xref: /openbmc/qemu/hw/ssi/pl022.c (revision a6caeee8)
1 /*
2  * Arm PrimeCell PL022 Synchronous Serial Port
3  *
4  * Copyright (c) 2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  */
9 
10 #include "qemu/osdep.h"
11 #include "hw/sysbus.h"
12 #include "migration/vmstate.h"
13 #include "hw/irq.h"
14 #include "hw/ssi/pl022.h"
15 #include "hw/ssi/ssi.h"
16 #include "qemu/log.h"
17 #include "qemu/module.h"
18 
19 //#define DEBUG_PL022 1
20 
21 #ifdef DEBUG_PL022
22 #define DPRINTF(fmt, ...) \
23 do { printf("pl022: " fmt , ## __VA_ARGS__); } while (0)
24 #define BADF(fmt, ...) \
25 do { fprintf(stderr, "pl022: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
26 #else
27 #define DPRINTF(fmt, ...) do {} while(0)
28 #define BADF(fmt, ...) \
29 do { fprintf(stderr, "pl022: error: " fmt , ## __VA_ARGS__);} while (0)
30 #endif
31 
32 #define PL022_CR1_LBM 0x01
33 #define PL022_CR1_SSE 0x02
34 #define PL022_CR1_MS  0x04
35 #define PL022_CR1_SDO 0x08
36 
37 #define PL022_SR_TFE  0x01
38 #define PL022_SR_TNF  0x02
39 #define PL022_SR_RNE  0x04
40 #define PL022_SR_RFF  0x08
41 #define PL022_SR_BSY  0x10
42 
43 #define PL022_INT_ROR 0x01
44 #define PL022_INT_RT  0x02
45 #define PL022_INT_RX  0x04
46 #define PL022_INT_TX  0x08
47 
48 static const unsigned char pl022_id[8] =
49   { 0x22, 0x10, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
50 
51 static void pl022_update(PL022State *s)
52 {
53     s->sr = 0;
54     if (s->tx_fifo_len == 0)
55         s->sr |= PL022_SR_TFE;
56     if (s->tx_fifo_len != 8)
57         s->sr |= PL022_SR_TNF;
58     if (s->rx_fifo_len != 0)
59         s->sr |= PL022_SR_RNE;
60     if (s->rx_fifo_len == 8)
61         s->sr |= PL022_SR_RFF;
62     if (s->tx_fifo_len)
63         s->sr |= PL022_SR_BSY;
64     s->is = 0;
65     if (s->rx_fifo_len >= 4)
66         s->is |= PL022_INT_RX;
67     if (s->tx_fifo_len <= 4)
68         s->is |= PL022_INT_TX;
69 
70     qemu_set_irq(s->irq, (s->is & s->im) != 0);
71 }
72 
73 static void pl022_xfer(PL022State *s)
74 {
75     int i;
76     int o;
77     int val;
78 
79     if ((s->cr1 & PL022_CR1_SSE) == 0) {
80         pl022_update(s);
81         DPRINTF("Disabled\n");
82         return;
83     }
84 
85     DPRINTF("Maybe xfer %d/%d\n", s->tx_fifo_len, s->rx_fifo_len);
86     i = (s->tx_fifo_head - s->tx_fifo_len) & 7;
87     o = s->rx_fifo_head;
88     /* ??? We do not emulate the line speed.
89        This may break some applications.  The are two problematic cases:
90         (a) A driver feeds data into the TX FIFO until it is full,
91          and only then drains the RX FIFO.  On real hardware the CPU can
92          feed data fast enough that the RX fifo never gets chance to overflow.
93         (b) A driver transmits data, deliberately allowing the RX FIFO to
94          overflow because it ignores the RX data anyway.
95 
96        We choose to support (a) by stalling the transmit engine if it would
97        cause the RX FIFO to overflow.  In practice much transmit-only code
98        falls into (a) because it flushes the RX FIFO to determine when
99        the transfer has completed.  */
100     while (s->tx_fifo_len && s->rx_fifo_len < 8) {
101         DPRINTF("xfer\n");
102         val = s->tx_fifo[i];
103         if (s->cr1 & PL022_CR1_LBM) {
104             /* Loopback mode.  */
105         } else {
106             val = ssi_transfer(s->ssi, val);
107         }
108         s->rx_fifo[o] = val & s->bitmask;
109         i = (i + 1) & 7;
110         o = (o + 1) & 7;
111         s->tx_fifo_len--;
112         s->rx_fifo_len++;
113     }
114     s->rx_fifo_head = o;
115     pl022_update(s);
116 }
117 
118 static uint64_t pl022_read(void *opaque, hwaddr offset,
119                            unsigned size)
120 {
121     PL022State *s = (PL022State *)opaque;
122     int val;
123 
124     if (offset >= 0xfe0 && offset < 0x1000) {
125         return pl022_id[(offset - 0xfe0) >> 2];
126     }
127     switch (offset) {
128     case 0x00: /* CR0 */
129       return s->cr0;
130     case 0x04: /* CR1 */
131       return s->cr1;
132     case 0x08: /* DR */
133         if (s->rx_fifo_len) {
134             val = s->rx_fifo[(s->rx_fifo_head - s->rx_fifo_len) & 7];
135             DPRINTF("RX %02x\n", val);
136             s->rx_fifo_len--;
137             pl022_xfer(s);
138         } else {
139             val = 0;
140         }
141         return val;
142     case 0x0c: /* SR */
143         return s->sr;
144     case 0x10: /* CPSR */
145         return s->cpsr;
146     case 0x14: /* IMSC */
147         return s->im;
148     case 0x18: /* RIS */
149         return s->is;
150     case 0x1c: /* MIS */
151         return s->im & s->is;
152     case 0x24: /* DMACR */
153         /* Not implemented.  */
154         return 0;
155     default:
156         qemu_log_mask(LOG_GUEST_ERROR,
157                       "pl022_read: Bad offset %x\n", (int)offset);
158         return 0;
159     }
160 }
161 
162 static void pl022_write(void *opaque, hwaddr offset,
163                         uint64_t value, unsigned size)
164 {
165     PL022State *s = (PL022State *)opaque;
166 
167     switch (offset) {
168     case 0x00: /* CR0 */
169         s->cr0 = value;
170         /* Clock rate and format are ignored.  */
171         s->bitmask = (1 << ((value & 15) + 1)) - 1;
172         break;
173     case 0x04: /* CR1 */
174         s->cr1 = value;
175         if ((s->cr1 & (PL022_CR1_MS | PL022_CR1_SSE))
176                    == (PL022_CR1_MS | PL022_CR1_SSE)) {
177             BADF("SPI peripheral mode not implemented\n");
178         }
179         pl022_xfer(s);
180         break;
181     case 0x08: /* DR */
182         if (s->tx_fifo_len < 8) {
183             DPRINTF("TX %02x\n", (unsigned)value);
184             s->tx_fifo[s->tx_fifo_head] = value & s->bitmask;
185             s->tx_fifo_head = (s->tx_fifo_head + 1) & 7;
186             s->tx_fifo_len++;
187             pl022_xfer(s);
188         }
189         break;
190     case 0x10: /* CPSR */
191         /* Prescaler.  Ignored.  */
192         s->cpsr = value & 0xff;
193         break;
194     case 0x14: /* IMSC */
195         s->im = value;
196         pl022_update(s);
197         break;
198     case 0x20: /* ICR */
199         /*
200          * write-1-to-clear: bit 0 clears ROR, bit 1 clears RT;
201          * RX and TX interrupts cannot be cleared this way.
202          */
203         value &= PL022_INT_ROR | PL022_INT_RT;
204         s->is &= ~value;
205         break;
206     case 0x24: /* DMACR */
207         if (value) {
208             qemu_log_mask(LOG_UNIMP, "pl022: DMA not implemented\n");
209         }
210         break;
211     default:
212         qemu_log_mask(LOG_GUEST_ERROR,
213                       "pl022_write: Bad offset %x\n", (int)offset);
214     }
215 }
216 
217 static void pl022_reset(DeviceState *dev)
218 {
219     PL022State *s = PL022(dev);
220 
221     s->rx_fifo_len = 0;
222     s->tx_fifo_len = 0;
223     s->im = 0;
224     s->is = PL022_INT_TX;
225     s->sr = PL022_SR_TFE | PL022_SR_TNF;
226 }
227 
228 static const MemoryRegionOps pl022_ops = {
229     .read = pl022_read,
230     .write = pl022_write,
231     .endianness = DEVICE_NATIVE_ENDIAN,
232 };
233 
234 static int pl022_post_load(void *opaque, int version_id)
235 {
236     PL022State *s = opaque;
237 
238     if (s->tx_fifo_head < 0 ||
239         s->tx_fifo_head >= ARRAY_SIZE(s->tx_fifo) ||
240         s->rx_fifo_head < 0 ||
241         s->rx_fifo_head >= ARRAY_SIZE(s->rx_fifo)) {
242         return -1;
243     }
244     return 0;
245 }
246 
247 static const VMStateDescription vmstate_pl022 = {
248     .name = "pl022_ssp",
249     .version_id = 1,
250     .minimum_version_id = 1,
251     .post_load = pl022_post_load,
252     .fields = (VMStateField[]) {
253         VMSTATE_UINT32(cr0, PL022State),
254         VMSTATE_UINT32(cr1, PL022State),
255         VMSTATE_UINT32(bitmask, PL022State),
256         VMSTATE_UINT32(sr, PL022State),
257         VMSTATE_UINT32(cpsr, PL022State),
258         VMSTATE_UINT32(is, PL022State),
259         VMSTATE_UINT32(im, PL022State),
260         VMSTATE_INT32(tx_fifo_head, PL022State),
261         VMSTATE_INT32(rx_fifo_head, PL022State),
262         VMSTATE_INT32(tx_fifo_len, PL022State),
263         VMSTATE_INT32(rx_fifo_len, PL022State),
264         VMSTATE_UINT16(tx_fifo[0], PL022State),
265         VMSTATE_UINT16(rx_fifo[0], PL022State),
266         VMSTATE_UINT16(tx_fifo[1], PL022State),
267         VMSTATE_UINT16(rx_fifo[1], PL022State),
268         VMSTATE_UINT16(tx_fifo[2], PL022State),
269         VMSTATE_UINT16(rx_fifo[2], PL022State),
270         VMSTATE_UINT16(tx_fifo[3], PL022State),
271         VMSTATE_UINT16(rx_fifo[3], PL022State),
272         VMSTATE_UINT16(tx_fifo[4], PL022State),
273         VMSTATE_UINT16(rx_fifo[4], PL022State),
274         VMSTATE_UINT16(tx_fifo[5], PL022State),
275         VMSTATE_UINT16(rx_fifo[5], PL022State),
276         VMSTATE_UINT16(tx_fifo[6], PL022State),
277         VMSTATE_UINT16(rx_fifo[6], PL022State),
278         VMSTATE_UINT16(tx_fifo[7], PL022State),
279         VMSTATE_UINT16(rx_fifo[7], PL022State),
280         VMSTATE_END_OF_LIST()
281     }
282 };
283 
284 static void pl022_realize(DeviceState *dev, Error **errp)
285 {
286     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
287     PL022State *s = PL022(dev);
288 
289     memory_region_init_io(&s->iomem, OBJECT(s), &pl022_ops, s, "pl022", 0x1000);
290     sysbus_init_mmio(sbd, &s->iomem);
291     sysbus_init_irq(sbd, &s->irq);
292     s->ssi = ssi_create_bus(dev, "ssi");
293 }
294 
295 static void pl022_class_init(ObjectClass *klass, void *data)
296 {
297     DeviceClass *dc = DEVICE_CLASS(klass);
298 
299     dc->reset = pl022_reset;
300     dc->vmsd = &vmstate_pl022;
301     dc->realize = pl022_realize;
302 }
303 
304 static const TypeInfo pl022_info = {
305     .name          = TYPE_PL022,
306     .parent        = TYPE_SYS_BUS_DEVICE,
307     .instance_size = sizeof(PL022State),
308     .class_init    = pl022_class_init,
309 };
310 
311 static void pl022_register_types(void)
312 {
313     type_register_static(&pl022_info);
314 }
315 
316 type_init(pl022_register_types)
317