1 /* 2 * Block model of SPI controller present in 3 * Microsemi's SmartFusion2 and SmartFusion SoCs. 4 * 5 * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com> 6 * 7 * Permission is hereby granted, free of charge, to any person obtaining a copy 8 * of this software and associated documentation files (the "Software"), to deal 9 * in the Software without restriction, including without limitation the rights 10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 11 * copies of the Software, and to permit persons to whom the Software is 12 * furnished to do so, subject to the following conditions: 13 * 14 * The above copyright notice and this permission notice shall be included in 15 * all copies or substantial portions of the Software. 16 * 17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 23 * THE SOFTWARE. 24 */ 25 26 #include "qemu/osdep.h" 27 #include "hw/ssi/mss-spi.h" 28 #include "qemu/log.h" 29 30 #ifndef MSS_SPI_ERR_DEBUG 31 #define MSS_SPI_ERR_DEBUG 0 32 #endif 33 34 #define DB_PRINT_L(lvl, fmt, args...) do { \ 35 if (MSS_SPI_ERR_DEBUG >= lvl) { \ 36 qemu_log("%s: " fmt "\n", __func__, ## args); \ 37 } \ 38 } while (0); 39 40 #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args) 41 42 #define FIFO_CAPACITY 32 43 44 #define R_SPI_CONTROL 0 45 #define R_SPI_DFSIZE 1 46 #define R_SPI_STATUS 2 47 #define R_SPI_INTCLR 3 48 #define R_SPI_RX 4 49 #define R_SPI_TX 5 50 #define R_SPI_CLKGEN 6 51 #define R_SPI_SS 7 52 #define R_SPI_MIS 8 53 #define R_SPI_RIS 9 54 55 #define S_TXDONE (1 << 0) 56 #define S_RXRDY (1 << 1) 57 #define S_RXCHOVRF (1 << 2) 58 #define S_RXFIFOFUL (1 << 4) 59 #define S_RXFIFOFULNXT (1 << 5) 60 #define S_RXFIFOEMP (1 << 6) 61 #define S_RXFIFOEMPNXT (1 << 7) 62 #define S_TXFIFOFUL (1 << 8) 63 #define S_TXFIFOFULNXT (1 << 9) 64 #define S_TXFIFOEMP (1 << 10) 65 #define S_TXFIFOEMPNXT (1 << 11) 66 #define S_FRAMESTART (1 << 12) 67 #define S_SSEL (1 << 13) 68 #define S_ACTIVE (1 << 14) 69 70 #define C_ENABLE (1 << 0) 71 #define C_MODE (1 << 1) 72 #define C_INTRXDATA (1 << 4) 73 #define C_INTTXDATA (1 << 5) 74 #define C_INTRXOVRFLO (1 << 6) 75 #define C_SPS (1 << 26) 76 #define C_BIGFIFO (1 << 29) 77 #define C_RESET (1 << 31) 78 79 #define FRAMESZ_MASK 0x1F 80 #define FMCOUNT_MASK 0x00FFFF00 81 #define FMCOUNT_SHIFT 8 82 83 static void txfifo_reset(MSSSpiState *s) 84 { 85 fifo32_reset(&s->tx_fifo); 86 87 s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL; 88 s->regs[R_SPI_STATUS] |= S_TXFIFOEMP; 89 } 90 91 static void rxfifo_reset(MSSSpiState *s) 92 { 93 fifo32_reset(&s->rx_fifo); 94 95 s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL; 96 s->regs[R_SPI_STATUS] |= S_RXFIFOEMP; 97 } 98 99 static void set_fifodepth(MSSSpiState *s) 100 { 101 unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK; 102 103 if (size <= 8) { 104 s->fifo_depth = 32; 105 } else if (size <= 16) { 106 s->fifo_depth = 16; 107 } else if (size <= 32) { 108 s->fifo_depth = 8; 109 } else { 110 s->fifo_depth = 4; 111 } 112 } 113 114 static void update_mis(MSSSpiState *s) 115 { 116 uint32_t reg = s->regs[R_SPI_CONTROL]; 117 uint32_t tmp; 118 119 /* 120 * form the Control register interrupt enable bits 121 * same as RIS, MIS and Interrupt clear registers for simplicity 122 */ 123 tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) | 124 ((reg & C_INTTXDATA) >> 5); 125 s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS]; 126 } 127 128 static void spi_update_irq(MSSSpiState *s) 129 { 130 int irq; 131 132 update_mis(s); 133 irq = !!(s->regs[R_SPI_MIS]); 134 135 qemu_set_irq(s->irq, irq); 136 } 137 138 static void mss_spi_reset(DeviceState *d) 139 { 140 MSSSpiState *s = MSS_SPI(d); 141 142 memset(s->regs, 0, sizeof s->regs); 143 s->regs[R_SPI_CONTROL] = 0x80000102; 144 s->regs[R_SPI_DFSIZE] = 0x4; 145 s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP; 146 s->regs[R_SPI_CLKGEN] = 0x7; 147 s->regs[R_SPI_RIS] = 0x0; 148 149 s->fifo_depth = 4; 150 s->frame_count = 1; 151 s->enabled = false; 152 153 rxfifo_reset(s); 154 txfifo_reset(s); 155 } 156 157 static uint64_t 158 spi_read(void *opaque, hwaddr addr, unsigned int size) 159 { 160 MSSSpiState *s = opaque; 161 uint32_t ret = 0; 162 163 addr >>= 2; 164 switch (addr) { 165 case R_SPI_RX: 166 s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL; 167 s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF; 168 ret = fifo32_pop(&s->rx_fifo); 169 if (fifo32_is_empty(&s->rx_fifo)) { 170 s->regs[R_SPI_STATUS] |= S_RXFIFOEMP; 171 } 172 break; 173 174 case R_SPI_MIS: 175 update_mis(s); 176 ret = s->regs[R_SPI_MIS]; 177 break; 178 179 default: 180 if (addr < ARRAY_SIZE(s->regs)) { 181 ret = s->regs[addr]; 182 } else { 183 qemu_log_mask(LOG_GUEST_ERROR, 184 "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, 185 addr * 4); 186 return ret; 187 } 188 break; 189 } 190 191 DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret); 192 spi_update_irq(s); 193 return ret; 194 } 195 196 static void assert_cs(MSSSpiState *s) 197 { 198 qemu_set_irq(s->cs_line, 0); 199 } 200 201 static void deassert_cs(MSSSpiState *s) 202 { 203 qemu_set_irq(s->cs_line, 1); 204 } 205 206 static void spi_flush_txfifo(MSSSpiState *s) 207 { 208 uint32_t tx; 209 uint32_t rx; 210 bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS); 211 212 /* 213 * Chip Select(CS) is automatically controlled by this controller. 214 * If SPS bit is set in Control register then CS is asserted 215 * until all the frames set in frame count of Control register are 216 * transferred. If SPS is not set then CS pulses between frames. 217 * Note that Slave Select register specifies which of the CS line 218 * has to be controlled automatically by controller. Bits SS[7:1] are for 219 * masters in FPGA fabric since we model only Microcontroller subsystem 220 * of Smartfusion2 we control only one CS(SS[0]) line. 221 */ 222 while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) { 223 assert_cs(s); 224 225 s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY); 226 227 tx = fifo32_pop(&s->tx_fifo); 228 DB_PRINT("data tx:0x%" PRIx32, tx); 229 rx = ssi_transfer(s->spi, tx); 230 DB_PRINT("data rx:0x%" PRIx32, rx); 231 232 if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) { 233 s->regs[R_SPI_STATUS] |= S_RXCHOVRF; 234 s->regs[R_SPI_RIS] |= S_RXCHOVRF; 235 } else { 236 fifo32_push(&s->rx_fifo, rx); 237 s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP; 238 if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) { 239 s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT; 240 } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) { 241 s->regs[R_SPI_STATUS] |= S_RXFIFOFUL; 242 } 243 } 244 s->frame_count--; 245 if (!sps) { 246 deassert_cs(s); 247 } 248 } 249 250 if (!s->frame_count) { 251 s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >> 252 FMCOUNT_SHIFT; 253 deassert_cs(s); 254 s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY; 255 s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY; 256 } 257 } 258 259 static void spi_write(void *opaque, hwaddr addr, 260 uint64_t val64, unsigned int size) 261 { 262 MSSSpiState *s = opaque; 263 uint32_t value = val64; 264 265 DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value); 266 addr >>= 2; 267 268 switch (addr) { 269 case R_SPI_TX: 270 /* adding to already full FIFO */ 271 if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) { 272 break; 273 } 274 s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP; 275 fifo32_push(&s->tx_fifo, value); 276 if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) { 277 s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT; 278 } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) { 279 s->regs[R_SPI_STATUS] |= S_TXFIFOFUL; 280 } 281 if (s->enabled) { 282 spi_flush_txfifo(s); 283 } 284 break; 285 286 case R_SPI_CONTROL: 287 s->regs[R_SPI_CONTROL] = value; 288 if (value & C_BIGFIFO) { 289 set_fifodepth(s); 290 } else { 291 s->fifo_depth = 4; 292 } 293 s->enabled = value & C_ENABLE; 294 s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT; 295 if (value & C_RESET) { 296 mss_spi_reset(DEVICE(s)); 297 } 298 break; 299 300 case R_SPI_DFSIZE: 301 if (s->enabled) { 302 break; 303 } 304 s->regs[R_SPI_DFSIZE] = value; 305 break; 306 307 case R_SPI_INTCLR: 308 s->regs[R_SPI_INTCLR] = value; 309 if (value & S_TXDONE) { 310 s->regs[R_SPI_RIS] &= ~S_TXDONE; 311 } 312 if (value & S_RXRDY) { 313 s->regs[R_SPI_RIS] &= ~S_RXRDY; 314 } 315 if (value & S_RXCHOVRF) { 316 s->regs[R_SPI_RIS] &= ~S_RXCHOVRF; 317 } 318 break; 319 320 case R_SPI_MIS: 321 case R_SPI_STATUS: 322 case R_SPI_RIS: 323 qemu_log_mask(LOG_GUEST_ERROR, 324 "%s: Write to read only register 0x%" HWADDR_PRIx "\n", 325 __func__, addr * 4); 326 break; 327 328 default: 329 if (addr < ARRAY_SIZE(s->regs)) { 330 s->regs[addr] = value; 331 } else { 332 qemu_log_mask(LOG_GUEST_ERROR, 333 "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, 334 addr * 4); 335 } 336 break; 337 } 338 339 spi_update_irq(s); 340 } 341 342 static const MemoryRegionOps spi_ops = { 343 .read = spi_read, 344 .write = spi_write, 345 .endianness = DEVICE_NATIVE_ENDIAN, 346 .valid = { 347 .min_access_size = 1, 348 .max_access_size = 4 349 } 350 }; 351 352 static void mss_spi_realize(DeviceState *dev, Error **errp) 353 { 354 MSSSpiState *s = MSS_SPI(dev); 355 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 356 357 s->spi = ssi_create_bus(dev, "spi"); 358 359 sysbus_init_irq(sbd, &s->irq); 360 ssi_auto_connect_slaves(dev, &s->cs_line, s->spi); 361 sysbus_init_irq(sbd, &s->cs_line); 362 363 memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s, 364 TYPE_MSS_SPI, R_SPI_MAX * 4); 365 sysbus_init_mmio(sbd, &s->mmio); 366 367 fifo32_create(&s->tx_fifo, FIFO_CAPACITY); 368 fifo32_create(&s->rx_fifo, FIFO_CAPACITY); 369 } 370 371 static const VMStateDescription vmstate_mss_spi = { 372 .name = TYPE_MSS_SPI, 373 .version_id = 1, 374 .minimum_version_id = 1, 375 .fields = (VMStateField[]) { 376 VMSTATE_FIFO32(tx_fifo, MSSSpiState), 377 VMSTATE_FIFO32(rx_fifo, MSSSpiState), 378 VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX), 379 VMSTATE_END_OF_LIST() 380 } 381 }; 382 383 static void mss_spi_class_init(ObjectClass *klass, void *data) 384 { 385 DeviceClass *dc = DEVICE_CLASS(klass); 386 387 dc->realize = mss_spi_realize; 388 dc->reset = mss_spi_reset; 389 dc->vmsd = &vmstate_mss_spi; 390 } 391 392 static const TypeInfo mss_spi_info = { 393 .name = TYPE_MSS_SPI, 394 .parent = TYPE_SYS_BUS_DEVICE, 395 .instance_size = sizeof(MSSSpiState), 396 .class_init = mss_spi_class_init, 397 }; 398 399 static void mss_spi_register_types(void) 400 { 401 type_register_static(&mss_spi_info); 402 } 403 404 type_init(mss_spi_register_types) 405