xref: /openbmc/qemu/hw/ssi/mss-spi.c (revision 988fa103)
1 /*
2  * Block model of SPI controller present in
3  * Microsemi's SmartFusion2 and SmartFusion SoCs.
4  *
5  * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "hw/ssi/mss-spi.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 
31 #ifndef MSS_SPI_ERR_DEBUG
32 #define MSS_SPI_ERR_DEBUG   0
33 #endif
34 
35 #define DB_PRINT_L(lvl, fmt, args...) do { \
36     if (MSS_SPI_ERR_DEBUG >= lvl) { \
37         qemu_log("%s: " fmt "\n", __func__, ## args); \
38     } \
39 } while (0)
40 
41 #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
42 
43 #define FIFO_CAPACITY         32
44 
45 #define R_SPI_CONTROL         0
46 #define R_SPI_DFSIZE          1
47 #define R_SPI_STATUS          2
48 #define R_SPI_INTCLR          3
49 #define R_SPI_RX              4
50 #define R_SPI_TX              5
51 #define R_SPI_CLKGEN          6
52 #define R_SPI_SS              7
53 #define R_SPI_MIS             8
54 #define R_SPI_RIS             9
55 
56 #define S_TXDONE             (1 << 0)
57 #define S_RXRDY              (1 << 1)
58 #define S_RXCHOVRF           (1 << 2)
59 #define S_RXFIFOFUL          (1 << 4)
60 #define S_RXFIFOFULNXT       (1 << 5)
61 #define S_RXFIFOEMP          (1 << 6)
62 #define S_RXFIFOEMPNXT       (1 << 7)
63 #define S_TXFIFOFUL          (1 << 8)
64 #define S_TXFIFOFULNXT       (1 << 9)
65 #define S_TXFIFOEMP          (1 << 10)
66 #define S_TXFIFOEMPNXT       (1 << 11)
67 #define S_FRAMESTART         (1 << 12)
68 #define S_SSEL               (1 << 13)
69 #define S_ACTIVE             (1 << 14)
70 
71 #define C_ENABLE             (1 << 0)
72 #define C_MODE               (1 << 1)
73 #define C_INTRXDATA          (1 << 4)
74 #define C_INTTXDATA          (1 << 5)
75 #define C_INTRXOVRFLO        (1 << 6)
76 #define C_SPS                (1 << 26)
77 #define C_BIGFIFO            (1 << 29)
78 #define C_RESET              (1 << 31)
79 
80 #define FRAMESZ_MASK         0x3F
81 #define FMCOUNT_MASK         0x00FFFF00
82 #define FMCOUNT_SHIFT        8
83 #define FRAMESZ_MAX          32
84 
85 static void txfifo_reset(MSSSpiState *s)
86 {
87     fifo32_reset(&s->tx_fifo);
88 
89     s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL;
90     s->regs[R_SPI_STATUS] |= S_TXFIFOEMP;
91 }
92 
93 static void rxfifo_reset(MSSSpiState *s)
94 {
95     fifo32_reset(&s->rx_fifo);
96 
97     s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
98     s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
99 }
100 
101 static void set_fifodepth(MSSSpiState *s)
102 {
103     unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;
104 
105     if (size <= 8) {
106         s->fifo_depth = 32;
107     } else if (size <= 16) {
108         s->fifo_depth = 16;
109     } else {
110         s->fifo_depth = 8;
111     }
112 }
113 
114 static void update_mis(MSSSpiState *s)
115 {
116     uint32_t reg = s->regs[R_SPI_CONTROL];
117     uint32_t tmp;
118 
119     /*
120      * form the Control register interrupt enable bits
121      * same as RIS, MIS and Interrupt clear registers for simplicity
122      */
123     tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) |
124            ((reg & C_INTTXDATA) >> 5);
125     s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS];
126 }
127 
128 static void spi_update_irq(MSSSpiState *s)
129 {
130     int irq;
131 
132     update_mis(s);
133     irq = !!(s->regs[R_SPI_MIS]);
134 
135     qemu_set_irq(s->irq, irq);
136 }
137 
138 static void mss_spi_reset(DeviceState *d)
139 {
140     MSSSpiState *s = MSS_SPI(d);
141 
142     memset(s->regs, 0, sizeof s->regs);
143     s->regs[R_SPI_CONTROL] = 0x80000102;
144     s->regs[R_SPI_DFSIZE] = 0x4;
145     s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP;
146     s->regs[R_SPI_CLKGEN] = 0x7;
147     s->regs[R_SPI_RIS] = 0x0;
148 
149     s->fifo_depth = 4;
150     s->frame_count = 1;
151     s->enabled = false;
152 
153     rxfifo_reset(s);
154     txfifo_reset(s);
155 }
156 
157 static uint64_t
158 spi_read(void *opaque, hwaddr addr, unsigned int size)
159 {
160     MSSSpiState *s = opaque;
161     uint32_t ret = 0;
162 
163     addr >>= 2;
164     switch (addr) {
165     case R_SPI_RX:
166         s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
167         s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF;
168         if (fifo32_is_empty(&s->rx_fifo)) {
169             qemu_log_mask(LOG_GUEST_ERROR,
170                           "%s: Reading empty RX_FIFO\n",
171                           __func__);
172         } else {
173             ret = fifo32_pop(&s->rx_fifo);
174         }
175         if (fifo32_is_empty(&s->rx_fifo)) {
176             s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
177         }
178         break;
179 
180     case R_SPI_MIS:
181         update_mis(s);
182         ret = s->regs[R_SPI_MIS];
183         break;
184 
185     default:
186         if (addr < ARRAY_SIZE(s->regs)) {
187             ret = s->regs[addr];
188         } else {
189             qemu_log_mask(LOG_GUEST_ERROR,
190                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
191                          addr * 4);
192             return ret;
193         }
194         break;
195     }
196 
197     DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret);
198     spi_update_irq(s);
199     return ret;
200 }
201 
202 static void assert_cs(MSSSpiState *s)
203 {
204     qemu_set_irq(s->cs_line, 0);
205 }
206 
207 static void deassert_cs(MSSSpiState *s)
208 {
209     qemu_set_irq(s->cs_line, 1);
210 }
211 
212 static void spi_flush_txfifo(MSSSpiState *s)
213 {
214     uint32_t tx;
215     uint32_t rx;
216     bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS);
217 
218     /*
219      * Chip Select(CS) is automatically controlled by this controller.
220      * If SPS bit is set in Control register then CS is asserted
221      * until all the frames set in frame count of Control register are
222      * transferred. If SPS is not set then CS pulses between frames.
223      * Note that Slave Select register specifies which of the CS line
224      * has to be controlled automatically by controller. Bits SS[7:1] are for
225      * masters in FPGA fabric since we model only Microcontroller subsystem
226      * of Smartfusion2 we control only one CS(SS[0]) line.
227      */
228     while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) {
229         assert_cs(s);
230 
231         s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY);
232 
233         tx = fifo32_pop(&s->tx_fifo);
234         DB_PRINT("data tx:0x%" PRIx32, tx);
235         rx = ssi_transfer(s->spi, tx);
236         DB_PRINT("data rx:0x%" PRIx32, rx);
237 
238         if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
239             s->regs[R_SPI_STATUS] |= S_RXCHOVRF;
240             s->regs[R_SPI_RIS] |= S_RXCHOVRF;
241         } else {
242             fifo32_push(&s->rx_fifo, rx);
243             s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP;
244             if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) {
245                 s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT;
246             } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
247                 s->regs[R_SPI_STATUS] |= S_RXFIFOFUL;
248             }
249         }
250         s->frame_count--;
251         if (!sps) {
252             deassert_cs(s);
253         }
254     }
255 
256     if (!s->frame_count) {
257         s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >>
258                             FMCOUNT_SHIFT;
259         deassert_cs(s);
260         s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY;
261         s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY;
262    }
263 }
264 
265 static void spi_write(void *opaque, hwaddr addr,
266             uint64_t val64, unsigned int size)
267 {
268     MSSSpiState *s = opaque;
269     uint32_t value = val64;
270 
271     DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value);
272     addr >>= 2;
273 
274     switch (addr) {
275     case R_SPI_TX:
276         /* adding to already full FIFO */
277         if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
278             break;
279         }
280         s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP;
281         fifo32_push(&s->tx_fifo, value);
282         if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) {
283             s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT;
284         } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
285             s->regs[R_SPI_STATUS] |= S_TXFIFOFUL;
286         }
287         if (s->enabled) {
288             spi_flush_txfifo(s);
289         }
290         break;
291 
292     case R_SPI_CONTROL:
293         s->regs[R_SPI_CONTROL] = value;
294         if (value & C_BIGFIFO) {
295             set_fifodepth(s);
296         } else {
297             s->fifo_depth = 4;
298         }
299         s->enabled = value & C_ENABLE;
300         s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT;
301         if (value & C_RESET) {
302             mss_spi_reset(DEVICE(s));
303         }
304         break;
305 
306     case R_SPI_DFSIZE:
307         if (s->enabled) {
308             break;
309         }
310         /*
311          * [31:6] bits are reserved bits and for future use.
312          * [5:0] are for frame size. Only [5:0] bits are validated
313          * during write, [31:6] bits are untouched.
314          */
315         if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) {
316             qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided."
317                          "Maximum frame size is %u\n",
318                          __func__, value & FRAMESZ_MASK, FRAMESZ_MAX);
319             break;
320         }
321         s->regs[R_SPI_DFSIZE] = value;
322         break;
323 
324     case R_SPI_INTCLR:
325         s->regs[R_SPI_INTCLR] = value;
326         if (value & S_TXDONE) {
327             s->regs[R_SPI_RIS] &= ~S_TXDONE;
328         }
329         if (value & S_RXRDY) {
330             s->regs[R_SPI_RIS] &= ~S_RXRDY;
331         }
332         if (value & S_RXCHOVRF) {
333             s->regs[R_SPI_RIS] &= ~S_RXCHOVRF;
334         }
335         break;
336 
337     case R_SPI_MIS:
338     case R_SPI_STATUS:
339     case R_SPI_RIS:
340             qemu_log_mask(LOG_GUEST_ERROR,
341                          "%s: Write to read only register 0x%" HWADDR_PRIx "\n",
342                          __func__, addr * 4);
343         break;
344 
345     default:
346         if (addr < ARRAY_SIZE(s->regs)) {
347             s->regs[addr] = value;
348         } else {
349             qemu_log_mask(LOG_GUEST_ERROR,
350                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
351                          addr * 4);
352         }
353         break;
354     }
355 
356     spi_update_irq(s);
357 }
358 
359 static const MemoryRegionOps spi_ops = {
360     .read = spi_read,
361     .write = spi_write,
362     .endianness = DEVICE_NATIVE_ENDIAN,
363     .valid = {
364         .min_access_size = 1,
365         .max_access_size = 4
366     }
367 };
368 
369 static void mss_spi_realize(DeviceState *dev, Error **errp)
370 {
371     MSSSpiState *s = MSS_SPI(dev);
372     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
373 
374     s->spi = ssi_create_bus(dev, "spi");
375 
376     sysbus_init_irq(sbd, &s->irq);
377     ssi_auto_connect_slaves(dev, &s->cs_line, s->spi);
378     sysbus_init_irq(sbd, &s->cs_line);
379 
380     memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
381                           TYPE_MSS_SPI, R_SPI_MAX * 4);
382     sysbus_init_mmio(sbd, &s->mmio);
383 
384     fifo32_create(&s->tx_fifo, FIFO_CAPACITY);
385     fifo32_create(&s->rx_fifo, FIFO_CAPACITY);
386 }
387 
388 static const VMStateDescription vmstate_mss_spi = {
389     .name = TYPE_MSS_SPI,
390     .version_id = 1,
391     .minimum_version_id = 1,
392     .fields = (VMStateField[]) {
393         VMSTATE_FIFO32(tx_fifo, MSSSpiState),
394         VMSTATE_FIFO32(rx_fifo, MSSSpiState),
395         VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX),
396         VMSTATE_END_OF_LIST()
397     }
398 };
399 
400 static void mss_spi_class_init(ObjectClass *klass, void *data)
401 {
402     DeviceClass *dc = DEVICE_CLASS(klass);
403 
404     dc->realize = mss_spi_realize;
405     dc->reset = mss_spi_reset;
406     dc->vmsd = &vmstate_mss_spi;
407 }
408 
409 static const TypeInfo mss_spi_info = {
410     .name           = TYPE_MSS_SPI,
411     .parent         = TYPE_SYS_BUS_DEVICE,
412     .instance_size  = sizeof(MSSSpiState),
413     .class_init     = mss_spi_class_init,
414 };
415 
416 static void mss_spi_register_types(void)
417 {
418     type_register_static(&mss_spi_info);
419 }
420 
421 type_init(mss_spi_register_types)
422