xref: /openbmc/qemu/hw/ssi/mss-spi.c (revision 7d87775f)
1 /*
2  * Block model of SPI controller present in
3  * Microsemi's SmartFusion2 and SmartFusion SoCs.
4  *
5  * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "hw/irq.h"
28 #include "hw/ssi/mss-spi.h"
29 #include "migration/vmstate.h"
30 #include "qemu/log.h"
31 #include "qemu/module.h"
32 
33 #ifndef MSS_SPI_ERR_DEBUG
34 #define MSS_SPI_ERR_DEBUG   0
35 #endif
36 
37 #define DB_PRINT_L(lvl, fmt, args...) do { \
38     if (MSS_SPI_ERR_DEBUG >= lvl) { \
39         qemu_log("%s: " fmt "\n", __func__, ## args); \
40     } \
41 } while (0)
42 
43 #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
44 
45 #define FIFO_CAPACITY         32
46 
47 #define R_SPI_CONTROL         0
48 #define R_SPI_DFSIZE          1
49 #define R_SPI_STATUS          2
50 #define R_SPI_INTCLR          3
51 #define R_SPI_RX              4
52 #define R_SPI_TX              5
53 #define R_SPI_CLKGEN          6
54 #define R_SPI_SS              7
55 #define R_SPI_MIS             8
56 #define R_SPI_RIS             9
57 
58 #define S_TXDONE             (1 << 0)
59 #define S_RXRDY              (1 << 1)
60 #define S_RXCHOVRF           (1 << 2)
61 #define S_RXFIFOFUL          (1 << 4)
62 #define S_RXFIFOFULNXT       (1 << 5)
63 #define S_RXFIFOEMP          (1 << 6)
64 #define S_RXFIFOEMPNXT       (1 << 7)
65 #define S_TXFIFOFUL          (1 << 8)
66 #define S_TXFIFOFULNXT       (1 << 9)
67 #define S_TXFIFOEMP          (1 << 10)
68 #define S_TXFIFOEMPNXT       (1 << 11)
69 #define S_FRAMESTART         (1 << 12)
70 #define S_SSEL               (1 << 13)
71 #define S_ACTIVE             (1 << 14)
72 
73 #define C_ENABLE             (1 << 0)
74 #define C_MODE               (1 << 1)
75 #define C_INTRXDATA          (1 << 4)
76 #define C_INTTXDATA          (1 << 5)
77 #define C_INTRXOVRFLO        (1 << 6)
78 #define C_SPS                (1 << 26)
79 #define C_BIGFIFO            (1 << 29)
80 #define C_RESET              (1 << 31)
81 
82 #define FRAMESZ_MASK         0x3F
83 #define FMCOUNT_MASK         0x00FFFF00
84 #define FMCOUNT_SHIFT        8
85 #define FRAMESZ_MAX          32
86 
87 static void txfifo_reset(MSSSpiState *s)
88 {
89     fifo32_reset(&s->tx_fifo);
90 
91     s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL;
92     s->regs[R_SPI_STATUS] |= S_TXFIFOEMP;
93 }
94 
95 static void rxfifo_reset(MSSSpiState *s)
96 {
97     fifo32_reset(&s->rx_fifo);
98 
99     s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
100     s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
101 }
102 
103 static void set_fifodepth(MSSSpiState *s)
104 {
105     unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;
106 
107     if (size <= 8) {
108         s->fifo_depth = 32;
109     } else if (size <= 16) {
110         s->fifo_depth = 16;
111     } else {
112         s->fifo_depth = 8;
113     }
114 }
115 
116 static void update_mis(MSSSpiState *s)
117 {
118     uint32_t reg = s->regs[R_SPI_CONTROL];
119     uint32_t tmp;
120 
121     /*
122      * form the Control register interrupt enable bits
123      * same as RIS, MIS and Interrupt clear registers for simplicity
124      */
125     tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) |
126            ((reg & C_INTTXDATA) >> 5);
127     s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS];
128 }
129 
130 static void spi_update_irq(MSSSpiState *s)
131 {
132     int irq;
133 
134     update_mis(s);
135     irq = !!(s->regs[R_SPI_MIS]);
136 
137     qemu_set_irq(s->irq, irq);
138 }
139 
140 static void mss_spi_reset(DeviceState *d)
141 {
142     MSSSpiState *s = MSS_SPI(d);
143 
144     memset(s->regs, 0, sizeof s->regs);
145     s->regs[R_SPI_CONTROL] = 0x80000102;
146     s->regs[R_SPI_DFSIZE] = 0x4;
147     s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP;
148     s->regs[R_SPI_CLKGEN] = 0x7;
149     s->regs[R_SPI_RIS] = 0x0;
150 
151     s->fifo_depth = 4;
152     s->frame_count = 1;
153     s->enabled = false;
154 
155     rxfifo_reset(s);
156     txfifo_reset(s);
157 }
158 
159 static uint64_t
160 spi_read(void *opaque, hwaddr addr, unsigned int size)
161 {
162     MSSSpiState *s = opaque;
163     uint32_t ret = 0;
164 
165     addr >>= 2;
166     switch (addr) {
167     case R_SPI_RX:
168         s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
169         s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF;
170         if (fifo32_is_empty(&s->rx_fifo)) {
171             qemu_log_mask(LOG_GUEST_ERROR,
172                           "%s: Reading empty RX_FIFO\n",
173                           __func__);
174         } else {
175             ret = fifo32_pop(&s->rx_fifo);
176         }
177         if (fifo32_is_empty(&s->rx_fifo)) {
178             s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
179         }
180         break;
181 
182     case R_SPI_MIS:
183         update_mis(s);
184         ret = s->regs[R_SPI_MIS];
185         break;
186 
187     default:
188         if (addr < ARRAY_SIZE(s->regs)) {
189             ret = s->regs[addr];
190         } else {
191             qemu_log_mask(LOG_GUEST_ERROR,
192                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
193                          addr * 4);
194             return ret;
195         }
196         break;
197     }
198 
199     DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret);
200     spi_update_irq(s);
201     return ret;
202 }
203 
204 static void assert_cs(MSSSpiState *s)
205 {
206     qemu_set_irq(s->cs_line, 0);
207 }
208 
209 static void deassert_cs(MSSSpiState *s)
210 {
211     qemu_set_irq(s->cs_line, 1);
212 }
213 
214 static void spi_flush_txfifo(MSSSpiState *s)
215 {
216     uint32_t tx;
217     uint32_t rx;
218     bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS);
219 
220     /*
221      * Chip Select(CS) is automatically controlled by this controller.
222      * If SPS bit is set in Control register then CS is asserted
223      * until all the frames set in frame count of Control register are
224      * transferred. If SPS is not set then CS pulses between frames.
225      * Note that Slave Select register specifies which of the CS line
226      * has to be controlled automatically by controller. Bits SS[7:1] are for
227      * masters in FPGA fabric since we model only Microcontroller subsystem
228      * of Smartfusion2 we control only one CS(SS[0]) line.
229      */
230     while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) {
231         assert_cs(s);
232 
233         s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY);
234 
235         tx = fifo32_pop(&s->tx_fifo);
236         DB_PRINT("data tx:0x%" PRIx32, tx);
237         rx = ssi_transfer(s->spi, tx);
238         DB_PRINT("data rx:0x%" PRIx32, rx);
239 
240         if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
241             s->regs[R_SPI_STATUS] |= S_RXCHOVRF;
242             s->regs[R_SPI_RIS] |= S_RXCHOVRF;
243         } else {
244             fifo32_push(&s->rx_fifo, rx);
245             s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP;
246             if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) {
247                 s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT;
248             } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
249                 s->regs[R_SPI_STATUS] |= S_RXFIFOFUL;
250             }
251         }
252         s->frame_count--;
253         if (!sps) {
254             deassert_cs(s);
255         }
256     }
257 
258     if (!s->frame_count) {
259         s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >>
260                             FMCOUNT_SHIFT;
261         deassert_cs(s);
262         s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY;
263         s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY;
264    }
265 }
266 
267 static void spi_write(void *opaque, hwaddr addr,
268             uint64_t val64, unsigned int size)
269 {
270     MSSSpiState *s = opaque;
271     uint32_t value = val64;
272 
273     DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value);
274     addr >>= 2;
275 
276     switch (addr) {
277     case R_SPI_TX:
278         /* adding to already full FIFO */
279         if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
280             break;
281         }
282         s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP;
283         fifo32_push(&s->tx_fifo, value);
284         if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) {
285             s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT;
286         } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
287             s->regs[R_SPI_STATUS] |= S_TXFIFOFUL;
288         }
289         if (s->enabled) {
290             spi_flush_txfifo(s);
291         }
292         break;
293 
294     case R_SPI_CONTROL:
295         s->regs[R_SPI_CONTROL] = value;
296         if (value & C_BIGFIFO) {
297             set_fifodepth(s);
298         } else {
299             s->fifo_depth = 4;
300         }
301         s->enabled = value & C_ENABLE;
302         s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT;
303         if (value & C_RESET) {
304             mss_spi_reset(DEVICE(s));
305         }
306         break;
307 
308     case R_SPI_DFSIZE:
309         if (s->enabled) {
310             break;
311         }
312         /*
313          * [31:6] bits are reserved bits and for future use.
314          * [5:0] are for frame size. Only [5:0] bits are validated
315          * during write, [31:6] bits are untouched.
316          */
317         if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) {
318             qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided."
319                          "Maximum frame size is %u\n",
320                          __func__, value & FRAMESZ_MASK, FRAMESZ_MAX);
321             break;
322         }
323         s->regs[R_SPI_DFSIZE] = value;
324         break;
325 
326     case R_SPI_INTCLR:
327         s->regs[R_SPI_INTCLR] = value;
328         if (value & S_TXDONE) {
329             s->regs[R_SPI_RIS] &= ~S_TXDONE;
330         }
331         if (value & S_RXRDY) {
332             s->regs[R_SPI_RIS] &= ~S_RXRDY;
333         }
334         if (value & S_RXCHOVRF) {
335             s->regs[R_SPI_RIS] &= ~S_RXCHOVRF;
336         }
337         break;
338 
339     case R_SPI_MIS:
340     case R_SPI_STATUS:
341     case R_SPI_RIS:
342             qemu_log_mask(LOG_GUEST_ERROR,
343                          "%s: Write to read only register 0x%" HWADDR_PRIx "\n",
344                          __func__, addr * 4);
345         break;
346 
347     default:
348         if (addr < ARRAY_SIZE(s->regs)) {
349             s->regs[addr] = value;
350         } else {
351             qemu_log_mask(LOG_GUEST_ERROR,
352                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
353                          addr * 4);
354         }
355         break;
356     }
357 
358     spi_update_irq(s);
359 }
360 
361 static const MemoryRegionOps spi_ops = {
362     .read = spi_read,
363     .write = spi_write,
364     .endianness = DEVICE_NATIVE_ENDIAN,
365     .valid = {
366         .min_access_size = 1,
367         .max_access_size = 4
368     }
369 };
370 
371 static void mss_spi_realize(DeviceState *dev, Error **errp)
372 {
373     MSSSpiState *s = MSS_SPI(dev);
374     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
375 
376     s->spi = ssi_create_bus(dev, "spi");
377 
378     sysbus_init_irq(sbd, &s->irq);
379     sysbus_init_irq(sbd, &s->cs_line);
380 
381     memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
382                           TYPE_MSS_SPI, R_SPI_MAX * 4);
383     sysbus_init_mmio(sbd, &s->mmio);
384 
385     fifo32_create(&s->tx_fifo, FIFO_CAPACITY);
386     fifo32_create(&s->rx_fifo, FIFO_CAPACITY);
387 }
388 
389 static const VMStateDescription vmstate_mss_spi = {
390     .name = TYPE_MSS_SPI,
391     .version_id = 1,
392     .minimum_version_id = 1,
393     .fields = (const VMStateField[]) {
394         VMSTATE_FIFO32(tx_fifo, MSSSpiState),
395         VMSTATE_FIFO32(rx_fifo, MSSSpiState),
396         VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX),
397         VMSTATE_END_OF_LIST()
398     }
399 };
400 
401 static void mss_spi_class_init(ObjectClass *klass, void *data)
402 {
403     DeviceClass *dc = DEVICE_CLASS(klass);
404 
405     dc->realize = mss_spi_realize;
406     device_class_set_legacy_reset(dc, mss_spi_reset);
407     dc->vmsd = &vmstate_mss_spi;
408 }
409 
410 static const TypeInfo mss_spi_info = {
411     .name           = TYPE_MSS_SPI,
412     .parent         = TYPE_SYS_BUS_DEVICE,
413     .instance_size  = sizeof(MSSSpiState),
414     .class_init     = mss_spi_class_init,
415 };
416 
417 static void mss_spi_register_types(void)
418 {
419     type_register_static(&mss_spi_info);
420 }
421 
422 type_init(mss_spi_register_types)
423