1 /* 2 * QEMU model of the Xilinx SPI Controller 3 * 4 * Copyright (C) 2010 Edgar E. Iglesias. 5 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com> 6 * Copyright (C) 2012 PetaLogix 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "hw/sysbus.h" 29 #include "migration/vmstate.h" 30 #include "qemu/module.h" 31 #include "qemu/fifo8.h" 32 33 #include "hw/irq.h" 34 #include "hw/qdev-properties.h" 35 #include "hw/ssi/ssi.h" 36 #include "qom/object.h" 37 38 #ifdef XILINX_SPI_ERR_DEBUG 39 #define DB_PRINT(...) do { \ 40 fprintf(stderr, ": %s: ", __func__); \ 41 fprintf(stderr, ## __VA_ARGS__); \ 42 } while (0) 43 #else 44 #define DB_PRINT(...) 45 #endif 46 47 #define R_DGIER (0x1c / 4) 48 #define R_DGIER_IE (1 << 31) 49 50 #define R_IPISR (0x20 / 4) 51 #define IRQ_DRR_NOT_EMPTY (1 << (31 - 23)) 52 #define IRQ_DRR_OVERRUN (1 << (31 - 26)) 53 #define IRQ_DRR_FULL (1 << (31 - 27)) 54 #define IRQ_TX_FF_HALF_EMPTY (1 << 6) 55 #define IRQ_DTR_UNDERRUN (1 << 3) 56 #define IRQ_DTR_EMPTY (1 << (31 - 29)) 57 58 #define R_IPIER (0x28 / 4) 59 #define R_SRR (0x40 / 4) 60 #define R_SPICR (0x60 / 4) 61 #define R_SPICR_TXFF_RST (1 << 5) 62 #define R_SPICR_RXFF_RST (1 << 6) 63 #define R_SPICR_MTI (1 << 8) 64 65 #define R_SPISR (0x64 / 4) 66 #define SR_TX_FULL (1 << 3) 67 #define SR_TX_EMPTY (1 << 2) 68 #define SR_RX_FULL (1 << 1) 69 #define SR_RX_EMPTY (1 << 0) 70 71 #define R_SPIDTR (0x68 / 4) 72 #define R_SPIDRR (0x6C / 4) 73 #define R_SPISSR (0x70 / 4) 74 #define R_TX_FF_OCY (0x74 / 4) 75 #define R_RX_FF_OCY (0x78 / 4) 76 #define R_MAX (0x7C / 4) 77 78 #define FIFO_CAPACITY 256 79 80 #define TYPE_XILINX_SPI "xlnx.xps-spi" 81 OBJECT_DECLARE_SIMPLE_TYPE(XilinxSPI, XILINX_SPI) 82 83 struct XilinxSPI { 84 SysBusDevice parent_obj; 85 86 MemoryRegion mmio; 87 88 qemu_irq irq; 89 int irqline; 90 91 uint8_t num_cs; 92 qemu_irq *cs_lines; 93 94 SSIBus *spi; 95 96 Fifo8 rx_fifo; 97 Fifo8 tx_fifo; 98 99 uint32_t regs[R_MAX]; 100 }; 101 102 static void txfifo_reset(XilinxSPI *s) 103 { 104 fifo8_reset(&s->tx_fifo); 105 106 s->regs[R_SPISR] &= ~SR_TX_FULL; 107 s->regs[R_SPISR] |= SR_TX_EMPTY; 108 } 109 110 static void rxfifo_reset(XilinxSPI *s) 111 { 112 fifo8_reset(&s->rx_fifo); 113 114 s->regs[R_SPISR] |= SR_RX_EMPTY; 115 s->regs[R_SPISR] &= ~SR_RX_FULL; 116 } 117 118 static void xlx_spi_update_cs(XilinxSPI *s) 119 { 120 int i; 121 122 for (i = 0; i < s->num_cs; ++i) { 123 qemu_set_irq(s->cs_lines[i], !(~s->regs[R_SPISSR] & 1 << i)); 124 } 125 } 126 127 static void xlx_spi_update_irq(XilinxSPI *s) 128 { 129 uint32_t pending; 130 131 s->regs[R_IPISR] |= 132 (!fifo8_is_empty(&s->rx_fifo) ? IRQ_DRR_NOT_EMPTY : 0) | 133 (fifo8_is_full(&s->rx_fifo) ? IRQ_DRR_FULL : 0); 134 135 pending = s->regs[R_IPISR] & s->regs[R_IPIER]; 136 137 pending = pending && (s->regs[R_DGIER] & R_DGIER_IE); 138 pending = !!pending; 139 140 /* This call lies right in the data paths so don't call the 141 irq chain unless things really changed. */ 142 if (pending != s->irqline) { 143 s->irqline = pending; 144 DB_PRINT("irq_change of state %u ISR:%x IER:%X\n", 145 pending, s->regs[R_IPISR], s->regs[R_IPIER]); 146 qemu_set_irq(s->irq, pending); 147 } 148 149 } 150 151 static void xlx_spi_do_reset(XilinxSPI *s) 152 { 153 memset(s->regs, 0, sizeof s->regs); 154 155 rxfifo_reset(s); 156 txfifo_reset(s); 157 158 s->regs[R_SPISSR] = ~0; 159 s->regs[R_SPICR] = R_SPICR_MTI; 160 xlx_spi_update_irq(s); 161 xlx_spi_update_cs(s); 162 } 163 164 static void xlx_spi_reset(DeviceState *d) 165 { 166 xlx_spi_do_reset(XILINX_SPI(d)); 167 } 168 169 static inline int spi_master_enabled(XilinxSPI *s) 170 { 171 return !(s->regs[R_SPICR] & R_SPICR_MTI); 172 } 173 174 static void spi_flush_txfifo(XilinxSPI *s) 175 { 176 uint32_t tx; 177 uint32_t rx; 178 179 while (!fifo8_is_empty(&s->tx_fifo)) { 180 tx = (uint32_t)fifo8_pop(&s->tx_fifo); 181 DB_PRINT("data tx:%x\n", tx); 182 rx = ssi_transfer(s->spi, tx); 183 DB_PRINT("data rx:%x\n", rx); 184 if (fifo8_is_full(&s->rx_fifo)) { 185 s->regs[R_IPISR] |= IRQ_DRR_OVERRUN; 186 } else { 187 fifo8_push(&s->rx_fifo, (uint8_t)rx); 188 if (fifo8_is_full(&s->rx_fifo)) { 189 s->regs[R_SPISR] |= SR_RX_FULL; 190 s->regs[R_IPISR] |= IRQ_DRR_FULL; 191 } 192 } 193 194 s->regs[R_SPISR] &= ~SR_RX_EMPTY; 195 s->regs[R_SPISR] &= ~SR_TX_FULL; 196 s->regs[R_SPISR] |= SR_TX_EMPTY; 197 198 s->regs[R_IPISR] |= IRQ_DTR_EMPTY; 199 s->regs[R_IPISR] |= IRQ_DRR_NOT_EMPTY; 200 } 201 202 } 203 204 static uint64_t 205 spi_read(void *opaque, hwaddr addr, unsigned int size) 206 { 207 XilinxSPI *s = opaque; 208 uint32_t r = 0; 209 210 addr >>= 2; 211 switch (addr) { 212 case R_SPIDRR: 213 if (fifo8_is_empty(&s->rx_fifo)) { 214 DB_PRINT("Read from empty FIFO!\n"); 215 return 0xdeadbeef; 216 } 217 218 s->regs[R_SPISR] &= ~SR_RX_FULL; 219 r = fifo8_pop(&s->rx_fifo); 220 if (fifo8_is_empty(&s->rx_fifo)) { 221 s->regs[R_SPISR] |= SR_RX_EMPTY; 222 } 223 break; 224 225 case R_SPISR: 226 r = s->regs[addr]; 227 break; 228 229 default: 230 if (addr < ARRAY_SIZE(s->regs)) { 231 r = s->regs[addr]; 232 } 233 break; 234 235 } 236 DB_PRINT("addr=" HWADDR_FMT_plx " = %x\n", addr * 4, r); 237 xlx_spi_update_irq(s); 238 return r; 239 } 240 241 static void 242 spi_write(void *opaque, hwaddr addr, 243 uint64_t val64, unsigned int size) 244 { 245 XilinxSPI *s = opaque; 246 uint32_t value = val64; 247 248 DB_PRINT("addr=" HWADDR_FMT_plx " = %x\n", addr, value); 249 addr >>= 2; 250 switch (addr) { 251 case R_SRR: 252 if (value != 0xa) { 253 DB_PRINT("Invalid write to SRR %x\n", value); 254 } else { 255 xlx_spi_do_reset(s); 256 } 257 break; 258 259 case R_SPIDTR: 260 s->regs[R_SPISR] &= ~SR_TX_EMPTY; 261 fifo8_push(&s->tx_fifo, (uint8_t)value); 262 if (fifo8_is_full(&s->tx_fifo)) { 263 s->regs[R_SPISR] |= SR_TX_FULL; 264 } 265 if (!spi_master_enabled(s)) { 266 goto done; 267 } else { 268 DB_PRINT("DTR and master enabled\n"); 269 } 270 spi_flush_txfifo(s); 271 break; 272 273 case R_SPISR: 274 DB_PRINT("Invalid write to SPISR %x\n", value); 275 break; 276 277 case R_IPISR: 278 /* Toggle the bits. */ 279 s->regs[addr] ^= value; 280 break; 281 282 /* Slave Select Register. */ 283 case R_SPISSR: 284 s->regs[addr] = value; 285 xlx_spi_update_cs(s); 286 break; 287 288 case R_SPICR: 289 /* FIXME: reset irq and sr state to empty queues. */ 290 if (value & R_SPICR_RXFF_RST) { 291 rxfifo_reset(s); 292 } 293 294 if (value & R_SPICR_TXFF_RST) { 295 txfifo_reset(s); 296 } 297 value &= ~(R_SPICR_RXFF_RST | R_SPICR_TXFF_RST); 298 s->regs[addr] = value; 299 300 if (!(value & R_SPICR_MTI)) { 301 spi_flush_txfifo(s); 302 } 303 break; 304 305 default: 306 if (addr < ARRAY_SIZE(s->regs)) { 307 s->regs[addr] = value; 308 } 309 break; 310 } 311 312 done: 313 xlx_spi_update_irq(s); 314 } 315 316 static const MemoryRegionOps spi_ops = { 317 .read = spi_read, 318 .write = spi_write, 319 .endianness = DEVICE_NATIVE_ENDIAN, 320 .valid = { 321 .min_access_size = 4, 322 .max_access_size = 4 323 } 324 }; 325 326 static void xilinx_spi_realize(DeviceState *dev, Error **errp) 327 { 328 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 329 XilinxSPI *s = XILINX_SPI(dev); 330 int i; 331 332 DB_PRINT("\n"); 333 334 s->spi = ssi_create_bus(dev, "spi"); 335 336 sysbus_init_irq(sbd, &s->irq); 337 s->cs_lines = g_new0(qemu_irq, s->num_cs); 338 for (i = 0; i < s->num_cs; ++i) { 339 sysbus_init_irq(sbd, &s->cs_lines[i]); 340 } 341 342 memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s, 343 "xilinx-spi", R_MAX * 4); 344 sysbus_init_mmio(sbd, &s->mmio); 345 346 s->irqline = -1; 347 348 fifo8_create(&s->tx_fifo, FIFO_CAPACITY); 349 fifo8_create(&s->rx_fifo, FIFO_CAPACITY); 350 } 351 352 static const VMStateDescription vmstate_xilinx_spi = { 353 .name = "xilinx_spi", 354 .version_id = 1, 355 .minimum_version_id = 1, 356 .fields = (const VMStateField[]) { 357 VMSTATE_FIFO8(tx_fifo, XilinxSPI), 358 VMSTATE_FIFO8(rx_fifo, XilinxSPI), 359 VMSTATE_UINT32_ARRAY(regs, XilinxSPI, R_MAX), 360 VMSTATE_END_OF_LIST() 361 } 362 }; 363 364 static Property xilinx_spi_properties[] = { 365 DEFINE_PROP_UINT8("num-ss-bits", XilinxSPI, num_cs, 1), 366 DEFINE_PROP_END_OF_LIST(), 367 }; 368 369 static void xilinx_spi_class_init(ObjectClass *klass, void *data) 370 { 371 DeviceClass *dc = DEVICE_CLASS(klass); 372 373 dc->realize = xilinx_spi_realize; 374 dc->reset = xlx_spi_reset; 375 device_class_set_props(dc, xilinx_spi_properties); 376 dc->vmsd = &vmstate_xilinx_spi; 377 } 378 379 static const TypeInfo xilinx_spi_info = { 380 .name = TYPE_XILINX_SPI, 381 .parent = TYPE_SYS_BUS_DEVICE, 382 .instance_size = sizeof(XilinxSPI), 383 .class_init = xilinx_spi_class_init, 384 }; 385 386 static void xilinx_spi_register_types(void) 387 { 388 type_register_static(&xilinx_spi_info); 389 } 390 391 type_init(xilinx_spi_register_types) 392