xref: /openbmc/qemu/hw/sparc64/sun4u.c (revision e913cac71bac85438b7199711ac3290cb593701a)
1 /*
2  * QEMU Sun4u/Sun4v System Emulator
3  *
4  * Copyright (c) 2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/pci/pci.h"
26 #include "hw/pci-host/apb.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/timer/m48t59.h"
30 #include "hw/block/fdc.h"
31 #include "net/net.h"
32 #include "qemu/timer.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/boards.h"
35 #include "hw/nvram/openbios_firmware_abi.h"
36 #include "hw/nvram/fw_cfg.h"
37 #include "hw/sysbus.h"
38 #include "hw/ide.h"
39 #include "hw/loader.h"
40 #include "elf.h"
41 #include "sysemu/block-backend.h"
42 #include "exec/address-spaces.h"
43 
44 //#define DEBUG_IRQ
45 //#define DEBUG_EBUS
46 //#define DEBUG_TIMER
47 
48 #ifdef DEBUG_IRQ
49 #define CPUIRQ_DPRINTF(fmt, ...)                                \
50     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
51 #else
52 #define CPUIRQ_DPRINTF(fmt, ...)
53 #endif
54 
55 #ifdef DEBUG_EBUS
56 #define EBUS_DPRINTF(fmt, ...)                                  \
57     do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
58 #else
59 #define EBUS_DPRINTF(fmt, ...)
60 #endif
61 
62 #ifdef DEBUG_TIMER
63 #define TIMER_DPRINTF(fmt, ...)                                  \
64     do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define TIMER_DPRINTF(fmt, ...)
67 #endif
68 
69 #define KERNEL_LOAD_ADDR     0x00404000
70 #define CMDLINE_ADDR         0x003ff000
71 #define PROM_SIZE_MAX        (4 * 1024 * 1024)
72 #define PROM_VADDR           0x000ffd00000ULL
73 #define APB_SPECIAL_BASE     0x1fe00000000ULL
74 #define APB_MEM_BASE         0x1ff00000000ULL
75 #define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
76 #define PROM_FILENAME        "openbios-sparc64"
77 #define NVRAM_SIZE           0x2000
78 #define MAX_IDE_BUS          2
79 #define BIOS_CFG_IOPORT      0x510
80 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
81 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
82 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
83 
84 #define IVEC_MAX             0x40
85 
86 #define TICK_MAX             0x7fffffffffffffffULL
87 
88 struct hwdef {
89     const char * const default_cpu_model;
90     uint16_t machine_id;
91     uint64_t prom_addr;
92     uint64_t console_serial_base;
93 };
94 
95 typedef struct EbusState {
96     PCIDevice pci_dev;
97     MemoryRegion bar0;
98     MemoryRegion bar1;
99 } EbusState;
100 
101 int DMA_get_channel_mode (int nchan)
102 {
103     return 0;
104 }
105 int DMA_read_memory (int nchan, void *buf, int pos, int size)
106 {
107     return 0;
108 }
109 int DMA_write_memory (int nchan, void *buf, int pos, int size)
110 {
111     return 0;
112 }
113 void DMA_hold_DREQ (int nchan) {}
114 void DMA_release_DREQ (int nchan) {}
115 void DMA_schedule(void) {}
116 
117 void DMA_init(int high_page_enable)
118 {
119 }
120 
121 void DMA_register_channel (int nchan,
122                            DMA_transfer_handler transfer_handler,
123                            void *opaque)
124 {
125 }
126 
127 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
128                             Error **errp)
129 {
130     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
131 }
132 
133 static int sun4u_NVRAM_set_params(Nvram *nvram, uint16_t NVRAM_size,
134                                   const char *arch, ram_addr_t RAM_size,
135                                   const char *boot_devices,
136                                   uint32_t kernel_image, uint32_t kernel_size,
137                                   const char *cmdline,
138                                   uint32_t initrd_image, uint32_t initrd_size,
139                                   uint32_t NVRAM_image,
140                                   int width, int height, int depth,
141                                   const uint8_t *macaddr)
142 {
143     unsigned int i;
144     uint32_t start, end;
145     uint8_t image[0x1ff0];
146     struct OpenBIOS_nvpart_v1 *part_header;
147     NvramClass *k = NVRAM_GET_CLASS(nvram);
148 
149     memset(image, '\0', sizeof(image));
150 
151     start = 0;
152 
153     // OpenBIOS nvram variables
154     // Variable partition
155     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
156     part_header->signature = OPENBIOS_PART_SYSTEM;
157     pstrcpy(part_header->name, sizeof(part_header->name), "system");
158 
159     end = start + sizeof(struct OpenBIOS_nvpart_v1);
160     for (i = 0; i < nb_prom_envs; i++)
161         end = OpenBIOS_set_var(image, end, prom_envs[i]);
162 
163     // End marker
164     image[end++] = '\0';
165 
166     end = start + ((end - start + 15) & ~15);
167     OpenBIOS_finish_partition(part_header, end - start);
168 
169     // free partition
170     start = end;
171     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
172     part_header->signature = OPENBIOS_PART_FREE;
173     pstrcpy(part_header->name, sizeof(part_header->name), "free");
174 
175     end = 0x1fd0;
176     OpenBIOS_finish_partition(part_header, end - start);
177 
178     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
179 
180     for (i = 0; i < sizeof(image); i++) {
181         (k->write)(nvram, i, image[i]);
182     }
183 
184     return 0;
185 }
186 
187 static uint64_t sun4u_load_kernel(const char *kernel_filename,
188                                   const char *initrd_filename,
189                                   ram_addr_t RAM_size, uint64_t *initrd_size,
190                                   uint64_t *initrd_addr, uint64_t *kernel_addr,
191                                   uint64_t *kernel_entry)
192 {
193     int linux_boot;
194     unsigned int i;
195     long kernel_size;
196     uint8_t *ptr;
197     uint64_t kernel_top;
198 
199     linux_boot = (kernel_filename != NULL);
200 
201     kernel_size = 0;
202     if (linux_boot) {
203         int bswap_needed;
204 
205 #ifdef BSWAP_NEEDED
206         bswap_needed = 1;
207 #else
208         bswap_needed = 0;
209 #endif
210         kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry,
211                                kernel_addr, &kernel_top, 1, EM_SPARCV9, 0);
212         if (kernel_size < 0) {
213             *kernel_addr = KERNEL_LOAD_ADDR;
214             *kernel_entry = KERNEL_LOAD_ADDR;
215             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
216                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
217                                     TARGET_PAGE_SIZE);
218         }
219         if (kernel_size < 0) {
220             kernel_size = load_image_targphys(kernel_filename,
221                                               KERNEL_LOAD_ADDR,
222                                               RAM_size - KERNEL_LOAD_ADDR);
223         }
224         if (kernel_size < 0) {
225             fprintf(stderr, "qemu: could not load kernel '%s'\n",
226                     kernel_filename);
227             exit(1);
228         }
229         /* load initrd above kernel */
230         *initrd_size = 0;
231         if (initrd_filename) {
232             *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
233 
234             *initrd_size = load_image_targphys(initrd_filename,
235                                                *initrd_addr,
236                                                RAM_size - *initrd_addr);
237             if ((int)*initrd_size < 0) {
238                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
239                         initrd_filename);
240                 exit(1);
241             }
242         }
243         if (*initrd_size > 0) {
244             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
245                 ptr = rom_ptr(*kernel_addr + i);
246                 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
247                     stl_p(ptr + 24, *initrd_addr + *kernel_addr);
248                     stl_p(ptr + 28, *initrd_size);
249                     break;
250                 }
251             }
252         }
253     }
254     return kernel_size;
255 }
256 
257 void cpu_check_irqs(CPUSPARCState *env)
258 {
259     CPUState *cs;
260     uint32_t pil = env->pil_in |
261                   (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
262 
263     /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
264     if (env->ivec_status & 0x20) {
265         return;
266     }
267     cs = CPU(sparc_env_get_cpu(env));
268     /* check if TM or SM in SOFTINT are set
269        setting these also causes interrupt 14 */
270     if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
271         pil |= 1 << 14;
272     }
273 
274     /* The bit corresponding to psrpil is (1<< psrpil), the next bit
275        is (2 << psrpil). */
276     if (pil < (2 << env->psrpil)){
277         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
278             CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
279                            env->interrupt_index);
280             env->interrupt_index = 0;
281             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
282         }
283         return;
284     }
285 
286     if (cpu_interrupts_enabled(env)) {
287 
288         unsigned int i;
289 
290         for (i = 15; i > env->psrpil; i--) {
291             if (pil & (1 << i)) {
292                 int old_interrupt = env->interrupt_index;
293                 int new_interrupt = TT_EXTINT | i;
294 
295                 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
296                   && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
297                     CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
298                                    "current %x >= pending %x\n",
299                                    env->tl, cpu_tsptr(env)->tt, new_interrupt);
300                 } else if (old_interrupt != new_interrupt) {
301                     env->interrupt_index = new_interrupt;
302                     CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
303                                    old_interrupt, new_interrupt);
304                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
305                 }
306                 break;
307             }
308         }
309     } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
310         CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
311                        "current interrupt %x\n",
312                        pil, env->pil_in, env->softint, env->interrupt_index);
313         env->interrupt_index = 0;
314         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
315     }
316 }
317 
318 static void cpu_kick_irq(SPARCCPU *cpu)
319 {
320     CPUState *cs = CPU(cpu);
321     CPUSPARCState *env = &cpu->env;
322 
323     cs->halted = 0;
324     cpu_check_irqs(env);
325     qemu_cpu_kick(cs);
326 }
327 
328 static void cpu_set_ivec_irq(void *opaque, int irq, int level)
329 {
330     SPARCCPU *cpu = opaque;
331     CPUSPARCState *env = &cpu->env;
332     CPUState *cs;
333 
334     if (level) {
335         if (!(env->ivec_status & 0x20)) {
336             CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
337             cs = CPU(cpu);
338             cs->halted = 0;
339             env->interrupt_index = TT_IVEC;
340             env->ivec_status |= 0x20;
341             env->ivec_data[0] = (0x1f << 6) | irq;
342             env->ivec_data[1] = 0;
343             env->ivec_data[2] = 0;
344             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
345         }
346     } else {
347         if (env->ivec_status & 0x20) {
348             CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
349             cs = CPU(cpu);
350             env->ivec_status &= ~0x20;
351             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
352         }
353     }
354 }
355 
356 typedef struct ResetData {
357     SPARCCPU *cpu;
358     uint64_t prom_addr;
359 } ResetData;
360 
361 void cpu_put_timer(QEMUFile *f, CPUTimer *s)
362 {
363     qemu_put_be32s(f, &s->frequency);
364     qemu_put_be32s(f, &s->disabled);
365     qemu_put_be64s(f, &s->disabled_mask);
366     qemu_put_be32s(f, &s->npt);
367     qemu_put_be64s(f, &s->npt_mask);
368     qemu_put_sbe64s(f, &s->clock_offset);
369 
370     timer_put(f, s->qtimer);
371 }
372 
373 void cpu_get_timer(QEMUFile *f, CPUTimer *s)
374 {
375     qemu_get_be32s(f, &s->frequency);
376     qemu_get_be32s(f, &s->disabled);
377     qemu_get_be64s(f, &s->disabled_mask);
378     qemu_get_be32s(f, &s->npt);
379     qemu_get_be64s(f, &s->npt_mask);
380     qemu_get_sbe64s(f, &s->clock_offset);
381 
382     timer_get(f, s->qtimer);
383 }
384 
385 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
386                                   QEMUBHFunc *cb, uint32_t frequency,
387                                   uint64_t disabled_mask, uint64_t npt_mask)
388 {
389     CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
390 
391     timer->name = name;
392     timer->frequency = frequency;
393     timer->disabled_mask = disabled_mask;
394     timer->npt_mask = npt_mask;
395 
396     timer->disabled = 1;
397     timer->npt = 1;
398     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
399 
400     timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu);
401 
402     return timer;
403 }
404 
405 static void cpu_timer_reset(CPUTimer *timer)
406 {
407     timer->disabled = 1;
408     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
409 
410     timer_del(timer->qtimer);
411 }
412 
413 static void main_cpu_reset(void *opaque)
414 {
415     ResetData *s = (ResetData *)opaque;
416     CPUSPARCState *env = &s->cpu->env;
417     static unsigned int nr_resets;
418 
419     cpu_reset(CPU(s->cpu));
420 
421     cpu_timer_reset(env->tick);
422     cpu_timer_reset(env->stick);
423     cpu_timer_reset(env->hstick);
424 
425     env->gregs[1] = 0; // Memory start
426     env->gregs[2] = ram_size; // Memory size
427     env->gregs[3] = 0; // Machine description XXX
428     if (nr_resets++ == 0) {
429         /* Power on reset */
430         env->pc = s->prom_addr + 0x20ULL;
431     } else {
432         env->pc = s->prom_addr + 0x40ULL;
433     }
434     env->npc = env->pc + 4;
435 }
436 
437 static void tick_irq(void *opaque)
438 {
439     SPARCCPU *cpu = opaque;
440     CPUSPARCState *env = &cpu->env;
441 
442     CPUTimer* timer = env->tick;
443 
444     if (timer->disabled) {
445         CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
446         return;
447     } else {
448         CPUIRQ_DPRINTF("tick: fire\n");
449     }
450 
451     env->softint |= SOFTINT_TIMER;
452     cpu_kick_irq(cpu);
453 }
454 
455 static void stick_irq(void *opaque)
456 {
457     SPARCCPU *cpu = opaque;
458     CPUSPARCState *env = &cpu->env;
459 
460     CPUTimer* timer = env->stick;
461 
462     if (timer->disabled) {
463         CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
464         return;
465     } else {
466         CPUIRQ_DPRINTF("stick: fire\n");
467     }
468 
469     env->softint |= SOFTINT_STIMER;
470     cpu_kick_irq(cpu);
471 }
472 
473 static void hstick_irq(void *opaque)
474 {
475     SPARCCPU *cpu = opaque;
476     CPUSPARCState *env = &cpu->env;
477 
478     CPUTimer* timer = env->hstick;
479 
480     if (timer->disabled) {
481         CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
482         return;
483     } else {
484         CPUIRQ_DPRINTF("hstick: fire\n");
485     }
486 
487     env->softint |= SOFTINT_STIMER;
488     cpu_kick_irq(cpu);
489 }
490 
491 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
492 {
493     return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
494 }
495 
496 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
497 {
498     return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
499 }
500 
501 void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
502 {
503     uint64_t real_count = count & ~timer->disabled_mask;
504     uint64_t disabled_bit = count & timer->disabled_mask;
505 
506     int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
507                     cpu_to_timer_ticks(real_count, timer->frequency);
508 
509     TIMER_DPRINTF("%s set_count count=0x%016lx (%s) p=%p\n",
510                   timer->name, real_count,
511                   timer->disabled?"disabled":"enabled", timer);
512 
513     timer->disabled = disabled_bit ? 1 : 0;
514     timer->clock_offset = vm_clock_offset;
515 }
516 
517 uint64_t cpu_tick_get_count(CPUTimer *timer)
518 {
519     uint64_t real_count = timer_to_cpu_ticks(
520                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset,
521                     timer->frequency);
522 
523     TIMER_DPRINTF("%s get_count count=0x%016lx (%s) p=%p\n",
524            timer->name, real_count,
525            timer->disabled?"disabled":"enabled", timer);
526 
527     if (timer->disabled)
528         real_count |= timer->disabled_mask;
529 
530     return real_count;
531 }
532 
533 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
534 {
535     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
536 
537     uint64_t real_limit = limit & ~timer->disabled_mask;
538     timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
539 
540     int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
541                     timer->clock_offset;
542 
543     if (expires < now) {
544         expires = now + 1;
545     }
546 
547     TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
548                   "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
549                   timer->name, real_limit,
550                   timer->disabled?"disabled":"enabled",
551                   timer, limit,
552                   timer_to_cpu_ticks(now - timer->clock_offset,
553                                      timer->frequency),
554                   timer_to_cpu_ticks(expires - now, timer->frequency));
555 
556     if (!real_limit) {
557         TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
558                 timer->name);
559         timer_del(timer->qtimer);
560     } else if (timer->disabled) {
561         timer_del(timer->qtimer);
562     } else {
563         timer_mod(timer->qtimer, expires);
564     }
565 }
566 
567 static void isa_irq_handler(void *opaque, int n, int level)
568 {
569     static const int isa_irq_to_ivec[16] = {
570         [1] = 0x29, /* keyboard */
571         [4] = 0x2b, /* serial */
572         [6] = 0x27, /* floppy */
573         [7] = 0x22, /* parallel */
574         [12] = 0x2a, /* mouse */
575     };
576     qemu_irq *irqs = opaque;
577     int ivec;
578 
579     assert(n < 16);
580     ivec = isa_irq_to_ivec[n];
581     EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec);
582     if (ivec) {
583         qemu_set_irq(irqs[ivec], level);
584     }
585 }
586 
587 /* EBUS (Eight bit bus) bridge */
588 static ISABus *
589 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs)
590 {
591     qemu_irq *isa_irq;
592     PCIDevice *pci_dev;
593     ISABus *isa_bus;
594 
595     pci_dev = pci_create_simple(bus, devfn, "ebus");
596     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci_dev), "isa.0"));
597     isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16);
598     isa_bus_irqs(isa_bus, isa_irq);
599     return isa_bus;
600 }
601 
602 static int
603 pci_ebus_init1(PCIDevice *pci_dev)
604 {
605     EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
606 
607     isa_bus_new(DEVICE(pci_dev), get_system_memory(),
608                 pci_address_space_io(pci_dev));
609 
610     pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
611     pci_dev->config[0x05] = 0x00;
612     pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
613     pci_dev->config[0x07] = 0x03; // status = medium devsel
614     pci_dev->config[0x09] = 0x00; // programming i/f
615     pci_dev->config[0x0D] = 0x0a; // latency_timer
616 
617     memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(),
618                              0, 0x1000000);
619     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
620     memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(),
621                              0, 0x4000);
622     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1);
623     return 0;
624 }
625 
626 static void ebus_class_init(ObjectClass *klass, void *data)
627 {
628     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
629 
630     k->init = pci_ebus_init1;
631     k->vendor_id = PCI_VENDOR_ID_SUN;
632     k->device_id = PCI_DEVICE_ID_SUN_EBUS;
633     k->revision = 0x01;
634     k->class_id = PCI_CLASS_BRIDGE_OTHER;
635 }
636 
637 static const TypeInfo ebus_info = {
638     .name          = "ebus",
639     .parent        = TYPE_PCI_DEVICE,
640     .instance_size = sizeof(EbusState),
641     .class_init    = ebus_class_init,
642 };
643 
644 #define TYPE_OPENPROM "openprom"
645 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
646 
647 typedef struct PROMState {
648     SysBusDevice parent_obj;
649 
650     MemoryRegion prom;
651 } PROMState;
652 
653 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
654 {
655     hwaddr *base_addr = (hwaddr *)opaque;
656     return addr + *base_addr - PROM_VADDR;
657 }
658 
659 /* Boot PROM (OpenBIOS) */
660 static void prom_init(hwaddr addr, const char *bios_name)
661 {
662     DeviceState *dev;
663     SysBusDevice *s;
664     char *filename;
665     int ret;
666 
667     dev = qdev_create(NULL, TYPE_OPENPROM);
668     qdev_init_nofail(dev);
669     s = SYS_BUS_DEVICE(dev);
670 
671     sysbus_mmio_map(s, 0, addr);
672 
673     /* load boot prom */
674     if (bios_name == NULL) {
675         bios_name = PROM_FILENAME;
676     }
677     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
678     if (filename) {
679         ret = load_elf(filename, translate_prom_address, &addr,
680                        NULL, NULL, NULL, 1, EM_SPARCV9, 0);
681         if (ret < 0 || ret > PROM_SIZE_MAX) {
682             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
683         }
684         g_free(filename);
685     } else {
686         ret = -1;
687     }
688     if (ret < 0 || ret > PROM_SIZE_MAX) {
689         fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
690         exit(1);
691     }
692 }
693 
694 static int prom_init1(SysBusDevice *dev)
695 {
696     PROMState *s = OPENPROM(dev);
697 
698     memory_region_init_ram(&s->prom, OBJECT(s), "sun4u.prom", PROM_SIZE_MAX,
699                            &error_fatal);
700     vmstate_register_ram_global(&s->prom);
701     memory_region_set_readonly(&s->prom, true);
702     sysbus_init_mmio(dev, &s->prom);
703     return 0;
704 }
705 
706 static Property prom_properties[] = {
707     {/* end of property list */},
708 };
709 
710 static void prom_class_init(ObjectClass *klass, void *data)
711 {
712     DeviceClass *dc = DEVICE_CLASS(klass);
713     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
714 
715     k->init = prom_init1;
716     dc->props = prom_properties;
717 }
718 
719 static const TypeInfo prom_info = {
720     .name          = TYPE_OPENPROM,
721     .parent        = TYPE_SYS_BUS_DEVICE,
722     .instance_size = sizeof(PROMState),
723     .class_init    = prom_class_init,
724 };
725 
726 
727 #define TYPE_SUN4U_MEMORY "memory"
728 #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY)
729 
730 typedef struct RamDevice {
731     SysBusDevice parent_obj;
732 
733     MemoryRegion ram;
734     uint64_t size;
735 } RamDevice;
736 
737 /* System RAM */
738 static int ram_init1(SysBusDevice *dev)
739 {
740     RamDevice *d = SUN4U_RAM(dev);
741 
742     memory_region_init_ram(&d->ram, OBJECT(d), "sun4u.ram", d->size,
743                            &error_fatal);
744     vmstate_register_ram_global(&d->ram);
745     sysbus_init_mmio(dev, &d->ram);
746     return 0;
747 }
748 
749 static void ram_init(hwaddr addr, ram_addr_t RAM_size)
750 {
751     DeviceState *dev;
752     SysBusDevice *s;
753     RamDevice *d;
754 
755     /* allocate RAM */
756     dev = qdev_create(NULL, TYPE_SUN4U_MEMORY);
757     s = SYS_BUS_DEVICE(dev);
758 
759     d = SUN4U_RAM(dev);
760     d->size = RAM_size;
761     qdev_init_nofail(dev);
762 
763     sysbus_mmio_map(s, 0, addr);
764 }
765 
766 static Property ram_properties[] = {
767     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
768     DEFINE_PROP_END_OF_LIST(),
769 };
770 
771 static void ram_class_init(ObjectClass *klass, void *data)
772 {
773     DeviceClass *dc = DEVICE_CLASS(klass);
774     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
775 
776     k->init = ram_init1;
777     dc->props = ram_properties;
778 }
779 
780 static const TypeInfo ram_info = {
781     .name          = TYPE_SUN4U_MEMORY,
782     .parent        = TYPE_SYS_BUS_DEVICE,
783     .instance_size = sizeof(RamDevice),
784     .class_init    = ram_class_init,
785 };
786 
787 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
788 {
789     SPARCCPU *cpu;
790     CPUSPARCState *env;
791     ResetData *reset_info;
792 
793     uint32_t   tick_frequency = 100*1000000;
794     uint32_t  stick_frequency = 100*1000000;
795     uint32_t hstick_frequency = 100*1000000;
796 
797     if (cpu_model == NULL) {
798         cpu_model = hwdef->default_cpu_model;
799     }
800     cpu = cpu_sparc_init(cpu_model);
801     if (cpu == NULL) {
802         fprintf(stderr, "Unable to find Sparc CPU definition\n");
803         exit(1);
804     }
805     env = &cpu->env;
806 
807     env->tick = cpu_timer_create("tick", cpu, tick_irq,
808                                   tick_frequency, TICK_INT_DIS,
809                                   TICK_NPT_MASK);
810 
811     env->stick = cpu_timer_create("stick", cpu, stick_irq,
812                                    stick_frequency, TICK_INT_DIS,
813                                    TICK_NPT_MASK);
814 
815     env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
816                                     hstick_frequency, TICK_INT_DIS,
817                                     TICK_NPT_MASK);
818 
819     reset_info = g_malloc0(sizeof(ResetData));
820     reset_info->cpu = cpu;
821     reset_info->prom_addr = hwdef->prom_addr;
822     qemu_register_reset(main_cpu_reset, reset_info);
823 
824     return cpu;
825 }
826 
827 static void sun4uv_init(MemoryRegion *address_space_mem,
828                         MachineState *machine,
829                         const struct hwdef *hwdef)
830 {
831     SPARCCPU *cpu;
832     Nvram *nvram;
833     unsigned int i;
834     uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
835     PCIBus *pci_bus, *pci_bus2, *pci_bus3;
836     ISABus *isa_bus;
837     SysBusDevice *s;
838     qemu_irq *ivec_irqs, *pbm_irqs;
839     DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
840     DriveInfo *fd[MAX_FD];
841     FWCfgState *fw_cfg;
842 
843     /* init CPUs */
844     cpu = cpu_devinit(machine->cpu_model, hwdef);
845 
846     /* set up devices */
847     ram_init(0, machine->ram_size);
848 
849     prom_init(hwdef->prom_addr, bios_name);
850 
851     ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX);
852     pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2,
853                            &pci_bus3, &pbm_irqs);
854     pci_vga_init(pci_bus);
855 
856     // XXX Should be pci_bus3
857     isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs);
858 
859     i = 0;
860     if (hwdef->console_serial_base) {
861         serial_mm_init(address_space_mem, hwdef->console_serial_base, 0,
862                        NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
863         i++;
864     }
865 
866     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
867     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
868 
869     for(i = 0; i < nb_nics; i++)
870         pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
871 
872     ide_drive_get(hd, ARRAY_SIZE(hd));
873 
874     pci_cmd646_ide_init(pci_bus, hd, 1);
875 
876     isa_create_simple(isa_bus, "i8042");
877     for(i = 0; i < MAX_FD; i++) {
878         fd[i] = drive_get(IF_FLOPPY, 0, i);
879     }
880     fdctrl_init_isa(isa_bus, fd);
881 
882     /* Map NVRAM into I/O (ebus) space */
883     nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59);
884     s = SYS_BUS_DEVICE(nvram);
885     memory_region_add_subregion(get_system_io(), 0x2000,
886                                 sysbus_mmio_get_region(s, 0));
887 
888     initrd_size = 0;
889     initrd_addr = 0;
890     kernel_size = sun4u_load_kernel(machine->kernel_filename,
891                                     machine->initrd_filename,
892                                     ram_size, &initrd_size, &initrd_addr,
893                                     &kernel_addr, &kernel_entry);
894 
895     sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size,
896                            machine->boot_order,
897                            kernel_addr, kernel_size,
898                            machine->kernel_cmdline,
899                            initrd_addr, initrd_size,
900                            /* XXX: need an option to load a NVRAM image */
901                            0,
902                            graphic_width, graphic_height, graphic_depth,
903                            (uint8_t *)&nd_table[0].macaddr);
904 
905     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
906     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
907     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
908     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
909     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
910     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
911     if (machine->kernel_cmdline) {
912         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
913                        strlen(machine->kernel_cmdline) + 1);
914         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
915     } else {
916         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
917     }
918     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
919     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
920     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
921 
922     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
923     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
924     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
925 
926     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
927 }
928 
929 enum {
930     sun4u_id = 0,
931     sun4v_id = 64,
932     niagara_id,
933 };
934 
935 static const struct hwdef hwdefs[] = {
936     /* Sun4u generic PC-like machine */
937     {
938         .default_cpu_model = "TI UltraSparc IIi",
939         .machine_id = sun4u_id,
940         .prom_addr = 0x1fff0000000ULL,
941         .console_serial_base = 0,
942     },
943     /* Sun4v generic PC-like machine */
944     {
945         .default_cpu_model = "Sun UltraSparc T1",
946         .machine_id = sun4v_id,
947         .prom_addr = 0x1fff0000000ULL,
948         .console_serial_base = 0,
949     },
950     /* Sun4v generic Niagara machine */
951     {
952         .default_cpu_model = "Sun UltraSparc T1",
953         .machine_id = niagara_id,
954         .prom_addr = 0xfff0000000ULL,
955         .console_serial_base = 0xfff0c2c000ULL,
956     },
957 };
958 
959 /* Sun4u hardware initialisation */
960 static void sun4u_init(MachineState *machine)
961 {
962     sun4uv_init(get_system_memory(), machine, &hwdefs[0]);
963 }
964 
965 /* Sun4v hardware initialisation */
966 static void sun4v_init(MachineState *machine)
967 {
968     sun4uv_init(get_system_memory(), machine, &hwdefs[1]);
969 }
970 
971 /* Niagara hardware initialisation */
972 static void niagara_init(MachineState *machine)
973 {
974     sun4uv_init(get_system_memory(), machine, &hwdefs[2]);
975 }
976 
977 static void sun4u_class_init(ObjectClass *oc, void *data)
978 {
979     MachineClass *mc = MACHINE_CLASS(oc);
980 
981     mc->desc = "Sun4u platform";
982     mc->init = sun4u_init;
983     mc->max_cpus = 1; /* XXX for now */
984     mc->is_default = 1;
985     mc->default_boot_order = "c";
986 }
987 
988 static const TypeInfo sun4u_type = {
989     .name = MACHINE_TYPE_NAME("sun4u"),
990     .parent = TYPE_MACHINE,
991     .class_init = sun4u_class_init,
992 };
993 
994 static void sun4v_class_init(ObjectClass *oc, void *data)
995 {
996     MachineClass *mc = MACHINE_CLASS(oc);
997 
998     mc->desc = "Sun4v platform";
999     mc->init = sun4v_init;
1000     mc->max_cpus = 1; /* XXX for now */
1001     mc->default_boot_order = "c";
1002 }
1003 
1004 static const TypeInfo sun4v_type = {
1005     .name = MACHINE_TYPE_NAME("sun4v"),
1006     .parent = TYPE_MACHINE,
1007     .class_init = sun4v_class_init,
1008 };
1009 
1010 static void niagara_class_init(ObjectClass *oc, void *data)
1011 {
1012     MachineClass *mc = MACHINE_CLASS(oc);
1013 
1014     mc->desc = "Sun4v platform, Niagara";
1015     mc->init = niagara_init;
1016     mc->max_cpus = 1; /* XXX for now */
1017     mc->default_boot_order = "c";
1018 }
1019 
1020 static const TypeInfo niagara_type = {
1021     .name = MACHINE_TYPE_NAME("Niagara"),
1022     .parent = TYPE_MACHINE,
1023     .class_init = niagara_class_init,
1024 };
1025 
1026 static void sun4u_register_types(void)
1027 {
1028     type_register_static(&ebus_info);
1029     type_register_static(&prom_info);
1030     type_register_static(&ram_info);
1031 }
1032 
1033 static void sun4u_machine_init(void)
1034 {
1035     type_register_static(&sun4u_type);
1036     type_register_static(&sun4v_type);
1037     type_register_static(&niagara_type);
1038 }
1039 
1040 type_init(sun4u_register_types)
1041 machine_init(sun4u_machine_init)
1042