xref: /openbmc/qemu/hw/ssi/imx_spi.c (revision b8116f4c)
1 /*
2  * IMX SPI Controller
3  *
4  * Copyright (c) 2016 Jean-Christophe Dubois <jcd@tribudubois.net>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "hw/irq.h"
13 #include "hw/ssi/imx_spi.h"
14 #include "migration/vmstate.h"
15 #include "qemu/log.h"
16 #include "qemu/module.h"
17 
18 #ifndef DEBUG_IMX_SPI
19 #define DEBUG_IMX_SPI 0
20 #endif
21 
22 #define DPRINTF(fmt, args...) \
23     do { \
24         if (DEBUG_IMX_SPI) { \
25             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \
26                                              __func__, ##args); \
27         } \
28     } while (0)
29 
30 static const char *imx_spi_reg_name(uint32_t reg)
31 {
32     static char unknown[20];
33 
34     switch (reg) {
35     case ECSPI_RXDATA:
36         return  "ECSPI_RXDATA";
37     case ECSPI_TXDATA:
38         return  "ECSPI_TXDATA";
39     case ECSPI_CONREG:
40         return  "ECSPI_CONREG";
41     case ECSPI_CONFIGREG:
42         return  "ECSPI_CONFIGREG";
43     case ECSPI_INTREG:
44         return  "ECSPI_INTREG";
45     case ECSPI_DMAREG:
46         return  "ECSPI_DMAREG";
47     case ECSPI_STATREG:
48         return  "ECSPI_STATREG";
49     case ECSPI_PERIODREG:
50         return  "ECSPI_PERIODREG";
51     case ECSPI_TESTREG:
52         return  "ECSPI_TESTREG";
53     case ECSPI_MSGDATA:
54         return  "ECSPI_MSGDATA";
55     default:
56         snprintf(unknown, sizeof(unknown), "%u ?", reg);
57         return unknown;
58     }
59 }
60 
61 static const VMStateDescription vmstate_imx_spi = {
62     .name = TYPE_IMX_SPI,
63     .version_id = 1,
64     .minimum_version_id = 1,
65     .fields = (const VMStateField[]) {
66         VMSTATE_FIFO32(tx_fifo, IMXSPIState),
67         VMSTATE_FIFO32(rx_fifo, IMXSPIState),
68         VMSTATE_INT16(burst_length, IMXSPIState),
69         VMSTATE_UINT32_ARRAY(regs, IMXSPIState, ECSPI_MAX),
70         VMSTATE_END_OF_LIST()
71     },
72 };
73 
74 static void imx_spi_txfifo_reset(IMXSPIState *s)
75 {
76     fifo32_reset(&s->tx_fifo);
77     s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
78     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
79 }
80 
81 static void imx_spi_rxfifo_reset(IMXSPIState *s)
82 {
83     fifo32_reset(&s->rx_fifo);
84     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
85     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
86     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RO;
87 }
88 
89 static void imx_spi_update_irq(IMXSPIState *s)
90 {
91     int level;
92 
93     if (fifo32_is_empty(&s->rx_fifo)) {
94         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
95     } else {
96         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RR;
97     }
98 
99     if (fifo32_is_full(&s->rx_fifo)) {
100         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RF;
101     } else {
102         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
103     }
104 
105     if (fifo32_is_empty(&s->tx_fifo)) {
106         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
107     } else {
108         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TE;
109     }
110 
111     if (fifo32_is_full(&s->tx_fifo)) {
112         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TF;
113     } else {
114         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
115     }
116 
117     level = s->regs[ECSPI_STATREG] & s->regs[ECSPI_INTREG] ? 1 : 0;
118 
119     qemu_set_irq(s->irq, level);
120 
121     DPRINTF("IRQ level is %d\n", level);
122 }
123 
124 static uint8_t imx_spi_selected_channel(IMXSPIState *s)
125 {
126     return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_SELECT);
127 }
128 
129 static uint32_t imx_spi_burst_length(IMXSPIState *s)
130 {
131     uint32_t burst;
132 
133     burst = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1;
134     if (burst % 8) {
135         burst = ROUND_UP(burst, 8);
136     }
137 
138     return burst;
139 }
140 
141 static bool imx_spi_is_enabled(IMXSPIState *s)
142 {
143     return s->regs[ECSPI_CONREG] & ECSPI_CONREG_EN;
144 }
145 
146 static bool imx_spi_channel_is_master(IMXSPIState *s)
147 {
148     uint8_t mode = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_MODE);
149 
150     return (mode & (1 << imx_spi_selected_channel(s))) ? true : false;
151 }
152 
153 static bool imx_spi_is_multiple_master_burst(IMXSPIState *s)
154 {
155     uint8_t wave = EXTRACT(s->regs[ECSPI_CONFIGREG], ECSPI_CONFIGREG_SS_CTL);
156 
157     return imx_spi_channel_is_master(s) &&
158            !(s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC) &&
159            ((wave & (1 << imx_spi_selected_channel(s))) ? true : false);
160 }
161 
162 static void imx_spi_flush_txfifo(IMXSPIState *s)
163 {
164     uint32_t tx;
165     uint32_t rx;
166 
167     DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n",
168             fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
169 
170     while (!fifo32_is_empty(&s->tx_fifo)) {
171         int tx_burst = 0;
172 
173         if (s->burst_length <= 0) {
174             s->burst_length = imx_spi_burst_length(s);
175 
176             DPRINTF("Burst length = %d\n", s->burst_length);
177 
178             if (imx_spi_is_multiple_master_burst(s)) {
179                 s->regs[ECSPI_CONREG] |= ECSPI_CONREG_XCH;
180             }
181         }
182 
183         tx = fifo32_pop(&s->tx_fifo);
184 
185         DPRINTF("data tx:0x%08x\n", tx);
186 
187         tx_burst = (s->burst_length % 32) ? : 32;
188 
189         rx = 0;
190 
191         while (tx_burst > 0) {
192             uint8_t byte = tx >> (tx_burst - 8);
193 
194             DPRINTF("writing 0x%02x\n", (uint32_t)byte);
195 
196             /* We need to write one byte at a time */
197             byte = ssi_transfer(s->bus, byte);
198 
199             DPRINTF("0x%02x read\n", (uint32_t)byte);
200 
201             rx = (rx << 8) | byte;
202 
203             /* Remove 8 bits from the actual burst */
204             tx_burst -= 8;
205             s->burst_length -= 8;
206         }
207 
208         DPRINTF("data rx:0x%08x\n", rx);
209 
210         if (fifo32_is_full(&s->rx_fifo)) {
211             s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RO;
212         } else {
213             fifo32_push(&s->rx_fifo, rx);
214         }
215 
216         if (s->burst_length <= 0) {
217             if (!imx_spi_is_multiple_master_burst(s)) {
218                 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
219                 break;
220             }
221         }
222     }
223 
224     if (fifo32_is_empty(&s->tx_fifo)) {
225         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
226         s->regs[ECSPI_CONREG] &= ~ECSPI_CONREG_XCH;
227     }
228 
229     /* TODO: We should also use TDR and RDR bits */
230 
231     DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n",
232             fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
233 }
234 
235 static void imx_spi_common_reset(IMXSPIState *s)
236 {
237     int i;
238 
239     for (i = 0; i < ARRAY_SIZE(s->regs); i++) {
240         switch (i) {
241         case ECSPI_CONREG:
242             /* CONREG is not updated on soft reset */
243             break;
244         case ECSPI_STATREG:
245             s->regs[i] = 0x00000003;
246             break;
247         default:
248             s->regs[i] = 0;
249             break;
250         }
251     }
252 
253     imx_spi_rxfifo_reset(s);
254     imx_spi_txfifo_reset(s);
255 
256     s->burst_length = 0;
257 }
258 
259 static void imx_spi_soft_reset(IMXSPIState *s)
260 {
261     int i;
262 
263     imx_spi_common_reset(s);
264 
265     imx_spi_update_irq(s);
266 
267     for (i = 0; i < ECSPI_NUM_CS; i++) {
268         qemu_set_irq(s->cs_lines[i], 1);
269     }
270 }
271 
272 static void imx_spi_reset(DeviceState *dev)
273 {
274     IMXSPIState *s = IMX_SPI(dev);
275 
276     imx_spi_common_reset(s);
277     s->regs[ECSPI_CONREG] = 0;
278 }
279 
280 static uint64_t imx_spi_read(void *opaque, hwaddr offset, unsigned size)
281 {
282     uint32_t value = 0;
283     IMXSPIState *s = opaque;
284     uint32_t index = offset >> 2;
285 
286     if (index >=  ECSPI_MAX) {
287         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
288                       HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
289         return 0;
290     }
291 
292     value = s->regs[index];
293 
294     if (imx_spi_is_enabled(s)) {
295         switch (index) {
296         case ECSPI_RXDATA:
297             if (fifo32_is_empty(&s->rx_fifo)) {
298                 /* value is undefined */
299                 value = 0xdeadbeef;
300             } else {
301                 /* read from the RX FIFO */
302                 value = fifo32_pop(&s->rx_fifo);
303             }
304             break;
305         case ECSPI_TXDATA:
306             qemu_log_mask(LOG_GUEST_ERROR,
307                           "[%s]%s: Trying to read from TX FIFO\n",
308                           TYPE_IMX_SPI, __func__);
309 
310             /* Reading from TXDATA gives 0 */
311             break;
312         case ECSPI_MSGDATA:
313             qemu_log_mask(LOG_GUEST_ERROR,
314                           "[%s]%s: Trying to read from MSG FIFO\n",
315                           TYPE_IMX_SPI, __func__);
316             /* Reading from MSGDATA gives 0 */
317             break;
318         default:
319             break;
320         }
321 
322         imx_spi_update_irq(s);
323     }
324     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_spi_reg_name(index), value);
325 
326     return (uint64_t)value;
327 }
328 
329 static void imx_spi_write(void *opaque, hwaddr offset, uint64_t value,
330                            unsigned size)
331 {
332     IMXSPIState *s = opaque;
333     uint32_t index = offset >> 2;
334     uint32_t change_mask;
335     uint32_t burst;
336 
337     if (index >=  ECSPI_MAX) {
338         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
339                       HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
340         return;
341     }
342 
343     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_spi_reg_name(index),
344             (uint32_t)value);
345 
346     if (!imx_spi_is_enabled(s)) {
347         /* Block is disabled */
348         if (index != ECSPI_CONREG) {
349             /* Ignore access */
350             return;
351         }
352     }
353 
354     change_mask = s->regs[index] ^ value;
355 
356     switch (index) {
357     case ECSPI_RXDATA:
358         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n",
359                       TYPE_IMX_SPI, __func__);
360         break;
361     case ECSPI_TXDATA:
362         if (fifo32_is_full(&s->tx_fifo)) {
363             /* Ignore writes if queue is full */
364             break;
365         }
366 
367         fifo32_push(&s->tx_fifo, (uint32_t)value);
368 
369         if (imx_spi_channel_is_master(s) &&
370             (s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC)) {
371             /*
372              * Start emitting if current channel is master and SMC bit is
373              * set.
374              */
375             imx_spi_flush_txfifo(s);
376         }
377 
378         break;
379     case ECSPI_STATREG:
380         /* the RO and TC bits are write-one-to-clear */
381         value &= ECSPI_STATREG_RO | ECSPI_STATREG_TC;
382         s->regs[ECSPI_STATREG] &= ~value;
383 
384         break;
385     case ECSPI_CONREG:
386         s->regs[ECSPI_CONREG] = value;
387 
388         burst = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1;
389         if (burst % 8) {
390             qemu_log_mask(LOG_UNIMP,
391                           "[%s]%s: burst length %d not supported: rounding up to next multiple of 8\n",
392                           TYPE_IMX_SPI, __func__, burst);
393         }
394 
395         if (!imx_spi_is_enabled(s)) {
396             /* device is disabled, so this is a soft reset */
397             imx_spi_soft_reset(s);
398 
399             return;
400         }
401 
402         if (imx_spi_channel_is_master(s)) {
403             int i;
404 
405             /* We are in master mode */
406 
407             for (i = 0; i < ECSPI_NUM_CS; i++) {
408                 qemu_set_irq(s->cs_lines[i],
409                              i == imx_spi_selected_channel(s) ? 0 : 1);
410             }
411 
412             if ((value & change_mask & ECSPI_CONREG_SMC) &&
413                 !fifo32_is_empty(&s->tx_fifo)) {
414                 /* SMC bit is set and TX FIFO has some slots filled in */
415                 imx_spi_flush_txfifo(s);
416             } else if ((value & change_mask & ECSPI_CONREG_XCH) &&
417                 !(value & ECSPI_CONREG_SMC)) {
418                 /* This is a request to start emitting */
419                 imx_spi_flush_txfifo(s);
420             }
421         }
422 
423         break;
424     case ECSPI_MSGDATA:
425         /* it is not clear from the spec what MSGDATA is for */
426         /* Anyway it is not used by Linux driver */
427         /* So for now we just ignore it */
428         qemu_log_mask(LOG_UNIMP,
429                       "[%s]%s: Trying to write to MSGDATA, ignoring\n",
430                       TYPE_IMX_SPI, __func__);
431         break;
432     default:
433         s->regs[index] = value;
434 
435         break;
436     }
437 
438     imx_spi_update_irq(s);
439 }
440 
441 static const struct MemoryRegionOps imx_spi_ops = {
442     .read = imx_spi_read,
443     .write = imx_spi_write,
444     .endianness = DEVICE_NATIVE_ENDIAN,
445     .valid = {
446         /*
447          * Our device would not work correctly if the guest was doing
448          * unaligned access. This might not be a limitation on the real
449          * device but in practice there is no reason for a guest to access
450          * this device unaligned.
451          */
452         .min_access_size = 4,
453         .max_access_size = 4,
454         .unaligned = false,
455     },
456 };
457 
458 static void imx_spi_realize(DeviceState *dev, Error **errp)
459 {
460     IMXSPIState *s = IMX_SPI(dev);
461     int i;
462 
463     s->bus = ssi_create_bus(dev, "spi");
464 
465     memory_region_init_io(&s->iomem, OBJECT(dev), &imx_spi_ops, s,
466                           TYPE_IMX_SPI, 0x1000);
467     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
468     sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
469 
470     for (i = 0; i < ECSPI_NUM_CS; ++i) {
471         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]);
472     }
473 
474     fifo32_create(&s->tx_fifo, ECSPI_FIFO_SIZE);
475     fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE);
476 }
477 
478 static void imx_spi_class_init(ObjectClass *klass, void *data)
479 {
480     DeviceClass *dc = DEVICE_CLASS(klass);
481 
482     dc->realize = imx_spi_realize;
483     dc->vmsd = &vmstate_imx_spi;
484     dc->reset = imx_spi_reset;
485     dc->desc = "i.MX SPI Controller";
486 }
487 
488 static const TypeInfo imx_spi_info = {
489     .name          = TYPE_IMX_SPI,
490     .parent        = TYPE_SYS_BUS_DEVICE,
491     .instance_size = sizeof(IMXSPIState),
492     .class_init    = imx_spi_class_init,
493 };
494 
495 static void imx_spi_register_types(void)
496 {
497     type_register_static(&imx_spi_info);
498 }
499 
500 type_init(imx_spi_register_types)
501