xref: /openbmc/qemu/hw/ssi/mss-spi.c (revision 8e6fe6b8)
1 /*
2  * Block model of SPI controller present in
3  * Microsemi's SmartFusion2 and SmartFusion SoCs.
4  *
5  * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "hw/ssi/mss-spi.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 
31 #ifndef MSS_SPI_ERR_DEBUG
32 #define MSS_SPI_ERR_DEBUG   0
33 #endif
34 
35 #define DB_PRINT_L(lvl, fmt, args...) do { \
36     if (MSS_SPI_ERR_DEBUG >= lvl) { \
37         qemu_log("%s: " fmt "\n", __func__, ## args); \
38     } \
39 } while (0)
40 
41 #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
42 
43 #define FIFO_CAPACITY         32
44 
45 #define R_SPI_CONTROL         0
46 #define R_SPI_DFSIZE          1
47 #define R_SPI_STATUS          2
48 #define R_SPI_INTCLR          3
49 #define R_SPI_RX              4
50 #define R_SPI_TX              5
51 #define R_SPI_CLKGEN          6
52 #define R_SPI_SS              7
53 #define R_SPI_MIS             8
54 #define R_SPI_RIS             9
55 
56 #define S_TXDONE             (1 << 0)
57 #define S_RXRDY              (1 << 1)
58 #define S_RXCHOVRF           (1 << 2)
59 #define S_RXFIFOFUL          (1 << 4)
60 #define S_RXFIFOFULNXT       (1 << 5)
61 #define S_RXFIFOEMP          (1 << 6)
62 #define S_RXFIFOEMPNXT       (1 << 7)
63 #define S_TXFIFOFUL          (1 << 8)
64 #define S_TXFIFOFULNXT       (1 << 9)
65 #define S_TXFIFOEMP          (1 << 10)
66 #define S_TXFIFOEMPNXT       (1 << 11)
67 #define S_FRAMESTART         (1 << 12)
68 #define S_SSEL               (1 << 13)
69 #define S_ACTIVE             (1 << 14)
70 
71 #define C_ENABLE             (1 << 0)
72 #define C_MODE               (1 << 1)
73 #define C_INTRXDATA          (1 << 4)
74 #define C_INTTXDATA          (1 << 5)
75 #define C_INTRXOVRFLO        (1 << 6)
76 #define C_SPS                (1 << 26)
77 #define C_BIGFIFO            (1 << 29)
78 #define C_RESET              (1 << 31)
79 
80 #define FRAMESZ_MASK         0x3F
81 #define FMCOUNT_MASK         0x00FFFF00
82 #define FMCOUNT_SHIFT        8
83 #define FRAMESZ_MAX          32
84 
85 static void txfifo_reset(MSSSpiState *s)
86 {
87     fifo32_reset(&s->tx_fifo);
88 
89     s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL;
90     s->regs[R_SPI_STATUS] |= S_TXFIFOEMP;
91 }
92 
93 static void rxfifo_reset(MSSSpiState *s)
94 {
95     fifo32_reset(&s->rx_fifo);
96 
97     s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
98     s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
99 }
100 
101 static void set_fifodepth(MSSSpiState *s)
102 {
103     unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;
104 
105     if (size <= 8) {
106         s->fifo_depth = 32;
107     } else if (size <= 16) {
108         s->fifo_depth = 16;
109     } else {
110         s->fifo_depth = 8;
111     }
112 }
113 
114 static void update_mis(MSSSpiState *s)
115 {
116     uint32_t reg = s->regs[R_SPI_CONTROL];
117     uint32_t tmp;
118 
119     /*
120      * form the Control register interrupt enable bits
121      * same as RIS, MIS and Interrupt clear registers for simplicity
122      */
123     tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) |
124            ((reg & C_INTTXDATA) >> 5);
125     s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS];
126 }
127 
128 static void spi_update_irq(MSSSpiState *s)
129 {
130     int irq;
131 
132     update_mis(s);
133     irq = !!(s->regs[R_SPI_MIS]);
134 
135     qemu_set_irq(s->irq, irq);
136 }
137 
138 static void mss_spi_reset(DeviceState *d)
139 {
140     MSSSpiState *s = MSS_SPI(d);
141 
142     memset(s->regs, 0, sizeof s->regs);
143     s->regs[R_SPI_CONTROL] = 0x80000102;
144     s->regs[R_SPI_DFSIZE] = 0x4;
145     s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP;
146     s->regs[R_SPI_CLKGEN] = 0x7;
147     s->regs[R_SPI_RIS] = 0x0;
148 
149     s->fifo_depth = 4;
150     s->frame_count = 1;
151     s->enabled = false;
152 
153     rxfifo_reset(s);
154     txfifo_reset(s);
155 }
156 
157 static uint64_t
158 spi_read(void *opaque, hwaddr addr, unsigned int size)
159 {
160     MSSSpiState *s = opaque;
161     uint32_t ret = 0;
162 
163     addr >>= 2;
164     switch (addr) {
165     case R_SPI_RX:
166         s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
167         s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF;
168         ret = fifo32_pop(&s->rx_fifo);
169         if (fifo32_is_empty(&s->rx_fifo)) {
170             s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
171         }
172         break;
173 
174     case R_SPI_MIS:
175         update_mis(s);
176         ret = s->regs[R_SPI_MIS];
177         break;
178 
179     default:
180         if (addr < ARRAY_SIZE(s->regs)) {
181             ret = s->regs[addr];
182         } else {
183             qemu_log_mask(LOG_GUEST_ERROR,
184                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
185                          addr * 4);
186             return ret;
187         }
188         break;
189     }
190 
191     DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret);
192     spi_update_irq(s);
193     return ret;
194 }
195 
196 static void assert_cs(MSSSpiState *s)
197 {
198     qemu_set_irq(s->cs_line, 0);
199 }
200 
201 static void deassert_cs(MSSSpiState *s)
202 {
203     qemu_set_irq(s->cs_line, 1);
204 }
205 
206 static void spi_flush_txfifo(MSSSpiState *s)
207 {
208     uint32_t tx;
209     uint32_t rx;
210     bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS);
211 
212     /*
213      * Chip Select(CS) is automatically controlled by this controller.
214      * If SPS bit is set in Control register then CS is asserted
215      * until all the frames set in frame count of Control register are
216      * transferred. If SPS is not set then CS pulses between frames.
217      * Note that Slave Select register specifies which of the CS line
218      * has to be controlled automatically by controller. Bits SS[7:1] are for
219      * masters in FPGA fabric since we model only Microcontroller subsystem
220      * of Smartfusion2 we control only one CS(SS[0]) line.
221      */
222     while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) {
223         assert_cs(s);
224 
225         s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY);
226 
227         tx = fifo32_pop(&s->tx_fifo);
228         DB_PRINT("data tx:0x%" PRIx32, tx);
229         rx = ssi_transfer(s->spi, tx);
230         DB_PRINT("data rx:0x%" PRIx32, rx);
231 
232         if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
233             s->regs[R_SPI_STATUS] |= S_RXCHOVRF;
234             s->regs[R_SPI_RIS] |= S_RXCHOVRF;
235         } else {
236             fifo32_push(&s->rx_fifo, rx);
237             s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP;
238             if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) {
239                 s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT;
240             } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
241                 s->regs[R_SPI_STATUS] |= S_RXFIFOFUL;
242             }
243         }
244         s->frame_count--;
245         if (!sps) {
246             deassert_cs(s);
247         }
248     }
249 
250     if (!s->frame_count) {
251         s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >>
252                             FMCOUNT_SHIFT;
253         deassert_cs(s);
254         s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY;
255         s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY;
256    }
257 }
258 
259 static void spi_write(void *opaque, hwaddr addr,
260             uint64_t val64, unsigned int size)
261 {
262     MSSSpiState *s = opaque;
263     uint32_t value = val64;
264 
265     DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value);
266     addr >>= 2;
267 
268     switch (addr) {
269     case R_SPI_TX:
270         /* adding to already full FIFO */
271         if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
272             break;
273         }
274         s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP;
275         fifo32_push(&s->tx_fifo, value);
276         if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) {
277             s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT;
278         } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
279             s->regs[R_SPI_STATUS] |= S_TXFIFOFUL;
280         }
281         if (s->enabled) {
282             spi_flush_txfifo(s);
283         }
284         break;
285 
286     case R_SPI_CONTROL:
287         s->regs[R_SPI_CONTROL] = value;
288         if (value & C_BIGFIFO) {
289             set_fifodepth(s);
290         } else {
291             s->fifo_depth = 4;
292         }
293         s->enabled = value & C_ENABLE;
294         s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT;
295         if (value & C_RESET) {
296             mss_spi_reset(DEVICE(s));
297         }
298         break;
299 
300     case R_SPI_DFSIZE:
301         if (s->enabled) {
302             break;
303         }
304         /*
305          * [31:6] bits are reserved bits and for future use.
306          * [5:0] are for frame size. Only [5:0] bits are validated
307          * during write, [31:6] bits are untouched.
308          */
309         if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) {
310             qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided."
311                          "Maximum frame size is %u\n",
312                          __func__, value & FRAMESZ_MASK, FRAMESZ_MAX);
313             break;
314         }
315         s->regs[R_SPI_DFSIZE] = value;
316         break;
317 
318     case R_SPI_INTCLR:
319         s->regs[R_SPI_INTCLR] = value;
320         if (value & S_TXDONE) {
321             s->regs[R_SPI_RIS] &= ~S_TXDONE;
322         }
323         if (value & S_RXRDY) {
324             s->regs[R_SPI_RIS] &= ~S_RXRDY;
325         }
326         if (value & S_RXCHOVRF) {
327             s->regs[R_SPI_RIS] &= ~S_RXCHOVRF;
328         }
329         break;
330 
331     case R_SPI_MIS:
332     case R_SPI_STATUS:
333     case R_SPI_RIS:
334             qemu_log_mask(LOG_GUEST_ERROR,
335                          "%s: Write to read only register 0x%" HWADDR_PRIx "\n",
336                          __func__, addr * 4);
337         break;
338 
339     default:
340         if (addr < ARRAY_SIZE(s->regs)) {
341             s->regs[addr] = value;
342         } else {
343             qemu_log_mask(LOG_GUEST_ERROR,
344                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
345                          addr * 4);
346         }
347         break;
348     }
349 
350     spi_update_irq(s);
351 }
352 
353 static const MemoryRegionOps spi_ops = {
354     .read = spi_read,
355     .write = spi_write,
356     .endianness = DEVICE_NATIVE_ENDIAN,
357     .valid = {
358         .min_access_size = 1,
359         .max_access_size = 4
360     }
361 };
362 
363 static void mss_spi_realize(DeviceState *dev, Error **errp)
364 {
365     MSSSpiState *s = MSS_SPI(dev);
366     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
367 
368     s->spi = ssi_create_bus(dev, "spi");
369 
370     sysbus_init_irq(sbd, &s->irq);
371     ssi_auto_connect_slaves(dev, &s->cs_line, s->spi);
372     sysbus_init_irq(sbd, &s->cs_line);
373 
374     memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
375                           TYPE_MSS_SPI, R_SPI_MAX * 4);
376     sysbus_init_mmio(sbd, &s->mmio);
377 
378     fifo32_create(&s->tx_fifo, FIFO_CAPACITY);
379     fifo32_create(&s->rx_fifo, FIFO_CAPACITY);
380 }
381 
382 static const VMStateDescription vmstate_mss_spi = {
383     .name = TYPE_MSS_SPI,
384     .version_id = 1,
385     .minimum_version_id = 1,
386     .fields = (VMStateField[]) {
387         VMSTATE_FIFO32(tx_fifo, MSSSpiState),
388         VMSTATE_FIFO32(rx_fifo, MSSSpiState),
389         VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX),
390         VMSTATE_END_OF_LIST()
391     }
392 };
393 
394 static void mss_spi_class_init(ObjectClass *klass, void *data)
395 {
396     DeviceClass *dc = DEVICE_CLASS(klass);
397 
398     dc->realize = mss_spi_realize;
399     dc->reset = mss_spi_reset;
400     dc->vmsd = &vmstate_mss_spi;
401 }
402 
403 static const TypeInfo mss_spi_info = {
404     .name           = TYPE_MSS_SPI,
405     .parent         = TYPE_SYS_BUS_DEVICE,
406     .instance_size  = sizeof(MSSSpiState),
407     .class_init     = mss_spi_class_init,
408 };
409 
410 static void mss_spi_register_types(void)
411 {
412     type_register_static(&mss_spi_info);
413 }
414 
415 type_init(mss_spi_register_types)
416