY);
346 
347     return 0;
348 }
349 
350 static const VMStateDescription vmstate_xilinx_spi = {
351     .name = "xilinx_spi",
352     .version_id = 1,
353     .minimum_version_id = 1,
354     .fields = (VMStateField[]) {
355         VMSTATE_FIFO8(tx_fifo, XilinxSPI),
356         VMSTATE_FIFO8(rx_fifo, XilinxSPI),
357         VMSTATE_UINT32_ARRAY(regs, XilinxSPI, R_MAX),
358         VMSTATE_END_OF_LIST()
359     }
360 };
361 
362 static Property xilinx_spi_properties[] = {
363     DEFINE_PROP_UINT8("num-ss-bits", XilinxSPI, num_cs, 1),
364     DEFINE_PROP_END_OF_LIST(),
365 };
366 
367 static void xilinx_spi_class_init(ObjectClass *klass, void *data)
368 {
369     DeviceClass *dc = DEVICE_CLASS(klass);
370     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
371 
372     k->init = xilinx_spi_init;
373     dc->reset = xlx_spi_reset;
374     dc->props = xilinx_spi_properties;
375     dc->vmsd = &vmstate_xilinx_spi;
376 }
377 
378 static const TypeInfo xilinx_spi_info = {
379     .name           = TYPE_XILINX_SPI,
380     .parent         = TYPE_SYS_BUS_DEVICE,
381     .instance_size  = sizeof(XilinxSPI),
382     .class_init     = xilinx_spi_class_init,
383 };
384 
385 static void xilinx_spi_register_types(void)
386 {
387     type_register_static(&xilinx_spi_info);
388 }
389 
390 type_init(xilinx_spi_register_types)
391