xref: /openbmc/qemu/hw/ssi/mss-spi.c (revision 073d9f2c)
1 /*
2  * Block model of SPI controller present in
3  * Microsemi's SmartFusion2 and SmartFusion SoCs.
4  *
5  * Copyright (C) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "hw/ssi/mss-spi.h"
28 #include "qemu/log.h"
29 
30 #ifndef MSS_SPI_ERR_DEBUG
31 #define MSS_SPI_ERR_DEBUG   0
32 #endif
33 
34 #define DB_PRINT_L(lvl, fmt, args...) do { \
35     if (MSS_SPI_ERR_DEBUG >= lvl) { \
36         qemu_log("%s: " fmt "\n", __func__, ## args); \
37     } \
38 } while (0)
39 
40 #define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
41 
42 #define FIFO_CAPACITY         32
43 
44 #define R_SPI_CONTROL         0
45 #define R_SPI_DFSIZE          1
46 #define R_SPI_STATUS          2
47 #define R_SPI_INTCLR          3
48 #define R_SPI_RX              4
49 #define R_SPI_TX              5
50 #define R_SPI_CLKGEN          6
51 #define R_SPI_SS              7
52 #define R_SPI_MIS             8
53 #define R_SPI_RIS             9
54 
55 #define S_TXDONE             (1 << 0)
56 #define S_RXRDY              (1 << 1)
57 #define S_RXCHOVRF           (1 << 2)
58 #define S_RXFIFOFUL          (1 << 4)
59 #define S_RXFIFOFULNXT       (1 << 5)
60 #define S_RXFIFOEMP          (1 << 6)
61 #define S_RXFIFOEMPNXT       (1 << 7)
62 #define S_TXFIFOFUL          (1 << 8)
63 #define S_TXFIFOFULNXT       (1 << 9)
64 #define S_TXFIFOEMP          (1 << 10)
65 #define S_TXFIFOEMPNXT       (1 << 11)
66 #define S_FRAMESTART         (1 << 12)
67 #define S_SSEL               (1 << 13)
68 #define S_ACTIVE             (1 << 14)
69 
70 #define C_ENABLE             (1 << 0)
71 #define C_MODE               (1 << 1)
72 #define C_INTRXDATA          (1 << 4)
73 #define C_INTTXDATA          (1 << 5)
74 #define C_INTRXOVRFLO        (1 << 6)
75 #define C_SPS                (1 << 26)
76 #define C_BIGFIFO            (1 << 29)
77 #define C_RESET              (1 << 31)
78 
79 #define FRAMESZ_MASK         0x3F
80 #define FMCOUNT_MASK         0x00FFFF00
81 #define FMCOUNT_SHIFT        8
82 #define FRAMESZ_MAX          32
83 
84 static void txfifo_reset(MSSSpiState *s)
85 {
86     fifo32_reset(&s->tx_fifo);
87 
88     s->regs[R_SPI_STATUS] &= ~S_TXFIFOFUL;
89     s->regs[R_SPI_STATUS] |= S_TXFIFOEMP;
90 }
91 
92 static void rxfifo_reset(MSSSpiState *s)
93 {
94     fifo32_reset(&s->rx_fifo);
95 
96     s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
97     s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
98 }
99 
100 static void set_fifodepth(MSSSpiState *s)
101 {
102     unsigned int size = s->regs[R_SPI_DFSIZE] & FRAMESZ_MASK;
103 
104     if (size <= 8) {
105         s->fifo_depth = 32;
106     } else if (size <= 16) {
107         s->fifo_depth = 16;
108     } else {
109         s->fifo_depth = 8;
110     }
111 }
112 
113 static void update_mis(MSSSpiState *s)
114 {
115     uint32_t reg = s->regs[R_SPI_CONTROL];
116     uint32_t tmp;
117 
118     /*
119      * form the Control register interrupt enable bits
120      * same as RIS, MIS and Interrupt clear registers for simplicity
121      */
122     tmp = ((reg & C_INTRXOVRFLO) >> 4) | ((reg & C_INTRXDATA) >> 3) |
123            ((reg & C_INTTXDATA) >> 5);
124     s->regs[R_SPI_MIS] |= tmp & s->regs[R_SPI_RIS];
125 }
126 
127 static void spi_update_irq(MSSSpiState *s)
128 {
129     int irq;
130 
131     update_mis(s);
132     irq = !!(s->regs[R_SPI_MIS]);
133 
134     qemu_set_irq(s->irq, irq);
135 }
136 
137 static void mss_spi_reset(DeviceState *d)
138 {
139     MSSSpiState *s = MSS_SPI(d);
140 
141     memset(s->regs, 0, sizeof s->regs);
142     s->regs[R_SPI_CONTROL] = 0x80000102;
143     s->regs[R_SPI_DFSIZE] = 0x4;
144     s->regs[R_SPI_STATUS] = S_SSEL | S_TXFIFOEMP | S_RXFIFOEMP;
145     s->regs[R_SPI_CLKGEN] = 0x7;
146     s->regs[R_SPI_RIS] = 0x0;
147 
148     s->fifo_depth = 4;
149     s->frame_count = 1;
150     s->enabled = false;
151 
152     rxfifo_reset(s);
153     txfifo_reset(s);
154 }
155 
156 static uint64_t
157 spi_read(void *opaque, hwaddr addr, unsigned int size)
158 {
159     MSSSpiState *s = opaque;
160     uint32_t ret = 0;
161 
162     addr >>= 2;
163     switch (addr) {
164     case R_SPI_RX:
165         s->regs[R_SPI_STATUS] &= ~S_RXFIFOFUL;
166         s->regs[R_SPI_STATUS] &= ~S_RXCHOVRF;
167         ret = fifo32_pop(&s->rx_fifo);
168         if (fifo32_is_empty(&s->rx_fifo)) {
169             s->regs[R_SPI_STATUS] |= S_RXFIFOEMP;
170         }
171         break;
172 
173     case R_SPI_MIS:
174         update_mis(s);
175         ret = s->regs[R_SPI_MIS];
176         break;
177 
178     default:
179         if (addr < ARRAY_SIZE(s->regs)) {
180             ret = s->regs[addr];
181         } else {
182             qemu_log_mask(LOG_GUEST_ERROR,
183                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
184                          addr * 4);
185             return ret;
186         }
187         break;
188     }
189 
190     DB_PRINT("addr=0x%" HWADDR_PRIx " = 0x%" PRIx32, addr * 4, ret);
191     spi_update_irq(s);
192     return ret;
193 }
194 
195 static void assert_cs(MSSSpiState *s)
196 {
197     qemu_set_irq(s->cs_line, 0);
198 }
199 
200 static void deassert_cs(MSSSpiState *s)
201 {
202     qemu_set_irq(s->cs_line, 1);
203 }
204 
205 static void spi_flush_txfifo(MSSSpiState *s)
206 {
207     uint32_t tx;
208     uint32_t rx;
209     bool sps = !!(s->regs[R_SPI_CONTROL] & C_SPS);
210 
211     /*
212      * Chip Select(CS) is automatically controlled by this controller.
213      * If SPS bit is set in Control register then CS is asserted
214      * until all the frames set in frame count of Control register are
215      * transferred. If SPS is not set then CS pulses between frames.
216      * Note that Slave Select register specifies which of the CS line
217      * has to be controlled automatically by controller. Bits SS[7:1] are for
218      * masters in FPGA fabric since we model only Microcontroller subsystem
219      * of Smartfusion2 we control only one CS(SS[0]) line.
220      */
221     while (!fifo32_is_empty(&s->tx_fifo) && s->frame_count) {
222         assert_cs(s);
223 
224         s->regs[R_SPI_STATUS] &= ~(S_TXDONE | S_RXRDY);
225 
226         tx = fifo32_pop(&s->tx_fifo);
227         DB_PRINT("data tx:0x%" PRIx32, tx);
228         rx = ssi_transfer(s->spi, tx);
229         DB_PRINT("data rx:0x%" PRIx32, rx);
230 
231         if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
232             s->regs[R_SPI_STATUS] |= S_RXCHOVRF;
233             s->regs[R_SPI_RIS] |= S_RXCHOVRF;
234         } else {
235             fifo32_push(&s->rx_fifo, rx);
236             s->regs[R_SPI_STATUS] &= ~S_RXFIFOEMP;
237             if (fifo32_num_used(&s->rx_fifo) == (s->fifo_depth - 1)) {
238                 s->regs[R_SPI_STATUS] |= S_RXFIFOFULNXT;
239             } else if (fifo32_num_used(&s->rx_fifo) == s->fifo_depth) {
240                 s->regs[R_SPI_STATUS] |= S_RXFIFOFUL;
241             }
242         }
243         s->frame_count--;
244         if (!sps) {
245             deassert_cs(s);
246         }
247     }
248 
249     if (!s->frame_count) {
250         s->frame_count = (s->regs[R_SPI_CONTROL] & FMCOUNT_MASK) >>
251                             FMCOUNT_SHIFT;
252         deassert_cs(s);
253         s->regs[R_SPI_RIS] |= S_TXDONE | S_RXRDY;
254         s->regs[R_SPI_STATUS] |= S_TXDONE | S_RXRDY;
255    }
256 }
257 
258 static void spi_write(void *opaque, hwaddr addr,
259             uint64_t val64, unsigned int size)
260 {
261     MSSSpiState *s = opaque;
262     uint32_t value = val64;
263 
264     DB_PRINT("addr=0x%" HWADDR_PRIx " =0x%" PRIx32, addr, value);
265     addr >>= 2;
266 
267     switch (addr) {
268     case R_SPI_TX:
269         /* adding to already full FIFO */
270         if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
271             break;
272         }
273         s->regs[R_SPI_STATUS] &= ~S_TXFIFOEMP;
274         fifo32_push(&s->tx_fifo, value);
275         if (fifo32_num_used(&s->tx_fifo) == (s->fifo_depth - 1)) {
276             s->regs[R_SPI_STATUS] |= S_TXFIFOFULNXT;
277         } else if (fifo32_num_used(&s->tx_fifo) == s->fifo_depth) {
278             s->regs[R_SPI_STATUS] |= S_TXFIFOFUL;
279         }
280         if (s->enabled) {
281             spi_flush_txfifo(s);
282         }
283         break;
284 
285     case R_SPI_CONTROL:
286         s->regs[R_SPI_CONTROL] = value;
287         if (value & C_BIGFIFO) {
288             set_fifodepth(s);
289         } else {
290             s->fifo_depth = 4;
291         }
292         s->enabled = value & C_ENABLE;
293         s->frame_count = (value & FMCOUNT_MASK) >> FMCOUNT_SHIFT;
294         if (value & C_RESET) {
295             mss_spi_reset(DEVICE(s));
296         }
297         break;
298 
299     case R_SPI_DFSIZE:
300         if (s->enabled) {
301             break;
302         }
303         /*
304          * [31:6] bits are reserved bits and for future use.
305          * [5:0] are for frame size. Only [5:0] bits are validated
306          * during write, [31:6] bits are untouched.
307          */
308         if ((value & FRAMESZ_MASK) > FRAMESZ_MAX) {
309             qemu_log_mask(LOG_GUEST_ERROR, "%s: Incorrect size %u provided."
310                          "Maximum frame size is %u\n",
311                          __func__, value & FRAMESZ_MASK, FRAMESZ_MAX);
312             break;
313         }
314         s->regs[R_SPI_DFSIZE] = value;
315         break;
316 
317     case R_SPI_INTCLR:
318         s->regs[R_SPI_INTCLR] = value;
319         if (value & S_TXDONE) {
320             s->regs[R_SPI_RIS] &= ~S_TXDONE;
321         }
322         if (value & S_RXRDY) {
323             s->regs[R_SPI_RIS] &= ~S_RXRDY;
324         }
325         if (value & S_RXCHOVRF) {
326             s->regs[R_SPI_RIS] &= ~S_RXCHOVRF;
327         }
328         break;
329 
330     case R_SPI_MIS:
331     case R_SPI_STATUS:
332     case R_SPI_RIS:
333             qemu_log_mask(LOG_GUEST_ERROR,
334                          "%s: Write to read only register 0x%" HWADDR_PRIx "\n",
335                          __func__, addr * 4);
336         break;
337 
338     default:
339         if (addr < ARRAY_SIZE(s->regs)) {
340             s->regs[addr] = value;
341         } else {
342             qemu_log_mask(LOG_GUEST_ERROR,
343                          "%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
344                          addr * 4);
345         }
346         break;
347     }
348 
349     spi_update_irq(s);
350 }
351 
352 static const MemoryRegionOps spi_ops = {
353     .read = spi_read,
354     .write = spi_write,
355     .endianness = DEVICE_NATIVE_ENDIAN,
356     .valid = {
357         .min_access_size = 1,
358         .max_access_size = 4
359     }
360 };
361 
362 static void mss_spi_realize(DeviceState *dev, Error **errp)
363 {
364     MSSSpiState *s = MSS_SPI(dev);
365     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
366 
367     s->spi = ssi_create_bus(dev, "spi");
368 
369     sysbus_init_irq(sbd, &s->irq);
370     ssi_auto_connect_slaves(dev, &s->cs_line, s->spi);
371     sysbus_init_irq(sbd, &s->cs_line);
372 
373     memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s,
374                           TYPE_MSS_SPI, R_SPI_MAX * 4);
375     sysbus_init_mmio(sbd, &s->mmio);
376 
377     fifo32_create(&s->tx_fifo, FIFO_CAPACITY);
378     fifo32_create(&s->rx_fifo, FIFO_CAPACITY);
379 }
380 
381 static const VMStateDescription vmstate_mss_spi = {
382     .name = TYPE_MSS_SPI,
383     .version_id = 1,
384     .minimum_version_id = 1,
385     .fields = (VMStateField[]) {
386         VMSTATE_FIFO32(tx_fifo, MSSSpiState),
387         VMSTATE_FIFO32(rx_fifo, MSSSpiState),
388         VMSTATE_UINT32_ARRAY(regs, MSSSpiState, R_SPI_MAX),
389         VMSTATE_END_OF_LIST()
390     }
391 };
392 
393 static void mss_spi_class_init(ObjectClass *klass, void *data)
394 {
395     DeviceClass *dc = DEVICE_CLASS(klass);
396 
397     dc->realize = mss_spi_realize;
398     dc->reset = mss_spi_reset;
399     dc->vmsd = &vmstate_mss_spi;
400 }
401 
402 static const TypeInfo mss_spi_info = {
403     .name           = TYPE_MSS_SPI,
404     .parent         = TYPE_SYS_BUS_DEVICE,
405     .instance_size  = sizeof(MSSSpiState),
406     .class_init     = mss_spi_class_init,
407 };
408 
409 static void mss_spi_register_types(void)
410 {
411     type_register_static(&mss_spi_info);
412 }
413 
414 type_init(mss_spi_register_types)
415