xref: /openbmc/qemu/hw/ssi/mss-spi.c (revision 64552b6b)
1 /*
2  * Block model of SPI controller present in
3  * Microsemi's SmartFusion2 and SmartFusion SoCs.
4  *
5  * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "hw/irq.h"
28 #include "hw/ssi/mss-spi.h"
29 #include "qemu/log.h"
30 #include "qemu/module.h"
31 
32 #ifndef MSS_SPI_ERR_DEBUG
33 #define MSS_SPI_ERR_DEBUG   0
34 #endif
35 
36 #define DB_PRINT_L(lvl, fmt, args...) do { \
37     if (MSS_SPI_ERR_DEBUG >= lvl) { \
38         qemu_log("%s: " fmt "\n", __func__, ## args); \
39     } \
40 } while (0)
41 
42 #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
43 
44 #define FIFO_CAPACITY         32
45 
46 #define R_SPI_CONTROL         0
47 #define R_SPI_DFSIZE          1
48 #define R_SPI_STATUS          2
49 #define R_SPI_INTCLR          3
50 #define R_SPI_RX              4
51 #define R_SPI_TX              5
52 #define R_SPI_CLKGEN          6
53 #define R_SPI_SS              7
54 #define R_SPI_MIS             8
55 #define R_SPI_RIS             9
56 
57 #define S_TXDONE             (1 << 0)
58 #define S_RXRDY              (1 << 1)
59 #define S_RXCHOVRF           (1 << 2)
60 #define S_RXFIFOFUL          (1 << 4)
61 #define S_RXFIFOFULNXT       (1 << 5)
62 #define S_RXFIFOEMP          (1 << 6)
63 #define S_RXFIFOEMPNXT       (1 << 7)
64 #define S_TXFIFOFUL          (1 << 8)
65 #define S_TXFIFOFULNXT       (1 << 9)
66 #define S_TXFIFOEMP          (1 << 10)
67 #define S_TXFIFOEMPNXT       (1 << 11)
68 #define S_FRAMESTART         (1 << 12)
69 #define S_SSEL               (1 << 13)
70 #define S_ACTIVE             (1 << 14)
71 
72 #define C_ENABLE             (1 << 0)
73 #define C_MODE               (1 << 1)
74 #define C_INTRXDATA          (1 << 4)
75 #define C_INTTXDATA          (1 << 5)
76 #define C_INTRXOVRFLO        (1 << 6)
77 #define C_SPS                (1 << 26)
78 #define C_BIGFIFO            (1 << 29)
79 #define C_RESET              (1 << 31)
80 
81 #define FRAMESZ_MASK         0x3F
82 #define FMCOUNT_MASK         0x00FFFF00
83 #define FMCOUNT_SHIFT        8
84 #define FRAMESZ_MAX          32
85 
86 static void txfifo_reset(MSSSpiState *s)
87 {
88     fifo32_reset(&s->tx_fifo);
89 
90     s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL;
91     s->regs[R_SPI_STATUS] |= S_TXFIFOEMP;
92 }
93 
94 static void rxfifo_reset(MSSSpiState *s)
95 {
96     fifo32_reset(&s->rx_fifo);
97 
98     s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
99     s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
100 }
101 
102 static void set_fifodepth(MSSSpiState *s)
103 {
104     unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;
105 
106     if (size <= 8) {
107         s->fifo_depth = 32;
108     } else if (size <= 16) {
109         s->fifo_depth = 16;
110     } else {
111         s->fifo_depth = 8;
112     }
113 }
114 
115 static void update_mis(MSSSpiState *s)
116 {
117     uint32_t reg = s->regs[R_SPI_CONTROL];
118     uint32_t tmp;
119 
120     /*
121      * form the Control register interrupt enable bits
122      * same as RIS, MIS and Interrupt clear registers for simplicity
123      */
124     tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) |
125            ((reg & C_INTTXDATA) >> 5);
126     s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS];
127 }
128 
129 static void spi_update_irq(MSSSpiState *s)
130 {
131     int irq;
132 
133     update_mis(s);
134     irq = !!(s->regs[R_SPI_MIS]);
135 
136     qemu_set_irq(s->irq, irq);
137 }
138 
139 static void mss_spi_reset(DeviceState *d)
140 {
141     MSSSpiState *s = MSS_SPI(d);
142 
143     memset(s->regs, 0, sizeof s->regs);
144     s->regs[R_SPI_CONTROL] = 0x80000102;
145     s->regs[R_SPI_DFSIZE] = 0x4;
146     s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP;
147     s->regs[R_SPI_CLKGEN] = 0x7;
148     s->regs[R_SPI_RIS] = 0x0;
149 
150     s->fifo_depth = 4;
151     s->frame_count = 1;
152     s->enabled = false;
153 
154     rxfifo_reset(s);
155     txfifo_reset(s);
156 }
157 
158 static uint64_t
159 spi_read(void *opaque, hwaddr addr, unsigned int size)
160 {
161     MSSSpiState *s = opaque;
162     uint32_t ret = 0;
163 
164     addr >>= 2;
165     switch (addr) {
166     case R_SPI_RX:
167         s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
168         s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF;
169         if (fifo32_is_empty(&s->rx_fifo)) {
170             qemu_log_mask(LOG_GUEST_ERROR,
171                           "%s: Reading empty RX_FIFO\n",
172                           __func__);
173         } else {
174             ret = fifo32_pop(&s->rx_fifo);
175         }
176         if (fifo32_is_empty(&s->rx_fifo)) {
177             s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
178         }
179         break;
180 
181     case R_SPI_MIS:
182         update_mis(s);
183         ret = s->regs[R_SPI_MIS];
184         break;
185 
186     default:
187         if (addr < ARRAY_SIZE(s->regs)) {
188             ret = s->regs[addr];
189         } else {
190             qemu_log_mask(LOG_GUEST_ERROR,
191                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
192                          addr * 4);
193             return ret;
194         }
195         break;
196     }
197 
198     DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret);
199     spi_update_irq(s);
200     return ret;
201 }
202 
203 static void assert_cs(MSSSpiState *s)
204 {
205     qemu_set_irq(s->cs_line, 0);
206 }
207 
208 static void deassert_cs(MSSSpiState *s)
209 {
210     qemu_set_irq(s->cs_line, 1);
211 }
212 
213 static void spi_flush_txfifo(MSSSpiState *s)
214 {
215     uint32_t tx;
216     uint32_t rx;
217     bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS);
218 
219     /*
220      * Chip Select(CS) is automatically controlled by this controller.
221      * If SPS bit is set in Control register then CS is asserted
222      * until all the frames set in frame count of Control register are
223      * transferred. If SPS is not set then CS pulses between frames.
224      * Note that Slave Select register specifies which of the CS line
225      * has to be controlled automatically by controller. Bits SS[7:1] are for
226      * masters in FPGA fabric since we model only Microcontroller subsystem
227      * of Smartfusion2 we control only one CS(SS[0]) line.
228      */
229     while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) {
230         assert_cs(s);
231 
232         s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY);
233 
234         tx = fifo32_pop(&s->tx_fifo);
235         DB_PRINT("data tx:0x%" PRIx32, tx);
236         rx = ssi_transfer(s->spi, tx);
237         DB_PRINT("data rx:0x%" PRIx32, rx);
238 
239         if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
240             s->regs[R_SPI_STATUS] |= S_RXCHOVRF;
241             s->regs[R_SPI_RIS] |= S_RXCHOVRF;
242         } else {
243             fifo32_push(&s->rx_fifo, rx);
244             s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP;
245             if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) {
246                 s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT;
247             } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
248                 s->regs[R_SPI_STATUS] |= S_RXFIFOFUL;
249             }
250         }
251         s->frame_count--;
252         if (!sps) {
253             deassert_cs(s);
254         }
255     }
256 
257     if (!s->frame_count) {
258         s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >>
259                             FMCOUNT_SHIFT;
260         deassert_cs(s);
261         s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY;
262         s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY;
263    }
264 }
265 
266 static void spi_write(void *opaque, hwaddr addr,
267             uint64_t val64, unsigned int size)
268 {
269     MSSSpiState *s = opaque;
270     uint32_t value = val64;
271 
272     DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value);
273     addr >>= 2;
274 
275     switch (addr) {
276     case R_SPI_TX:
277         /* adding to already full FIFO */
278         if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
279             break;
280         }
281         s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP;
282         fifo32_push(&s->tx_fifo, value);
283         if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) {
284             s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT;
285         } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
286             s->regs[R_SPI_STATUS] |= S_TXFIFOFUL;
287         }
288         if (s->enabled) {
289             spi_flush_txfifo(s);
290         }
291         break;
292 
293     case R_SPI_CONTROL:
294         s->regs[R_SPI_CONTROL] = value;
295         if (value & C_BIGFIFO) {
296             set_fifodepth(s);
297         } else {
298             s->fifo_depth = 4;
299         }
300         s->enabled = value & C_ENABLE;
301         s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT;
302         if (value & C_RESET) {
303             mss_spi_reset(DEVICE(s));
304         }
305         break;
306 
307     case R_SPI_DFSIZE:
308         if (s->enabled) {
309             break;
310         }
311         /*
312          * [31:6] bits are reserved bits and for future use.
313          * [5:0] are for frame size. Only [5:0] bits are validated
314          * during write, [31:6] bits are untouched.
315          */
316         if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) {
317             qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided."
318                          "Maximum frame size is %u\n",
319                          __func__, value & FRAMESZ_MASK, FRAMESZ_MAX);
320             break;
321         }
322         s->regs[R_SPI_DFSIZE] = value;
323         break;
324 
325     case R_SPI_INTCLR:
326         s->regs[R_SPI_INTCLR] = value;
327         if (value & S_TXDONE) {
328             s->regs[R_SPI_RIS] &= ~S_TXDONE;
329         }
330         if (value & S_RXRDY) {
331             s->regs[R_SPI_RIS] &= ~S_RXRDY;
332         }
333         if (value & S_RXCHOVRF) {
334             s->regs[R_SPI_RIS] &= ~S_RXCHOVRF;
335         }
336         break;
337 
338     case R_SPI_MIS:
339     case R_SPI_STATUS:
340     case R_SPI_RIS:
341             qemu_log_mask(LOG_GUEST_ERROR,
342                          "%s: Write to read only register 0x%" HWADDR_PRIx "\n",
343                          __func__, addr * 4);
344         break;
345 
346     default:
347         if (addr < ARRAY_SIZE(s->regs)) {
348             s->regs[addr] = value;
349         } else {
350             qemu_log_mask(LOG_GUEST_ERROR,
351                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
352                          addr * 4);
353         }
354         break;
355     }
356 
357     spi_update_irq(s);
358 }
359 
360 static const MemoryRegionOps spi_ops = {
361     .read = spi_read,
362     .write = spi_write,
363     .endianness = DEVICE_NATIVE_ENDIAN,
364     .valid = {
365         .min_access_size = 1,
366         .max_access_size = 4
367     }
368 };
369 
370 static void mss_spi_realize(DeviceState *dev, Error **errp)
371 {
372     MSSSpiState *s = MSS_SPI(dev);
373     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
374 
375     s->spi = ssi_create_bus(dev, "spi");
376 
377     sysbus_init_irq(sbd, &s->irq);
378     ssi_auto_connect_slaves(dev, &s->cs_line, s->spi);
379     sysbus_init_irq(sbd, &s->cs_line);
380 
381     memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
382                           TYPE_MSS_SPI, R_SPI_MAX * 4);
383     sysbus_init_mmio(sbd, &s->mmio);
384 
385     fifo32_create(&s->tx_fifo, FIFO_CAPACITY);
386     fifo32_create(&s->rx_fifo, FIFO_CAPACITY);
387 }
388 
389 static const VMStateDescription vmstate_mss_spi = {
390     .name = TYPE_MSS_SPI,
391     .version_id = 1,
392     .minimum_version_id = 1,
393     .fields = (VMStateField[]) {
394         VMSTATE_FIFO32(tx_fifo, MSSSpiState),
395         VMSTATE_FIFO32(rx_fifo, MSSSpiState),
396         VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX),
397         VMSTATE_END_OF_LIST()
398     }
399 };
400 
401 static void mss_spi_class_init(ObjectClass *klass, void *data)
402 {
403     DeviceClass *dc = DEVICE_CLASS(klass);
404 
405     dc->realize = mss_spi_realize;
406     dc->reset = mss_spi_reset;
407     dc->vmsd = &vmstate_mss_spi;
408 }
409 
410 static const TypeInfo mss_spi_info = {
411     .name           = TYPE_MSS_SPI,
412     .parent         = TYPE_SYS_BUS_DEVICE,
413     .instance_size  = sizeof(MSSSpiState),
414     .class_init     = mss_spi_class_init,
415 };
416 
417 static void mss_spi_register_types(void)
418 {
419     type_register_static(&mss_spi_info);
420 }
421 
422 type_init(mss_spi_register_types)
423