xref: /openbmc/qemu/hw/ssi/allwinner-a10-spi.c (revision f7214f99)
1 /*
2  *  Allwinner SPI Bus Serial Interface Emulation
3  *
4  *  Copyright (C) 2024 Strahinja Jankovic <strahinja.p.jankovic@gmail.com>
5  *
6  *  This program is free software; you can redistribute it and/or modify it
7  *  under the terms of the GNU General Public License as published by the
8  *  Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful, but WITHOUT
12  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  *  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14  *  for more details.
15  *
16  *  You should have received a copy of the GNU General Public License along
17  *  with this program; if not, see <http://www.gnu.org/licenses/>.
18  *
19  * SPDX-License-Identifier: GPL-2.0-or-later
20  */
21 
22 #include "qemu/osdep.h"
23 #include "hw/irq.h"
24 #include "hw/ssi/allwinner-a10-spi.h"
25 #include "migration/vmstate.h"
26 #include "qemu/log.h"
27 #include "qemu/module.h"
28 #include "trace.h"
29 
30 /* Allwinner SPI memory map */
31 #define SPI_RXDATA_REG   0x00 /* receive data register */
32 #define SPI_TXDATA_REG   0x04 /* transmit data register */
33 #define SPI_CTL_REG      0x08 /* control register */
34 #define SPI_INTCTL_REG   0x0c /* interrupt control register */
35 #define SPI_INT_STA_REG  0x10 /* interrupt status register */
36 #define SPI_DMACTL_REG   0x14 /* DMA control register */
37 #define SPI_WAIT_REG     0x18 /* wait clock counter register */
38 #define SPI_CCTL_REG     0x1c /* clock rate control register */
39 #define SPI_BC_REG       0x20 /* burst control register */
40 #define SPI_TC_REG       0x24 /* transmit counter register */
41 #define SPI_FIFO_STA_REG 0x28 /* FIFO status register */
42 
43 /* Data register */
44 #define SPI_DATA_RESET 0
45 
46 /* Control register */
47 #define SPI_CTL_SDC      (1 << 19)
48 #define SPI_CTL_TP_EN    (1 << 18)
49 #define SPI_CTL_SS_LEVEL (1 << 17)
50 #define SPI_CTL_SS_CTRL  (1 << 16)
51 #define SPI_CTL_DHB      (1 << 15)
52 #define SPI_CTL_DDB      (1 << 14)
53 #define SPI_CTL_SS       (3 << 12)
54 #define SPI_CTL_SS_SHIFT 12
55 #define SPI_CTL_RPSM     (1 << 11)
56 #define SPI_CTL_XCH      (1 << 10)
57 #define SPI_CTL_RF_RST   (1 << 9)
58 #define SPI_CTL_TF_RST   (1 << 8)
59 #define SPI_CTL_SSCTL    (1 << 7)
60 #define SPI_CTL_LMTF     (1 << 6)
61 #define SPI_CTL_DMAMC    (1 << 5)
62 #define SPI_CTL_SSPOL    (1 << 4)
63 #define SPI_CTL_POL      (1 << 3)
64 #define SPI_CTL_PHA      (1 << 2)
65 #define SPI_CTL_MODE     (1 << 1)
66 #define SPI_CTL_EN       (1 << 0)
67 #define SPI_CTL_MASK     0xFFFFFu
68 #define SPI_CTL_RESET    0x0002001Cu
69 
70 /* Interrupt control register */
71 #define SPI_INTCTL_SS_INT_EN          (1 << 17)
72 #define SPI_INTCTL_TX_INT_EN          (1 << 16)
73 #define SPI_INTCTL_TF_UR_INT_EN       (1 << 14)
74 #define SPI_INTCTL_TF_OF_INT_EN       (1 << 13)
75 #define SPI_INTCTL_TF_E34_INT_EN      (1 << 12)
76 #define SPI_INTCTL_TF_E14_INT_EN      (1 << 11)
77 #define SPI_INTCTL_TF_FL_INT_EN       (1 << 10)
78 #define SPI_INTCTL_TF_HALF_EMP_INT_EN (1 << 9)
79 #define SPI_INTCTL_TF_EMP_INT_EN      (1 << 8)
80 #define SPI_INTCTL_RF_UR_INT_EN       (1 << 6)
81 #define SPI_INTCTL_RF_OF_INT_EN       (1 << 5)
82 #define SPI_INTCTL_RF_E34_INT_EN      (1 << 4)
83 #define SPI_INTCTL_RF_E14_INT_EN      (1 << 3)
84 #define SPI_INTCTL_RF_FU_INT_EN       (1 << 2)
85 #define SPI_INTCTL_RF_HALF_FU_INT_EN  (1 << 1)
86 #define SPI_INTCTL_RF_RDY_INT_EN      (1 << 0)
87 #define SPI_INTCTL_MASK               0x37F7Fu
88 #define SPI_INTCTL_RESET              0
89 
90 /* Interrupt status register */
91 #define SPI_INT_STA_INT_CBF (1 << 31)
92 #define SPI_INT_STA_SSI     (1 << 17)
93 #define SPI_INT_STA_TC      (1 << 16)
94 #define SPI_INT_STA_TU      (1 << 14)
95 #define SPI_INT_STA_TO      (1 << 13)
96 #define SPI_INT_STA_TE34    (1 << 12)
97 #define SPI_INT_STA_TE14    (1 << 11)
98 #define SPI_INT_STA_TF      (1 << 10)
99 #define SPI_INT_STA_THE     (1 << 9)
100 #define SPI_INT_STA_TE      (1 << 8)
101 #define SPI_INT_STA_RU      (1 << 6)
102 #define SPI_INT_STA_RO      (1 << 5)
103 #define SPI_INT_STA_RF34    (1 << 4)
104 #define SPI_INT_STA_RF14    (1 << 3)
105 #define SPI_INT_STA_RF      (1 << 2)
106 #define SPI_INT_STA_RHF     (1 << 1)
107 #define SPI_INT_STA_RR      (1 << 0)
108 #define SPI_INT_STA_MASK    0x80037F7Fu
109 #define SPI_INT_STA_RESET   0x00001B00u
110 
111 /* DMA control register - not implemented */
112 #define SPI_DMACTL_RESET 0
113 
114 /* Wait clock register */
115 #define SPI_WAIT_REG_WCC_MASK 0xFFFFu
116 #define SPI_WAIT_RESET        0
117 
118 /* Clock control register - not implemented */
119 #define SPI_CCTL_RESET 2
120 
121 /* Burst count register */
122 #define SPI_BC_BC_MASK 0xFFFFFFu
123 #define SPI_BC_RESET   0
124 
125 /* Transmi counter register */
126 #define SPI_TC_WTC_MASK 0xFFFFFFu
127 #define SPI_TC_RESET    0
128 
129 /* FIFO status register */
130 #define SPI_FIFO_STA_CNT_MASK     0x7F
131 #define SPI_FIFO_STA_TF_CNT_SHIFT 16
132 #define SPI_FIFO_STA_RF_CNT_SHIFT 0
133 #define SPI_FIFO_STA_RESET        0
134 
135 #define REG_INDEX(offset)         (offset / sizeof(uint32_t))
136 
137 
138 static const char *allwinner_a10_spi_get_regname(unsigned offset)
139 {
140     switch (offset) {
141     case SPI_RXDATA_REG:
142         return "RXDATA";
143     case SPI_TXDATA_REG:
144         return "TXDATA";
145     case SPI_CTL_REG:
146         return "CTL";
147     case SPI_INTCTL_REG:
148         return "INTCTL";
149     case SPI_INT_STA_REG:
150         return "INT_STA";
151     case SPI_DMACTL_REG:
152         return "DMACTL";
153     case SPI_WAIT_REG:
154         return "WAIT";
155     case SPI_CCTL_REG:
156         return "CCTL";
157     case SPI_BC_REG:
158         return "BC";
159     case SPI_TC_REG:
160         return "TC";
161     case SPI_FIFO_STA_REG:
162         return "FIFO_STA";
163     default:
164         return "[?]";
165     }
166 }
167 
168 static bool allwinner_a10_spi_is_enabled(AWA10SPIState *s)
169 {
170     return s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_EN;
171 }
172 
173 static void allwinner_a10_spi_txfifo_reset(AWA10SPIState *s)
174 {
175     fifo8_reset(&s->tx_fifo);
176     s->regs[REG_INDEX(SPI_INT_STA_REG)] |= (SPI_INT_STA_TE | SPI_INT_STA_TE14 |
177                                             SPI_INT_STA_THE | SPI_INT_STA_TE34);
178     s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~(SPI_INT_STA_TU | SPI_INT_STA_TO);
179 }
180 
181 static void allwinner_a10_spi_rxfifo_reset(AWA10SPIState *s)
182 {
183     fifo8_reset(&s->rx_fifo);
184     s->regs[REG_INDEX(SPI_INT_STA_REG)] &=
185         ~(SPI_INT_STA_RU | SPI_INT_STA_RO | SPI_INT_STA_RF | SPI_INT_STA_RR |
186           SPI_INT_STA_RHF | SPI_INT_STA_RF14 | SPI_INT_STA_RF34);
187 }
188 
189 static uint8_t allwinner_a10_spi_selected_channel(AWA10SPIState *s)
190 {
191     return (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_SS) >> SPI_CTL_SS_SHIFT;
192 }
193 
194 static void allwinner_a10_spi_reset_hold(Object *obj, ResetType type)
195 {
196     AWA10SPIState *s = AW_A10_SPI(obj);
197 
198     s->regs[REG_INDEX(SPI_RXDATA_REG)] = SPI_DATA_RESET;
199     s->regs[REG_INDEX(SPI_TXDATA_REG)] = SPI_DATA_RESET;
200     s->regs[REG_INDEX(SPI_CTL_REG)] = SPI_CTL_RESET;
201     s->regs[REG_INDEX(SPI_INTCTL_REG)] = SPI_INTCTL_RESET;
202     s->regs[REG_INDEX(SPI_INT_STA_REG)] = SPI_INT_STA_RESET;
203     s->regs[REG_INDEX(SPI_DMACTL_REG)] = SPI_DMACTL_RESET;
204     s->regs[REG_INDEX(SPI_WAIT_REG)] = SPI_WAIT_RESET;
205     s->regs[REG_INDEX(SPI_CCTL_REG)] = SPI_CCTL_RESET;
206     s->regs[REG_INDEX(SPI_BC_REG)] = SPI_BC_RESET;
207     s->regs[REG_INDEX(SPI_TC_REG)] = SPI_TC_RESET;
208     s->regs[REG_INDEX(SPI_FIFO_STA_REG)] = SPI_FIFO_STA_RESET;
209 
210     allwinner_a10_spi_txfifo_reset(s);
211     allwinner_a10_spi_rxfifo_reset(s);
212 }
213 
214 static void allwinner_a10_spi_update_irq(AWA10SPIState *s)
215 {
216     bool level;
217 
218     if (fifo8_is_empty(&s->rx_fifo)) {
219         s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RR;
220     } else {
221         s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RR;
222     }
223 
224     if (fifo8_num_used(&s->rx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 2)) {
225         s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF14;
226     } else {
227         s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RF14;
228     }
229 
230     if (fifo8_num_used(&s->rx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 1)) {
231         s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RHF;
232     } else {
233         s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RHF;
234     }
235 
236     if (fifo8_num_free(&s->rx_fifo) <= (AW_A10_SPI_FIFO_SIZE >> 2)) {
237         s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF34;
238     } else {
239         s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RF34;
240     }
241 
242     if (fifo8_is_full(&s->rx_fifo)) {
243         s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF;
244     } else {
245         s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RF;
246     }
247 
248     if (fifo8_is_empty(&s->tx_fifo)) {
249         s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TE;
250     } else {
251         s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TE;
252     }
253 
254     if (fifo8_num_free(&s->tx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 2)) {
255         s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TE14;
256     } else {
257         s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TE14;
258     }
259 
260     if (fifo8_num_free(&s->tx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 1)) {
261         s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_THE;
262     } else {
263         s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_THE;
264     }
265 
266     if (fifo8_num_used(&s->tx_fifo) <= (AW_A10_SPI_FIFO_SIZE >> 2)) {
267         s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TE34;
268     } else {
269         s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TE34;
270     }
271 
272     if (fifo8_is_full(&s->rx_fifo)) {
273         s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TF;
274     } else {
275         s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TF;
276     }
277 
278     level = (s->regs[REG_INDEX(SPI_INT_STA_REG)] &
279              s->regs[REG_INDEX(SPI_INTCTL_REG)]) != 0;
280 
281     qemu_set_irq(s->irq, level);
282 
283     trace_allwinner_a10_spi_update_irq(level);
284 }
285 
286 static void allwinner_a10_spi_flush_txfifo(AWA10SPIState *s)
287 {
288     uint32_t burst_count = s->regs[REG_INDEX(SPI_BC_REG)];
289     uint32_t tx_burst = s->regs[REG_INDEX(SPI_TC_REG)];
290     trace_allwinner_a10_spi_burst_length(tx_burst);
291 
292     trace_allwinner_a10_spi_flush_txfifo_begin(fifo8_num_used(&s->tx_fifo),
293                                                fifo8_num_used(&s->rx_fifo));
294 
295     while (!fifo8_is_empty(&s->tx_fifo)) {
296         uint8_t tx = fifo8_pop(&s->tx_fifo);
297         uint8_t rx = 0;
298         bool fill_rx = true;
299 
300         trace_allwinner_a10_spi_tx(tx);
301 
302         /* Write one byte at a time */
303         rx = ssi_transfer(s->bus, tx);
304 
305         trace_allwinner_a10_spi_rx(rx);
306 
307         /* Check DHB here to determine if RX bytes should be stored */
308         if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_DHB) {
309             /* Store rx bytes only after WTC transfers */
310             if (tx_burst > 0u) {
311                 fill_rx = false;
312                 tx_burst--;
313             }
314         }
315 
316         if (fill_rx) {
317             if (fifo8_is_full(&s->rx_fifo)) {
318                 s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF;
319             } else {
320                 fifo8_push(&s->rx_fifo, rx);
321             }
322         }
323 
324         allwinner_a10_spi_update_irq(s);
325 
326         burst_count--;
327 
328         if (burst_count == 0) {
329             s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TC;
330             s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_XCH;
331             break;
332         }
333     }
334 
335     if (fifo8_is_empty(&s->tx_fifo)) {
336         s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TC;
337         s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_XCH;
338     }
339 
340     trace_allwinner_a10_spi_flush_txfifo_end(fifo8_num_used(&s->tx_fifo),
341                                              fifo8_num_used(&s->rx_fifo));
342 }
343 
344 static uint64_t allwinner_a10_spi_read(void *opaque, hwaddr offset,
345                                        unsigned size)
346 {
347     uint32_t value = 0;
348     AWA10SPIState *s = opaque;
349     uint32_t index = offset >> 2;
350 
351     if (offset > SPI_FIFO_STA_REG) {
352         qemu_log_mask(LOG_GUEST_ERROR,
353                       "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n",
354                       TYPE_AW_A10_SPI, __func__, offset);
355         return 0;
356     }
357 
358     value = s->regs[index];
359 
360     if (allwinner_a10_spi_is_enabled(s)) {
361         switch (offset) {
362         case SPI_RXDATA_REG:
363             if (fifo8_is_empty(&s->rx_fifo)) {
364                 /* value is undefined */
365                 value = 0xdeadbeef;
366             } else {
367                 /* read from the RX FIFO */
368                 value = fifo8_pop(&s->rx_fifo);
369             }
370             break;
371         case SPI_TXDATA_REG:
372             qemu_log_mask(LOG_GUEST_ERROR,
373                           "[%s]%s: Trying to read from TX FIFO\n",
374                           TYPE_AW_A10_SPI, __func__);
375 
376             /* Reading from TXDATA gives 0 */
377             break;
378         case SPI_FIFO_STA_REG:
379             /* Read current tx/rx fifo data count */
380             value = fifo8_num_used(&s->tx_fifo) << SPI_FIFO_STA_TF_CNT_SHIFT |
381                     fifo8_num_used(&s->rx_fifo) << SPI_FIFO_STA_RF_CNT_SHIFT;
382             break;
383         case SPI_CTL_REG:
384         case SPI_INTCTL_REG:
385         case SPI_INT_STA_REG:
386         case SPI_DMACTL_REG:
387         case SPI_WAIT_REG:
388         case SPI_CCTL_REG:
389         case SPI_BC_REG:
390         case SPI_TC_REG:
391             break;
392         default:
393             qemu_log_mask(LOG_GUEST_ERROR,
394                     "%s: bad offset 0x%x\n", __func__,
395                     (uint32_t)offset);
396             break;
397         }
398 
399         allwinner_a10_spi_update_irq(s);
400     }
401     trace_allwinner_a10_spi_read(allwinner_a10_spi_get_regname(offset), value);
402 
403     return value;
404 }
405 
406 static bool allwinner_a10_spi_update_cs_level(AWA10SPIState *s, int cs_line_nr)
407 {
408     if (cs_line_nr == allwinner_a10_spi_selected_channel(s)) {
409         return (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_SS_LEVEL) != 0;
410     } else {
411         return (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_SSPOL) != 0;
412     }
413 }
414 
415 static void allwinner_a10_spi_write(void *opaque, hwaddr offset, uint64_t value,
416                                     unsigned size)
417 {
418     AWA10SPIState *s = opaque;
419     uint32_t index = offset >> 2;
420     int i = 0;
421 
422     if (offset > SPI_FIFO_STA_REG) {
423         qemu_log_mask(LOG_GUEST_ERROR,
424                       "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n",
425                       TYPE_AW_A10_SPI, __func__, offset);
426         return;
427     }
428 
429     trace_allwinner_a10_spi_write(allwinner_a10_spi_get_regname(offset),
430                                   (uint32_t)value);
431 
432     if (!allwinner_a10_spi_is_enabled(s)) {
433         /* Block is disabled */
434         if (offset != SPI_CTL_REG) {
435             /* Ignore access */
436             return;
437         }
438     }
439 
440     switch (offset) {
441     case SPI_RXDATA_REG:
442         qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n",
443                       TYPE_AW_A10_SPI, __func__);
444         break;
445     case SPI_TXDATA_REG:
446         if (fifo8_is_full(&s->tx_fifo)) {
447             /* Ignore writes if queue is full */
448             break;
449         }
450 
451         fifo8_push(&s->tx_fifo, (uint8_t)value);
452 
453         break;
454     case SPI_INT_STA_REG:
455         /* Handle W1C bits - everything except SPI_INT_STA_INT_CBF. */
456         value &= ~SPI_INT_STA_INT_CBF;
457         s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~(value & SPI_INT_STA_MASK);
458         break;
459     case SPI_CTL_REG:
460         s->regs[REG_INDEX(SPI_CTL_REG)] = value;
461 
462         for (i = 0; i < AW_A10_SPI_CS_LINES_NR; i++) {
463             qemu_set_irq(
464                 s->cs_lines[i],
465                 allwinner_a10_spi_update_cs_level(s, i));
466         }
467 
468         if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_XCH) {
469             /* Request to start emitting */
470             allwinner_a10_spi_flush_txfifo(s);
471         }
472         if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_TF_RST) {
473             allwinner_a10_spi_txfifo_reset(s);
474             s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_TF_RST;
475         }
476         if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_RF_RST) {
477             allwinner_a10_spi_rxfifo_reset(s);
478             s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_RF_RST;
479         }
480         break;
481     case SPI_INTCTL_REG:
482     case SPI_DMACTL_REG:
483     case SPI_WAIT_REG:
484     case SPI_CCTL_REG:
485     case SPI_BC_REG:
486     case SPI_TC_REG:
487     case SPI_FIFO_STA_REG:
488         s->regs[index] = value;
489         break;
490     default:
491         qemu_log_mask(LOG_GUEST_ERROR,
492             "%s: bad offset 0x%x\n", __func__,
493             (uint32_t)offset);
494         break;
495     }
496 
497     allwinner_a10_spi_update_irq(s);
498 }
499 
500 static const MemoryRegionOps allwinner_a10_spi_ops = {
501     .read = allwinner_a10_spi_read,
502     .write = allwinner_a10_spi_write,
503     .valid.min_access_size = 1,
504     .valid.max_access_size = 4,
505     .endianness = DEVICE_NATIVE_ENDIAN,
506 };
507 
508 static const VMStateDescription allwinner_a10_spi_vmstate = {
509     .name = TYPE_AW_A10_SPI,
510     .version_id = 1,
511     .minimum_version_id = 1,
512     .fields = (const VMStateField[]) {
513         VMSTATE_FIFO8(tx_fifo, AWA10SPIState),
514         VMSTATE_FIFO8(rx_fifo, AWA10SPIState),
515         VMSTATE_UINT32_ARRAY(regs, AWA10SPIState, AW_A10_SPI_REGS_NUM),
516         VMSTATE_END_OF_LIST()
517     }
518 };
519 
520 static void allwinner_a10_spi_realize(DeviceState *dev, Error **errp)
521 {
522     AWA10SPIState *s = AW_A10_SPI(dev);
523     int i = 0;
524 
525     memory_region_init_io(&s->iomem, OBJECT(s), &allwinner_a10_spi_ops, s,
526                           TYPE_AW_A10_SPI, AW_A10_SPI_IOSIZE);
527     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
528     sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
529 
530     s->bus = ssi_create_bus(dev, "spi");
531     for (i = 0; i < AW_A10_SPI_CS_LINES_NR; i++) {
532         sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]);
533     }
534     fifo8_create(&s->tx_fifo, AW_A10_SPI_FIFO_SIZE);
535     fifo8_create(&s->rx_fifo, AW_A10_SPI_FIFO_SIZE);
536 }
537 
538 static void allwinner_a10_spi_class_init(ObjectClass *klass, void *data)
539 {
540     DeviceClass *dc = DEVICE_CLASS(klass);
541     ResettableClass *rc = RESETTABLE_CLASS(klass);
542 
543     rc->phases.hold = allwinner_a10_spi_reset_hold;
544     dc->vmsd = &allwinner_a10_spi_vmstate;
545     dc->realize = allwinner_a10_spi_realize;
546     dc->desc = "Allwinner A10 SPI Controller";
547 }
548 
549 static const TypeInfo allwinner_a10_spi_type_info = {
550     .name = TYPE_AW_A10_SPI,
551     .parent = TYPE_SYS_BUS_DEVICE,
552     .instance_size = sizeof(AWA10SPIState),
553     .class_init = allwinner_a10_spi_class_init,
554 };
555 
556 static void allwinner_a10_spi_register_types(void)
557 {
558     type_register_static(&allwinner_a10_spi_type_info);
559 }
560 
561 type_init(allwinner_a10_spi_register_types)
562