1 /* 2 * QEMU Sun4u/Sun4v System Emulator 3 * 4 * Copyright (c) 2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qemu-common.h" 27 #include "cpu.h" 28 #include "hw/hw.h" 29 #include "hw/pci/pci.h" 30 #include "hw/pci-host/apb.h" 31 #include "hw/i386/pc.h" 32 #include "hw/char/serial.h" 33 #include "hw/timer/m48t59.h" 34 #include "hw/block/fdc.h" 35 #include "net/net.h" 36 #include "qemu/timer.h" 37 #include "sysemu/sysemu.h" 38 #include "hw/boards.h" 39 #include "hw/nvram/sun_nvram.h" 40 #include "hw/nvram/chrp_nvram.h" 41 #include "hw/nvram/fw_cfg.h" 42 #include "hw/sysbus.h" 43 #include "hw/ide.h" 44 #include "hw/loader.h" 45 #include "elf.h" 46 #include "sysemu/block-backend.h" 47 #include "exec/address-spaces.h" 48 #include "qemu/cutils.h" 49 50 //#define DEBUG_IRQ 51 //#define DEBUG_EBUS 52 //#define DEBUG_TIMER 53 54 #ifdef DEBUG_IRQ 55 #define CPUIRQ_DPRINTF(fmt, ...) \ 56 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 57 #else 58 #define CPUIRQ_DPRINTF(fmt, ...) 59 #endif 60 61 #ifdef DEBUG_EBUS 62 #define EBUS_DPRINTF(fmt, ...) \ 63 do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0) 64 #else 65 #define EBUS_DPRINTF(fmt, ...) 66 #endif 67 68 #ifdef DEBUG_TIMER 69 #define TIMER_DPRINTF(fmt, ...) \ 70 do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0) 71 #else 72 #define TIMER_DPRINTF(fmt, ...) 73 #endif 74 75 #define KERNEL_LOAD_ADDR 0x00404000 76 #define CMDLINE_ADDR 0x003ff000 77 #define PROM_SIZE_MAX (4 * 1024 * 1024) 78 #define PROM_VADDR 0x000ffd00000ULL 79 #define APB_SPECIAL_BASE 0x1fe00000000ULL 80 #define APB_MEM_BASE 0x1ff00000000ULL 81 #define APB_PCI_IO_BASE (APB_SPECIAL_BASE + 0x02000000ULL) 82 #define PROM_FILENAME "openbios-sparc64" 83 #define NVRAM_SIZE 0x2000 84 #define MAX_IDE_BUS 2 85 #define BIOS_CFG_IOPORT 0x510 86 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00) 87 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01) 88 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02) 89 90 #define IVEC_MAX 0x40 91 92 #define TICK_MAX 0x7fffffffffffffffULL 93 94 struct hwdef { 95 const char * const default_cpu_model; 96 uint16_t machine_id; 97 uint64_t prom_addr; 98 uint64_t console_serial_base; 99 }; 100 101 typedef struct EbusState { 102 PCIDevice pci_dev; 103 MemoryRegion bar0; 104 MemoryRegion bar1; 105 } EbusState; 106 107 void DMA_init(ISABus *bus, int high_page_enable) 108 { 109 } 110 111 static void fw_cfg_boot_set(void *opaque, const char *boot_device, 112 Error **errp) 113 { 114 fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); 115 } 116 117 static int sun4u_NVRAM_set_params(Nvram *nvram, uint16_t NVRAM_size, 118 const char *arch, ram_addr_t RAM_size, 119 const char *boot_devices, 120 uint32_t kernel_image, uint32_t kernel_size, 121 const char *cmdline, 122 uint32_t initrd_image, uint32_t initrd_size, 123 uint32_t NVRAM_image, 124 int width, int height, int depth, 125 const uint8_t *macaddr) 126 { 127 unsigned int i; 128 int sysp_end; 129 uint8_t image[0x1ff0]; 130 NvramClass *k = NVRAM_GET_CLASS(nvram); 131 132 memset(image, '\0', sizeof(image)); 133 134 /* OpenBIOS nvram variables partition */ 135 sysp_end = chrp_nvram_create_system_partition(image, 0); 136 137 /* Free space partition */ 138 chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end); 139 140 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80); 141 142 for (i = 0; i < sizeof(image); i++) { 143 (k->write)(nvram, i, image[i]); 144 } 145 146 return 0; 147 } 148 149 static uint64_t sun4u_load_kernel(const char *kernel_filename, 150 const char *initrd_filename, 151 ram_addr_t RAM_size, uint64_t *initrd_size, 152 uint64_t *initrd_addr, uint64_t *kernel_addr, 153 uint64_t *kernel_entry) 154 { 155 int linux_boot; 156 unsigned int i; 157 long kernel_size; 158 uint8_t *ptr; 159 uint64_t kernel_top; 160 161 linux_boot = (kernel_filename != NULL); 162 163 kernel_size = 0; 164 if (linux_boot) { 165 int bswap_needed; 166 167 #ifdef BSWAP_NEEDED 168 bswap_needed = 1; 169 #else 170 bswap_needed = 0; 171 #endif 172 kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry, 173 kernel_addr, &kernel_top, 1, EM_SPARCV9, 0, 0); 174 if (kernel_size < 0) { 175 *kernel_addr = KERNEL_LOAD_ADDR; 176 *kernel_entry = KERNEL_LOAD_ADDR; 177 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, 178 RAM_size - KERNEL_LOAD_ADDR, bswap_needed, 179 TARGET_PAGE_SIZE); 180 } 181 if (kernel_size < 0) { 182 kernel_size = load_image_targphys(kernel_filename, 183 KERNEL_LOAD_ADDR, 184 RAM_size - KERNEL_LOAD_ADDR); 185 } 186 if (kernel_size < 0) { 187 fprintf(stderr, "qemu: could not load kernel '%s'\n", 188 kernel_filename); 189 exit(1); 190 } 191 /* load initrd above kernel */ 192 *initrd_size = 0; 193 if (initrd_filename) { 194 *initrd_addr = TARGET_PAGE_ALIGN(kernel_top); 195 196 *initrd_size = load_image_targphys(initrd_filename, 197 *initrd_addr, 198 RAM_size - *initrd_addr); 199 if ((int)*initrd_size < 0) { 200 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 201 initrd_filename); 202 exit(1); 203 } 204 } 205 if (*initrd_size > 0) { 206 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { 207 ptr = rom_ptr(*kernel_addr + i); 208 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */ 209 stl_p(ptr + 24, *initrd_addr + *kernel_addr); 210 stl_p(ptr + 28, *initrd_size); 211 break; 212 } 213 } 214 } 215 } 216 return kernel_size; 217 } 218 219 void cpu_check_irqs(CPUSPARCState *env) 220 { 221 CPUState *cs; 222 uint32_t pil = env->pil_in | 223 (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER)); 224 225 /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */ 226 if (env->ivec_status & 0x20) { 227 return; 228 } 229 cs = CPU(sparc_env_get_cpu(env)); 230 /* check if TM or SM in SOFTINT are set 231 setting these also causes interrupt 14 */ 232 if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) { 233 pil |= 1 << 14; 234 } 235 236 /* The bit corresponding to psrpil is (1<< psrpil), the next bit 237 is (2 << psrpil). */ 238 if (pil < (2 << env->psrpil)){ 239 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 240 CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n", 241 env->interrupt_index); 242 env->interrupt_index = 0; 243 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 244 } 245 return; 246 } 247 248 if (cpu_interrupts_enabled(env)) { 249 250 unsigned int i; 251 252 for (i = 15; i > env->psrpil; i--) { 253 if (pil & (1 << i)) { 254 int old_interrupt = env->interrupt_index; 255 int new_interrupt = TT_EXTINT | i; 256 257 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt 258 && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) { 259 CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d " 260 "current %x >= pending %x\n", 261 env->tl, cpu_tsptr(env)->tt, new_interrupt); 262 } else if (old_interrupt != new_interrupt) { 263 env->interrupt_index = new_interrupt; 264 CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i, 265 old_interrupt, new_interrupt); 266 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 267 } 268 break; 269 } 270 } 271 } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 272 CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x " 273 "current interrupt %x\n", 274 pil, env->pil_in, env->softint, env->interrupt_index); 275 env->interrupt_index = 0; 276 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 277 } 278 } 279 280 static void cpu_kick_irq(SPARCCPU *cpu) 281 { 282 CPUState *cs = CPU(cpu); 283 CPUSPARCState *env = &cpu->env; 284 285 cs->halted = 0; 286 cpu_check_irqs(env); 287 qemu_cpu_kick(cs); 288 } 289 290 static void cpu_set_ivec_irq(void *opaque, int irq, int level) 291 { 292 SPARCCPU *cpu = opaque; 293 CPUSPARCState *env = &cpu->env; 294 CPUState *cs; 295 296 if (level) { 297 if (!(env->ivec_status & 0x20)) { 298 CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq); 299 cs = CPU(cpu); 300 cs->halted = 0; 301 env->interrupt_index = TT_IVEC; 302 env->ivec_status |= 0x20; 303 env->ivec_data[0] = (0x1f << 6) | irq; 304 env->ivec_data[1] = 0; 305 env->ivec_data[2] = 0; 306 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 307 } 308 } else { 309 if (env->ivec_status & 0x20) { 310 CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq); 311 cs = CPU(cpu); 312 env->ivec_status &= ~0x20; 313 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 314 } 315 } 316 } 317 318 typedef struct ResetData { 319 SPARCCPU *cpu; 320 uint64_t prom_addr; 321 } ResetData; 322 323 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu, 324 QEMUBHFunc *cb, uint32_t frequency, 325 uint64_t disabled_mask, uint64_t npt_mask) 326 { 327 CPUTimer *timer = g_malloc0(sizeof (CPUTimer)); 328 329 timer->name = name; 330 timer->frequency = frequency; 331 timer->disabled_mask = disabled_mask; 332 timer->npt_mask = npt_mask; 333 334 timer->disabled = 1; 335 timer->npt = 1; 336 timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 337 338 timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu); 339 340 return timer; 341 } 342 343 static void cpu_timer_reset(CPUTimer *timer) 344 { 345 timer->disabled = 1; 346 timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 347 348 timer_del(timer->qtimer); 349 } 350 351 static void main_cpu_reset(void *opaque) 352 { 353 ResetData *s = (ResetData *)opaque; 354 CPUSPARCState *env = &s->cpu->env; 355 static unsigned int nr_resets; 356 357 cpu_reset(CPU(s->cpu)); 358 359 cpu_timer_reset(env->tick); 360 cpu_timer_reset(env->stick); 361 cpu_timer_reset(env->hstick); 362 363 env->gregs[1] = 0; // Memory start 364 env->gregs[2] = ram_size; // Memory size 365 env->gregs[3] = 0; // Machine description XXX 366 if (nr_resets++ == 0) { 367 /* Power on reset */ 368 env->pc = s->prom_addr + 0x20ULL; 369 } else { 370 env->pc = s->prom_addr + 0x40ULL; 371 } 372 env->npc = env->pc + 4; 373 } 374 375 static void tick_irq(void *opaque) 376 { 377 SPARCCPU *cpu = opaque; 378 CPUSPARCState *env = &cpu->env; 379 380 CPUTimer* timer = env->tick; 381 382 if (timer->disabled) { 383 CPUIRQ_DPRINTF("tick_irq: softint disabled\n"); 384 return; 385 } else { 386 CPUIRQ_DPRINTF("tick: fire\n"); 387 } 388 389 env->softint |= SOFTINT_TIMER; 390 cpu_kick_irq(cpu); 391 } 392 393 static void stick_irq(void *opaque) 394 { 395 SPARCCPU *cpu = opaque; 396 CPUSPARCState *env = &cpu->env; 397 398 CPUTimer* timer = env->stick; 399 400 if (timer->disabled) { 401 CPUIRQ_DPRINTF("stick_irq: softint disabled\n"); 402 return; 403 } else { 404 CPUIRQ_DPRINTF("stick: fire\n"); 405 } 406 407 env->softint |= SOFTINT_STIMER; 408 cpu_kick_irq(cpu); 409 } 410 411 static void hstick_irq(void *opaque) 412 { 413 SPARCCPU *cpu = opaque; 414 CPUSPARCState *env = &cpu->env; 415 416 CPUTimer* timer = env->hstick; 417 418 if (timer->disabled) { 419 CPUIRQ_DPRINTF("hstick_irq: softint disabled\n"); 420 return; 421 } else { 422 CPUIRQ_DPRINTF("hstick: fire\n"); 423 } 424 425 env->softint |= SOFTINT_STIMER; 426 cpu_kick_irq(cpu); 427 } 428 429 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency) 430 { 431 return muldiv64(cpu_ticks, NANOSECONDS_PER_SECOND, frequency); 432 } 433 434 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency) 435 { 436 return muldiv64(timer_ticks, frequency, NANOSECONDS_PER_SECOND); 437 } 438 439 void cpu_tick_set_count(CPUTimer *timer, uint64_t count) 440 { 441 uint64_t real_count = count & ~timer->npt_mask; 442 uint64_t npt_bit = count & timer->npt_mask; 443 444 int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - 445 cpu_to_timer_ticks(real_count, timer->frequency); 446 447 TIMER_DPRINTF("%s set_count count=0x%016lx (npt %s) p=%p\n", 448 timer->name, real_count, 449 timer->npt ? "disabled" : "enabled", timer); 450 451 timer->npt = npt_bit ? 1 : 0; 452 timer->clock_offset = vm_clock_offset; 453 } 454 455 uint64_t cpu_tick_get_count(CPUTimer *timer) 456 { 457 uint64_t real_count = timer_to_cpu_ticks( 458 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset, 459 timer->frequency); 460 461 TIMER_DPRINTF("%s get_count count=0x%016lx (npt %s) p=%p\n", 462 timer->name, real_count, 463 timer->npt ? "disabled" : "enabled", timer); 464 465 if (timer->npt) { 466 real_count |= timer->npt_mask; 467 } 468 469 return real_count; 470 } 471 472 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit) 473 { 474 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 475 476 uint64_t real_limit = limit & ~timer->disabled_mask; 477 timer->disabled = (limit & timer->disabled_mask) ? 1 : 0; 478 479 int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) + 480 timer->clock_offset; 481 482 if (expires < now) { 483 expires = now + 1; 484 } 485 486 TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p " 487 "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n", 488 timer->name, real_limit, 489 timer->disabled?"disabled":"enabled", 490 timer, limit, 491 timer_to_cpu_ticks(now - timer->clock_offset, 492 timer->frequency), 493 timer_to_cpu_ticks(expires - now, timer->frequency)); 494 495 if (!real_limit) { 496 TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n", 497 timer->name); 498 timer_del(timer->qtimer); 499 } else if (timer->disabled) { 500 timer_del(timer->qtimer); 501 } else { 502 timer_mod(timer->qtimer, expires); 503 } 504 } 505 506 static void isa_irq_handler(void *opaque, int n, int level) 507 { 508 static const int isa_irq_to_ivec[16] = { 509 [1] = 0x29, /* keyboard */ 510 [4] = 0x2b, /* serial */ 511 [6] = 0x27, /* floppy */ 512 [7] = 0x22, /* parallel */ 513 [12] = 0x2a, /* mouse */ 514 }; 515 qemu_irq *irqs = opaque; 516 int ivec; 517 518 assert(n < 16); 519 ivec = isa_irq_to_ivec[n]; 520 EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec); 521 if (ivec) { 522 qemu_set_irq(irqs[ivec], level); 523 } 524 } 525 526 /* EBUS (Eight bit bus) bridge */ 527 static ISABus * 528 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs) 529 { 530 qemu_irq *isa_irq; 531 PCIDevice *pci_dev; 532 ISABus *isa_bus; 533 534 pci_dev = pci_create_simple(bus, devfn, "ebus"); 535 isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci_dev), "isa.0")); 536 isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16); 537 isa_bus_irqs(isa_bus, isa_irq); 538 return isa_bus; 539 } 540 541 static void pci_ebus_realize(PCIDevice *pci_dev, Error **errp) 542 { 543 EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev); 544 545 if (!isa_bus_new(DEVICE(pci_dev), get_system_memory(), 546 pci_address_space_io(pci_dev), errp)) { 547 return; 548 } 549 550 pci_dev->config[0x04] = 0x06; // command = bus master, pci mem 551 pci_dev->config[0x05] = 0x00; 552 pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error 553 pci_dev->config[0x07] = 0x03; // status = medium devsel 554 pci_dev->config[0x09] = 0x00; // programming i/f 555 pci_dev->config[0x0D] = 0x0a; // latency_timer 556 557 memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(), 558 0, 0x1000000); 559 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0); 560 memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(), 561 0, 0x4000); 562 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1); 563 } 564 565 static void ebus_class_init(ObjectClass *klass, void *data) 566 { 567 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 568 569 k->realize = pci_ebus_realize; 570 k->vendor_id = PCI_VENDOR_ID_SUN; 571 k->device_id = PCI_DEVICE_ID_SUN_EBUS; 572 k->revision = 0x01; 573 k->class_id = PCI_CLASS_BRIDGE_OTHER; 574 } 575 576 static const TypeInfo ebus_info = { 577 .name = "ebus", 578 .parent = TYPE_PCI_DEVICE, 579 .instance_size = sizeof(EbusState), 580 .class_init = ebus_class_init, 581 }; 582 583 #define TYPE_OPENPROM "openprom" 584 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM) 585 586 typedef struct PROMState { 587 SysBusDevice parent_obj; 588 589 MemoryRegion prom; 590 } PROMState; 591 592 static uint64_t translate_prom_address(void *opaque, uint64_t addr) 593 { 594 hwaddr *base_addr = (hwaddr *)opaque; 595 return addr + *base_addr - PROM_VADDR; 596 } 597 598 /* Boot PROM (OpenBIOS) */ 599 static void prom_init(hwaddr addr, const char *bios_name) 600 { 601 DeviceState *dev; 602 SysBusDevice *s; 603 char *filename; 604 int ret; 605 606 dev = qdev_create(NULL, TYPE_OPENPROM); 607 qdev_init_nofail(dev); 608 s = SYS_BUS_DEVICE(dev); 609 610 sysbus_mmio_map(s, 0, addr); 611 612 /* load boot prom */ 613 if (bios_name == NULL) { 614 bios_name = PROM_FILENAME; 615 } 616 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 617 if (filename) { 618 ret = load_elf(filename, translate_prom_address, &addr, 619 NULL, NULL, NULL, 1, EM_SPARCV9, 0, 0); 620 if (ret < 0 || ret > PROM_SIZE_MAX) { 621 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX); 622 } 623 g_free(filename); 624 } else { 625 ret = -1; 626 } 627 if (ret < 0 || ret > PROM_SIZE_MAX) { 628 fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name); 629 exit(1); 630 } 631 } 632 633 static int prom_init1(SysBusDevice *dev) 634 { 635 PROMState *s = OPENPROM(dev); 636 637 memory_region_init_ram(&s->prom, OBJECT(s), "sun4u.prom", PROM_SIZE_MAX, 638 &error_fatal); 639 vmstate_register_ram_global(&s->prom); 640 memory_region_set_readonly(&s->prom, true); 641 sysbus_init_mmio(dev, &s->prom); 642 return 0; 643 } 644 645 static Property prom_properties[] = { 646 {/* end of property list */}, 647 }; 648 649 static void prom_class_init(ObjectClass *klass, void *data) 650 { 651 DeviceClass *dc = DEVICE_CLASS(klass); 652 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 653 654 k->init = prom_init1; 655 dc->props = prom_properties; 656 } 657 658 static const TypeInfo prom_info = { 659 .name = TYPE_OPENPROM, 660 .parent = TYPE_SYS_BUS_DEVICE, 661 .instance_size = sizeof(PROMState), 662 .class_init = prom_class_init, 663 }; 664 665 666 #define TYPE_SUN4U_MEMORY "memory" 667 #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY) 668 669 typedef struct RamDevice { 670 SysBusDevice parent_obj; 671 672 MemoryRegion ram; 673 uint64_t size; 674 } RamDevice; 675 676 /* System RAM */ 677 static int ram_init1(SysBusDevice *dev) 678 { 679 RamDevice *d = SUN4U_RAM(dev); 680 681 memory_region_init_ram(&d->ram, OBJECT(d), "sun4u.ram", d->size, 682 &error_fatal); 683 vmstate_register_ram_global(&d->ram); 684 sysbus_init_mmio(dev, &d->ram); 685 return 0; 686 } 687 688 static void ram_init(hwaddr addr, ram_addr_t RAM_size) 689 { 690 DeviceState *dev; 691 SysBusDevice *s; 692 RamDevice *d; 693 694 /* allocate RAM */ 695 dev = qdev_create(NULL, TYPE_SUN4U_MEMORY); 696 s = SYS_BUS_DEVICE(dev); 697 698 d = SUN4U_RAM(dev); 699 d->size = RAM_size; 700 qdev_init_nofail(dev); 701 702 sysbus_mmio_map(s, 0, addr); 703 } 704 705 static Property ram_properties[] = { 706 DEFINE_PROP_UINT64("size", RamDevice, size, 0), 707 DEFINE_PROP_END_OF_LIST(), 708 }; 709 710 static void ram_class_init(ObjectClass *klass, void *data) 711 { 712 DeviceClass *dc = DEVICE_CLASS(klass); 713 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 714 715 k->init = ram_init1; 716 dc->props = ram_properties; 717 } 718 719 static const TypeInfo ram_info = { 720 .name = TYPE_SUN4U_MEMORY, 721 .parent = TYPE_SYS_BUS_DEVICE, 722 .instance_size = sizeof(RamDevice), 723 .class_init = ram_class_init, 724 }; 725 726 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef) 727 { 728 SPARCCPU *cpu; 729 CPUSPARCState *env; 730 ResetData *reset_info; 731 732 uint32_t tick_frequency = 100*1000000; 733 uint32_t stick_frequency = 100*1000000; 734 uint32_t hstick_frequency = 100*1000000; 735 736 if (cpu_model == NULL) { 737 cpu_model = hwdef->default_cpu_model; 738 } 739 cpu = cpu_sparc_init(cpu_model); 740 if (cpu == NULL) { 741 fprintf(stderr, "Unable to find Sparc CPU definition\n"); 742 exit(1); 743 } 744 env = &cpu->env; 745 746 env->tick = cpu_timer_create("tick", cpu, tick_irq, 747 tick_frequency, TICK_INT_DIS, 748 TICK_NPT_MASK); 749 750 env->stick = cpu_timer_create("stick", cpu, stick_irq, 751 stick_frequency, TICK_INT_DIS, 752 TICK_NPT_MASK); 753 754 env->hstick = cpu_timer_create("hstick", cpu, hstick_irq, 755 hstick_frequency, TICK_INT_DIS, 756 TICK_NPT_MASK); 757 758 reset_info = g_malloc0(sizeof(ResetData)); 759 reset_info->cpu = cpu; 760 reset_info->prom_addr = hwdef->prom_addr; 761 qemu_register_reset(main_cpu_reset, reset_info); 762 763 return cpu; 764 } 765 766 static void sun4uv_init(MemoryRegion *address_space_mem, 767 MachineState *machine, 768 const struct hwdef *hwdef) 769 { 770 SPARCCPU *cpu; 771 Nvram *nvram; 772 unsigned int i; 773 uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry; 774 PCIBus *pci_bus, *pci_bus2, *pci_bus3; 775 ISABus *isa_bus; 776 SysBusDevice *s; 777 qemu_irq *ivec_irqs, *pbm_irqs; 778 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; 779 DriveInfo *fd[MAX_FD]; 780 DeviceState *dev; 781 FWCfgState *fw_cfg; 782 783 /* init CPUs */ 784 cpu = cpu_devinit(machine->cpu_model, hwdef); 785 786 /* set up devices */ 787 ram_init(0, machine->ram_size); 788 789 prom_init(hwdef->prom_addr, bios_name); 790 791 ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX); 792 pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2, 793 &pci_bus3, &pbm_irqs); 794 pci_vga_init(pci_bus); 795 796 // XXX Should be pci_bus3 797 isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs); 798 799 i = 0; 800 if (hwdef->console_serial_base) { 801 serial_mm_init(address_space_mem, hwdef->console_serial_base, 0, 802 NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN); 803 i++; 804 } 805 806 serial_hds_isa_init(isa_bus, i, MAX_SERIAL_PORTS); 807 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 808 809 for(i = 0; i < nb_nics; i++) 810 pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL); 811 812 ide_drive_get(hd, ARRAY_SIZE(hd)); 813 814 pci_cmd646_ide_init(pci_bus, hd, 1); 815 816 isa_create_simple(isa_bus, "i8042"); 817 818 /* Floppy */ 819 for(i = 0; i < MAX_FD; i++) { 820 fd[i] = drive_get(IF_FLOPPY, 0, i); 821 } 822 dev = DEVICE(isa_create(isa_bus, TYPE_ISA_FDC)); 823 if (fd[0]) { 824 qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fd[0]), 825 &error_abort); 826 } 827 if (fd[1]) { 828 qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fd[1]), 829 &error_abort); 830 } 831 qdev_prop_set_uint32(dev, "dma", -1); 832 qdev_init_nofail(dev); 833 834 /* Map NVRAM into I/O (ebus) space */ 835 nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59); 836 s = SYS_BUS_DEVICE(nvram); 837 memory_region_add_subregion(get_system_io(), 0x2000, 838 sysbus_mmio_get_region(s, 0)); 839 840 initrd_size = 0; 841 initrd_addr = 0; 842 kernel_size = sun4u_load_kernel(machine->kernel_filename, 843 machine->initrd_filename, 844 ram_size, &initrd_size, &initrd_addr, 845 &kernel_addr, &kernel_entry); 846 847 sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size, 848 machine->boot_order, 849 kernel_addr, kernel_size, 850 machine->kernel_cmdline, 851 initrd_addr, initrd_size, 852 /* XXX: need an option to load a NVRAM image */ 853 0, 854 graphic_width, graphic_height, graphic_depth, 855 (uint8_t *)&nd_table[0].macaddr); 856 857 fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT); 858 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 859 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); 860 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 861 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); 862 fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry); 863 fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 864 if (machine->kernel_cmdline) { 865 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 866 strlen(machine->kernel_cmdline) + 1); 867 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline); 868 } else { 869 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); 870 } 871 fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 872 fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 873 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]); 874 875 fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width); 876 fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height); 877 fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth); 878 879 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); 880 } 881 882 enum { 883 sun4u_id = 0, 884 sun4v_id = 64, 885 niagara_id, 886 }; 887 888 static const struct hwdef hwdefs[] = { 889 /* Sun4u generic PC-like machine */ 890 { 891 .default_cpu_model = "TI UltraSparc IIi", 892 .machine_id = sun4u_id, 893 .prom_addr = 0x1fff0000000ULL, 894 .console_serial_base = 0, 895 }, 896 /* Sun4v generic PC-like machine */ 897 { 898 .default_cpu_model = "Sun UltraSparc T1", 899 .machine_id = sun4v_id, 900 .prom_addr = 0x1fff0000000ULL, 901 .console_serial_base = 0, 902 }, 903 /* Sun4v generic Niagara machine */ 904 { 905 .default_cpu_model = "Sun UltraSparc T1", 906 .machine_id = niagara_id, 907 .prom_addr = 0xfff0000000ULL, 908 .console_serial_base = 0xfff0c2c000ULL, 909 }, 910 }; 911 912 /* Sun4u hardware initialisation */ 913 static void sun4u_init(MachineState *machine) 914 { 915 sun4uv_init(get_system_memory(), machine, &hwdefs[0]); 916 } 917 918 /* Sun4v hardware initialisation */ 919 static void sun4v_init(MachineState *machine) 920 { 921 sun4uv_init(get_system_memory(), machine, &hwdefs[1]); 922 } 923 924 /* Niagara hardware initialisation */ 925 static void niagara_init(MachineState *machine) 926 { 927 sun4uv_init(get_system_memory(), machine, &hwdefs[2]); 928 } 929 930 static void sun4u_class_init(ObjectClass *oc, void *data) 931 { 932 MachineClass *mc = MACHINE_CLASS(oc); 933 934 mc->desc = "Sun4u platform"; 935 mc->init = sun4u_init; 936 mc->max_cpus = 1; /* XXX for now */ 937 mc->is_default = 1; 938 mc->default_boot_order = "c"; 939 } 940 941 static const TypeInfo sun4u_type = { 942 .name = MACHINE_TYPE_NAME("sun4u"), 943 .parent = TYPE_MACHINE, 944 .class_init = sun4u_class_init, 945 }; 946 947 static void sun4v_class_init(ObjectClass *oc, void *data) 948 { 949 MachineClass *mc = MACHINE_CLASS(oc); 950 951 mc->desc = "Sun4v platform"; 952 mc->init = sun4v_init; 953 mc->max_cpus = 1; /* XXX for now */ 954 mc->default_boot_order = "c"; 955 } 956 957 static const TypeInfo sun4v_type = { 958 .name = MACHINE_TYPE_NAME("sun4v"), 959 .parent = TYPE_MACHINE, 960 .class_init = sun4v_class_init, 961 }; 962 963 static void niagara_class_init(ObjectClass *oc, void *data) 964 { 965 MachineClass *mc = MACHINE_CLASS(oc); 966 967 mc->desc = "Sun4v platform, Niagara"; 968 mc->init = niagara_init; 969 mc->max_cpus = 1; /* XXX for now */ 970 mc->default_boot_order = "c"; 971 } 972 973 static const TypeInfo niagara_type = { 974 .name = MACHINE_TYPE_NAME("Niagara"), 975 .parent = TYPE_MACHINE, 976 .class_init = niagara_class_init, 977 }; 978 979 static void sun4u_register_types(void) 980 { 981 type_register_static(&ebus_info); 982 type_register_static(&prom_info); 983 type_register_static(&ram_info); 984 985 type_register_static(&sun4u_type); 986 type_register_static(&sun4v_type); 987 type_register_static(&niagara_type); 988 } 989 990 type_init(sun4u_register_types) 991