xref: /openbmc/qemu/hw/ssi/imx_spi.c (revision 892609056ddff373f8c8c55525a53dd932ee403d)
1 /*
2  * IMX SPI Controller
3  *
4  * Copyright (c) 2016 Jean-Christophe Dubois <jcd@tribudubois.net>
5  *
6  * This work is licensed under the terms of the GNU GPL, version 2 or later.
7  * See the COPYING file in the top-level directory.
8  *
9  */
10 
11 #include "qemu/osdep.h"
12 #include "hw/irq.h"
13 #include "hw/ssi/imx_spi.h"
14 #include "migration/vmstate.h"
15 #include "qemu/log.h"
16 #include "qemu/module.h"
17 
18 #ifndef DEBUG_IMX_SPI
19 #define DEBUG_IMX_SPI 0
20 #endif
21 
22 #define DPRINTF(fmt, args...) \
23     do { \
24         if (DEBUG_IMX_SPI) { \
25             fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \
26                                              __func__, ##args); \
27         } \
28     } while (0)
29 
30 static const char *imx_spi_reg_name(uint32_t reg)
31 {
32     static char unknown[20];
33 
34     switch (reg) {
35     case ECSPI_RXDATA:
36         return  "ECSPI_RXDATA";
37     case ECSPI_TXDATA:
38         return  "ECSPI_TXDATA";
39     case ECSPI_CONREG:
40         return  "ECSPI_CONREG";
41     case ECSPI_CONFIGREG:
42         return  "ECSPI_CONFIGREG";
43     case ECSPI_INTREG:
44         return  "ECSPI_INTREG";
45     case ECSPI_DMAREG:
46         return  "ECSPI_DMAREG";
47     case ECSPI_STATREG:
48         return  "ECSPI_STATREG";
49     case ECSPI_PERIODREG:
50         return  "ECSPI_PERIODREG";
51     case ECSPI_TESTREG:
52         return  "ECSPI_TESTREG";
53     case ECSPI_MSGDATA:
54         return  "ECSPI_MSGDATA";
55     default:
56         sprintf(unknown, "%d ?", reg);
57         return unknown;
58     }
59 }
60 
61 static const VMStateDescription vmstate_imx_spi = {
62     .name = TYPE_IMX_SPI,
63     .version_id = 1,
64     .minimum_version_id = 1,
65     .fields = (VMStateField[]) {
66         VMSTATE_FIFO32(tx_fifo, IMXSPIState),
67         VMSTATE_FIFO32(rx_fifo, IMXSPIState),
68         VMSTATE_INT16(burst_length, IMXSPIState),
69         VMSTATE_UINT32_ARRAY(regs, IMXSPIState, ECSPI_MAX),
70         VMSTATE_END_OF_LIST()
71     },
72 };
73 
74 static void imx_spi_txfifo_reset(IMXSPIState *s)
75 {
76     fifo32_reset(&s->tx_fifo);
77     s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
78     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
79 }
80 
81 static void imx_spi_rxfifo_reset(IMXSPIState *s)
82 {
83     fifo32_reset(&s->rx_fifo);
84     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
85     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
86     s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RO;
87 }
88 
89 static void imx_spi_update_irq(IMXSPIState *s)
90 {
91     int level;
92 
93     if (fifo32_is_empty(&s->rx_fifo)) {
94         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
95     } else {
96         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RR;
97     }
98 
99     if (fifo32_is_full(&s->rx_fifo)) {
100         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RF;
101     } else {
102         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
103     }
104 
105     if (fifo32_is_empty(&s->tx_fifo)) {
106         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
107     } else {
108         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TE;
109     }
110 
111     if (fifo32_is_full(&s->tx_fifo)) {
112         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TF;
113     } else {
114         s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
115     }
116 
117     level = s->regs[ECSPI_STATREG] & s->regs[ECSPI_INTREG] ? 1 : 0;
118 
119     qemu_set_irq(s->irq, level);
120 
121     DPRINTF("IRQ level is %d\n", level);
122 }
123 
124 static uint8_t imx_spi_selected_channel(IMXSPIState *s)
125 {
126     return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_SELECT);
127 }
128 
129 static uint32_t imx_spi_burst_length(IMXSPIState *s)
130 {
131     return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1;
132 }
133 
134 static bool imx_spi_is_enabled(IMXSPIState *s)
135 {
136     return s->regs[ECSPI_CONREG] & ECSPI_CONREG_EN;
137 }
138 
139 static bool imx_spi_channel_is_master(IMXSPIState *s)
140 {
141     uint8_t mode = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_MODE);
142 
143     return (mode & (1 << imx_spi_selected_channel(s))) ? true : false;
144 }
145 
146 static bool imx_spi_is_multiple_master_burst(IMXSPIState *s)
147 {
148     uint8_t wave = EXTRACT(s->regs[ECSPI_CONFIGREG], ECSPI_CONFIGREG_SS_CTL);
149 
150     return imx_spi_channel_is_master(s) &&
151            !(s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC) &&
152            ((wave & (1 << imx_spi_selected_channel(s))) ? true : false);
153 }
154 
155 static void imx_spi_flush_txfifo(IMXSPIState *s)
156 {
157     uint32_t tx;
158     uint32_t rx;
159 
160     DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n",
161             fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
162 
163     while (!fifo32_is_empty(&s->tx_fifo)) {
164         int tx_burst = 0;
165         int index = 0;
166 
167         if (s->burst_length <= 0) {
168             s->burst_length = imx_spi_burst_length(s);
169 
170             DPRINTF("Burst length = %d\n", s->burst_length);
171 
172             if (imx_spi_is_multiple_master_burst(s)) {
173                 s->regs[ECSPI_CONREG] |= ECSPI_CONREG_XCH;
174             }
175         }
176 
177         tx = fifo32_pop(&s->tx_fifo);
178 
179         DPRINTF("data tx:0x%08x\n", tx);
180 
181         tx_burst = MIN(s->burst_length, 32);
182 
183         rx = 0;
184 
185         while (tx_burst) {
186             uint8_t byte = tx & 0xff;
187 
188             DPRINTF("writing 0x%02x\n", (uint32_t)byte);
189 
190             /* We need to write one byte at a time */
191             byte = ssi_transfer(s->bus, byte);
192 
193             DPRINTF("0x%02x read\n", (uint32_t)byte);
194 
195             tx = tx >> 8;
196             rx |= (byte << (index * 8));
197 
198             /* Remove 8 bits from the actual burst */
199             tx_burst -= 8;
200             s->burst_length -= 8;
201             index++;
202         }
203 
204         DPRINTF("data rx:0x%08x\n", rx);
205 
206         if (fifo32_is_full(&s->rx_fifo)) {
207             s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RO;
208         } else {
209             fifo32_push(&s->rx_fifo, (uint8_t)rx);
210         }
211 
212         if (s->burst_length <= 0) {
213             if (!imx_spi_is_multiple_master_burst(s)) {
214                 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
215                 break;
216             }
217         }
218     }
219 
220     if (fifo32_is_empty(&s->tx_fifo)) {
221         s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
222         s->regs[ECSPI_CONREG] &= ~ECSPI_CONREG_XCH;
223     }
224 
225     /* TODO: We should also use TDR and RDR bits */
226 
227     DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n",
228             fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
229 }
230 
231 static void imx_spi_reset(DeviceState *dev)
232 {
233     IMXSPIState *s = IMX_SPI(dev);
234 
235     DPRINTF("\n");
236 
237     memset(s->regs, 0, sizeof(s->regs));
238 
239     s->regs[ECSPI_STATREG] = 0x00000003;
240 
241     imx_spi_rxfifo_reset(s);
242     imx_spi_txfifo_reset(s);
243 
244     imx_spi_update_irq(s);
245 
246     s->burst_length = 0;
247 }
248 
249 static uint64_t imx_spi_read(void *opaque, hwaddr offset, unsigned size)
250 {
251     uint32_t value = 0;
252     IMXSPIState *s = opaque;
253     uint32_t index = offset >> 2;
254 
255     if (index >=  ECSPI_MAX) {
256         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
257                       HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
258         return 0;
259     }
260 
261     switch (index) {
262     case ECSPI_RXDATA:
263         if (!imx_spi_is_enabled(s)) {
264             value = 0;
265         } else if (fifo32_is_empty(&s->rx_fifo)) {
266             /* value is undefined */
267             value = 0xdeadbeef;
268         } else {
269             /* read from the RX FIFO */
270             value = fifo32_pop(&s->rx_fifo);
271         }
272 
273         break;
274     case ECSPI_TXDATA:
275         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from TX FIFO\n",
276                       TYPE_IMX_SPI, __func__);
277 
278         /* Reading from TXDATA gives 0 */
279 
280         break;
281     case ECSPI_MSGDATA:
282         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from MSG FIFO\n",
283                       TYPE_IMX_SPI, __func__);
284 
285         /* Reading from MSGDATA gives 0 */
286 
287         break;
288     default:
289         value = s->regs[index];
290         break;
291     }
292 
293     DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_spi_reg_name(index), value);
294 
295     imx_spi_update_irq(s);
296 
297     return (uint64_t)value;
298 }
299 
300 static void imx_spi_write(void *opaque, hwaddr offset, uint64_t value,
301                            unsigned size)
302 {
303     IMXSPIState *s = opaque;
304     uint32_t index = offset >> 2;
305     uint32_t change_mask;
306 
307     if (index >=  ECSPI_MAX) {
308         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
309                       HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
310         return;
311     }
312 
313     DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_spi_reg_name(index),
314             (uint32_t)value);
315 
316     change_mask = s->regs[index] ^ value;
317 
318     switch (index) {
319     case ECSPI_RXDATA:
320         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n",
321                       TYPE_IMX_SPI, __func__);
322         break;
323     case ECSPI_TXDATA:
324         if (!imx_spi_is_enabled(s)) {
325             /* Ignore writes if device is disabled */
326             break;
327         } else if (fifo32_is_full(&s->tx_fifo)) {
328             /* Ignore writes if queue is full */
329             break;
330         }
331 
332         fifo32_push(&s->tx_fifo, (uint32_t)value);
333 
334         if (imx_spi_channel_is_master(s) &&
335             (s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC)) {
336             /*
337              * Start emitting if current channel is master and SMC bit is
338              * set.
339              */
340             imx_spi_flush_txfifo(s);
341         }
342 
343         break;
344     case ECSPI_STATREG:
345         /* the RO and TC bits are write-one-to-clear */
346         value &= ECSPI_STATREG_RO | ECSPI_STATREG_TC;
347         s->regs[ECSPI_STATREG] &= ~value;
348 
349         break;
350     case ECSPI_CONREG:
351         s->regs[ECSPI_CONREG] = value;
352 
353         if (!imx_spi_is_enabled(s)) {
354             /* device is disabled, so this is a reset */
355             imx_spi_reset(DEVICE(s));
356             return;
357         }
358 
359         if (imx_spi_channel_is_master(s)) {
360             int i;
361 
362             /* We are in master mode */
363 
364             for (i = 0; i < 4; i++) {
365                 qemu_set_irq(s->cs_lines[i],
366                              i == imx_spi_selected_channel(s) ? 0 : 1);
367             }
368 
369             if ((value & change_mask & ECSPI_CONREG_SMC) &&
370                 !fifo32_is_empty(&s->tx_fifo)) {
371                 /* SMC bit is set and TX FIFO has some slots filled in */
372                 imx_spi_flush_txfifo(s);
373             } else if ((value & change_mask & ECSPI_CONREG_XCH) &&
374                 !(value & ECSPI_CONREG_SMC)) {
375                 /* This is a request to start emitting */
376                 imx_spi_flush_txfifo(s);
377             }
378         }
379 
380         break;
381     case ECSPI_MSGDATA:
382         /* it is not clear from the spec what MSGDATA is for */
383         /* Anyway it is not used by Linux driver */
384         /* So for now we just ignore it */
385         qemu_log_mask(LOG_UNIMP,
386                       "[%s]%s: Trying to write to MSGDATA, ignoring\n",
387                       TYPE_IMX_SPI, __func__);
388         break;
389     default:
390         s->regs[index] = value;
391 
392         break;
393     }
394 
395     imx_spi_update_irq(s);
396 }
397 
398 static const struct MemoryRegionOps imx_spi_ops = {
399     .read = imx_spi_read,
400     .write = imx_spi_write,
401     .endianness = DEVICE_NATIVE_ENDIAN,
402     .valid = {
403         /*
404          * Our device would not work correctly if the guest was doing
405          * unaligned access. This might not be a limitation on the real
406          * device but in practice there is no reason for a guest to access
407          * this device unaligned.
408          */
409         .min_access_size = 4,
410         .max_access_size = 4,
411         .unaligned = false,
412     },
413 };
414 
415 static void imx_spi_realize(DeviceState *dev, Error **errp)
416 {
417     IMXSPIState *s = IMX_SPI(dev);
418     int i;
419 
420     s->bus = ssi_create_bus(dev, "spi");
421 
422     memory_region_init_io(&s->iomem, OBJECT(dev), &imx_spi_ops, s,
423                           TYPE_IMX_SPI, 0x1000);
424     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
425     sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
426 
427     ssi_auto_connect_slaves(dev, s->cs_lines, s->bus);
428 
429     for (i = 0; i < 4; ++i) {
430         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]);
431     }
432 
433     s->burst_length = 0;
434 
435     fifo32_create(&s->tx_fifo, ECSPI_FIFO_SIZE);
436     fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE);
437 }
438 
439 static void imx_spi_class_init(ObjectClass *klass, void *data)
440 {
441     DeviceClass *dc = DEVICE_CLASS(klass);
442 
443     dc->realize = imx_spi_realize;
444     dc->vmsd = &vmstate_imx_spi;
445     dc->reset = imx_spi_reset;
446     dc->desc = "i.MX SPI Controller";
447 }
448 
449 static const TypeInfo imx_spi_info = {
450     .name          = TYPE_IMX_SPI,
451     .parent        = TYPE_SYS_BUS_DEVICE,
452     .instance_size = sizeof(IMXSPIState),
453     .class_init    = imx_spi_class_init,
454 };
455 
456 static void imx_spi_register_types(void)
457 {
458     type_register_static(&imx_spi_info);
459 }
460 
461 type_init(imx_spi_register_types)
462