xref: /openbmc/qemu/hw/ssi/xilinx_spi.c (revision 500eb6db)
1 /*
2  * QEMU model of the Xilinx SPI Controller
3  *
4  * Copyright (C) 2010 Edgar E. Iglesias.
5  * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
6  * Copyright (C) 2012 PetaLogix
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "hw/sysbus.h"
29 #include "sysemu/sysemu.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 #include "qemu/fifo8.h"
33 
34 #include "hw/ssi/ssi.h"
35 
36 #ifdef XILINX_SPI_ERR_DEBUG
37 #define DB_PRINT(...) do { \
38     fprintf(stderr,  ": %s: ", __func__); \
39     fprintf(stderr, ## __VA_ARGS__); \
40     } while (0)
41 #else
42     #define DB_PRINT(...)
43 #endif
44 
45 #define R_DGIER     (0x1c / 4)
46 #define R_DGIER_IE  (1 << 31)
47 
48 #define R_IPISR     (0x20 / 4)
49 #define IRQ_DRR_NOT_EMPTY    (1 << (31 - 23))
50 #define IRQ_DRR_OVERRUN      (1 << (31 - 26))
51 #define IRQ_DRR_FULL         (1 << (31 - 27))
52 #define IRQ_TX_FF_HALF_EMPTY (1 << 6)
53 #define IRQ_DTR_UNDERRUN     (1 << 3)
54 #define IRQ_DTR_EMPTY        (1 << (31 - 29))
55 
56 #define R_IPIER     (0x28 / 4)
57 #define R_SRR       (0x40 / 4)
58 #define R_SPICR     (0x60 / 4)
59 #define R_SPICR_TXFF_RST     (1 << 5)
60 #define R_SPICR_RXFF_RST     (1 << 6)
61 #define R_SPICR_MTI          (1 << 8)
62 
63 #define R_SPISR     (0x64 / 4)
64 #define SR_TX_FULL    (1 << 3)
65 #define SR_TX_EMPTY   (1 << 2)
66 #define SR_RX_FULL    (1 << 1)
67 #define SR_RX_EMPTY   (1 << 0)
68 
69 #define R_SPIDTR    (0x68 / 4)
70 #define R_SPIDRR    (0x6C / 4)
71 #define R_SPISSR    (0x70 / 4)
72 #define R_TX_FF_OCY (0x74 / 4)
73 #define R_RX_FF_OCY (0x78 / 4)
74 #define R_MAX       (0x7C / 4)
75 
76 #define FIFO_CAPACITY 256
77 
78 #define TYPE_XILINX_SPI "xlnx.xps-spi"
79 #define XILINX_SPI(obj) OBJECT_CHECK(XilinxSPI, (obj), TYPE_XILINX_SPI)
80 
81 typedef struct XilinxSPI {
82     SysBusDevice parent_obj;
83 
84     MemoryRegion mmio;
85 
86     qemu_irq irq;
87     int irqline;
88 
89     uint8_t num_cs;
90     qemu_irq *cs_lines;
91 
92     SSIBus *spi;
93 
94     Fifo8 rx_fifo;
95     Fifo8 tx_fifo;
96 
97     uint32_t regs[R_MAX];
98 } XilinxSPI;
99 
100 static void txfifo_reset(XilinxSPI *s)
101 {
102     fifo8_reset(&s->tx_fifo);
103 
104     s->regs[R_SPISR] &= ~SR_TX_FULL;
105     s->regs[R_SPISR] |= SR_TX_EMPTY;
106 }
107 
108 static void rxfifo_reset(XilinxSPI *s)
109 {
110     fifo8_reset(&s->rx_fifo);
111 
112     s->regs[R_SPISR] |= SR_RX_EMPTY;
113     s->regs[R_SPISR] &= ~SR_RX_FULL;
114 }
115 
116 static void xlx_spi_update_cs(XilinxSPI *s)
117 {
118     int i;
119 
120     for (i = 0; i < s->num_cs; ++i) {
121         qemu_set_irq(s->cs_lines[i], !(~s->regs[R_SPISSR] & 1 << i));
122     }
123 }
124 
125 static void xlx_spi_update_irq(XilinxSPI *s)
126 {
127     uint32_t pending;
128 
129     s->regs[R_IPISR] |=
130             (!fifo8_is_empty(&s->rx_fifo) ? IRQ_DRR_NOT_EMPTY : 0) |
131             (fifo8_is_full(&s->rx_fifo) ? IRQ_DRR_FULL : 0);
132 
133     pending = s->regs[R_IPISR] & s->regs[R_IPIER];
134 
135     pending = pending && (s->regs[R_DGIER] & R_DGIER_IE);
136     pending = !!pending;
137 
138     /* This call lies right in the data paths so don't call the
139        irq chain unless things really changed.  */
140     if (pending != s->irqline) {
141         s->irqline = pending;
142         DB_PRINT("irq_change of state %d ISR:%x IER:%X\n",
143                     pending, s->regs[R_IPISR], s->regs[R_IPIER]);
144         qemu_set_irq(s->irq, pending);
145     }
146 
147 }
148 
149 static void xlx_spi_do_reset(XilinxSPI *s)
150 {
151     memset(s->regs, 0, sizeof s->regs);
152 
153     rxfifo_reset(s);
154     txfifo_reset(s);
155 
156     s->regs[R_SPISSR] = ~0;
157     xlx_spi_update_irq(s);
158     xlx_spi_update_cs(s);
159 }
160 
161 static void xlx_spi_reset(DeviceState *d)
162 {
163     xlx_spi_do_reset(XILINX_SPI(d));
164 }
165 
166 static inline int spi_master_enabled(XilinxSPI *s)
167 {
168     return !(s->regs[R_SPICR] & R_SPICR_MTI);
169 }
170 
171 static void spi_flush_txfifo(XilinxSPI *s)
172 {
173     uint32_t tx;
174     uint32_t rx;
175 
176     while (!fifo8_is_empty(&s->tx_fifo)) {
177         tx = (uint32_t)fifo8_pop(&s->tx_fifo);
178         DB_PRINT("data tx:%x\n", tx);
179         rx = ssi_transfer(s->spi, tx);
180         DB_PRINT("data rx:%x\n", rx);
181         if (fifo8_is_full(&s->rx_fifo)) {
182             s->regs[R_IPISR] |= IRQ_DRR_OVERRUN;
183         } else {
184             fifo8_push(&s->rx_fifo, (uint8_t)rx);
185             if (fifo8_is_full(&s->rx_fifo)) {
186                 s->regs[R_SPISR] |= SR_RX_FULL;
187                 s->regs[R_IPISR] |= IRQ_DRR_FULL;
188             }
189         }
190 
191         s->regs[R_SPISR] &= ~SR_RX_EMPTY;
192         s->regs[R_SPISR] &= ~SR_TX_FULL;
193         s->regs[R_SPISR] |= SR_TX_EMPTY;
194 
195         s->regs[R_IPISR] |= IRQ_DTR_EMPTY;
196         s->regs[R_IPISR] |= IRQ_DRR_NOT_EMPTY;
197     }
198 
199 }
200 
201 static uint64_t
202 spi_read(void *opaque, hwaddr addr, unsigned int size)
203 {
204     XilinxSPI *s = opaque;
205     uint32_t r = 0;
206 
207     addr >>= 2;
208     switch (addr) {
209     case R_SPIDRR:
210         if (fifo8_is_empty(&s->rx_fifo)) {
211             DB_PRINT("Read from empty FIFO!\n");
212             return 0xdeadbeef;
213         }
214 
215         s->regs[R_SPISR] &= ~SR_RX_FULL;
216         r = fifo8_pop(&s->rx_fifo);
217         if (fifo8_is_empty(&s->rx_fifo)) {
218             s->regs[R_SPISR] |= SR_RX_EMPTY;
219         }
220         break;
221 
222     case R_SPISR:
223         r = s->regs[addr];
224         break;
225 
226     default:
227         if (addr < ARRAY_SIZE(s->regs)) {
228             r = s->regs[addr];
229         }
230         break;
231 
232     }
233     DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr * 4, r);
234     xlx_spi_update_irq(s);
235     return r;
236 }
237 
238 static void
239 spi_write(void *opaque, hwaddr addr,
240             uint64_t val64, unsigned int size)
241 {
242     XilinxSPI *s = opaque;
243     uint32_t value = val64;
244 
245     DB_PRINT("addr=" TARGET_FMT_plx " = %x\n", addr, value);
246     addr >>= 2;
247     switch (addr) {
248     case R_SRR:
249         if (value != 0xa) {
250             DB_PRINT("Invalid write to SRR %x\n", value);
251         } else {
252             xlx_spi_do_reset(s);
253         }
254         break;
255 
256     case R_SPIDTR:
257         s->regs[R_SPISR] &= ~SR_TX_EMPTY;
258         fifo8_push(&s->tx_fifo, (uint8_t)value);
259         if (fifo8_is_full(&s->tx_fifo)) {
260             s->regs[R_SPISR] |= SR_TX_FULL;
261         }
262         if (!spi_master_enabled(s)) {
263             goto done;
264         } else {
265             DB_PRINT("DTR and master enabled\n");
266         }
267         spi_flush_txfifo(s);
268         break;
269 
270     case R_SPISR:
271         DB_PRINT("Invalid write to SPISR %x\n", value);
272         break;
273 
274     case R_IPISR:
275         /* Toggle the bits.  */
276         s->regs[addr] ^= value;
277         break;
278 
279     /* Slave Select Register.  */
280     case R_SPISSR:
281         s->regs[addr] = value;
282         xlx_spi_update_cs(s);
283         break;
284 
285     case R_SPICR:
286         /* FIXME: reset irq and sr state to empty queues.  */
287         if (value & R_SPICR_RXFF_RST) {
288             rxfifo_reset(s);
289         }
290 
291         if (value & R_SPICR_TXFF_RST) {
292             txfifo_reset(s);
293         }
294         value &= ~(R_SPICR_RXFF_RST | R_SPICR_TXFF_RST);
295         s->regs[addr] = value;
296 
297         if (!(value & R_SPICR_MTI)) {
298             spi_flush_txfifo(s);
299         }
300         break;
301 
302     default:
303         if (addr < ARRAY_SIZE(s->regs)) {
304             s->regs[addr] = value;
305         }
306         break;
307     }
308 
309 done:
310     xlx_spi_update_irq(s);
311 }
312 
313 static const MemoryRegionOps spi_ops = {
314     .read = spi_read,
315     .write = spi_write,
316     .endianness = DEVICE_NATIVE_ENDIAN,
317     .valid = {
318         .min_access_size = 4,
319         .max_access_size = 4
320     }
321 };
322 
323 static void xilinx_spi_realize(DeviceState *dev, Error **errp)
324 {
325     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
326     XilinxSPI *s = XILINX_SPI(dev);
327     int i;
328 
329     DB_PRINT("\n");
330 
331     s->spi = ssi_create_bus(dev, "spi");
332 
333     sysbus_init_irq(sbd, &s->irq);
334     s->cs_lines = g_new0(qemu_irq, s->num_cs);
335     ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
336     for (i = 0; i < s->num_cs; ++i) {
337         sysbus_init_irq(sbd, &s->cs_lines[i]);
338     }
339 
340     memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
341                           "xilinx-spi", R_MAX * 4);
342     sysbus_init_mmio(sbd, &s->mmio);
343 
344     s->irqline = -1;
345 
346     fifo8_create(&s->tx_fifo, FIFO_CAPACITY);
347     fifo8_create(&s->rx_fifo, FIFO_CAPACITY);
348 }
349 
350 static const VMStateDescription vmstate_xilinx_spi = {
351     .name = "xilinx_spi",
352     .version_id = 1,
353     .minimum_version_id = 1,
354     .fields = (VMStateField[]) {
355         VMSTATE_FIFO8(tx_fifo, XilinxSPI),
356         VMSTATE_FIFO8(rx_fifo, XilinxSPI),
357         VMSTATE_UINT32_ARRAY(regs, XilinxSPI, R_MAX),
358         VMSTATE_END_OF_LIST()
359     }
360 };
361 
362 static Property xilinx_spi_properties[] = {
363     DEFINE_PROP_UINT8("num-ss-bits", XilinxSPI, num_cs, 1),
364     DEFINE_PROP_END_OF_LIST(),
365 };
366 
367 static void xilinx_spi_class_init(ObjectClass *klass, void *data)
368 {
369     DeviceClass *dc = DEVICE_CLASS(klass);
370 
371     dc->realize = xilinx_spi_realize;
372     dc->reset = xlx_spi_reset;
373     dc->props = xilinx_spi_properties;
374     dc->vmsd = &vmstate_xilinx_spi;
375 }
376 
377 static const TypeInfo xilinx_spi_info = {
378     .name           = TYPE_XILINX_SPI,
379     .parent         = TYPE_SYS_BUS_DEVICE,
380     .instance_size  = sizeof(XilinxSPI),
381     .class_init     = xilinx_spi_class_init,
382 };
383 
384 static void xilinx_spi_register_types(void)
385 {
386     type_register_static(&xilinx_spi_info);
387 }
388 
389 type_init(xilinx_spi_register_types)
390