xref: /openbmc/qemu/hw/sparc64/sun4u.c (revision d341d9f3)
1 /*
2  * QEMU Sun4u/Sun4v System Emulator
3  *
4  * Copyright (c) 2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/pci/pci.h"
26 #include "hw/pci-host/apb.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/timer/m48t59.h"
30 #include "hw/block/fdc.h"
31 #include "net/net.h"
32 #include "qemu/timer.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/boards.h"
35 #include "hw/nvram/openbios_firmware_abi.h"
36 #include "hw/nvram/fw_cfg.h"
37 #include "hw/sysbus.h"
38 #include "hw/ide.h"
39 #include "hw/loader.h"
40 #include "elf.h"
41 #include "sysemu/block-backend.h"
42 #include "exec/address-spaces.h"
43 
44 //#define DEBUG_IRQ
45 //#define DEBUG_EBUS
46 //#define DEBUG_TIMER
47 
48 #ifdef DEBUG_IRQ
49 #define CPUIRQ_DPRINTF(fmt, ...)                                \
50     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
51 #else
52 #define CPUIRQ_DPRINTF(fmt, ...)
53 #endif
54 
55 #ifdef DEBUG_EBUS
56 #define EBUS_DPRINTF(fmt, ...)                                  \
57     do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
58 #else
59 #define EBUS_DPRINTF(fmt, ...)
60 #endif
61 
62 #ifdef DEBUG_TIMER
63 #define TIMER_DPRINTF(fmt, ...)                                  \
64     do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define TIMER_DPRINTF(fmt, ...)
67 #endif
68 
69 #define KERNEL_LOAD_ADDR     0x00404000
70 #define CMDLINE_ADDR         0x003ff000
71 #define PROM_SIZE_MAX        (4 * 1024 * 1024)
72 #define PROM_VADDR           0x000ffd00000ULL
73 #define APB_SPECIAL_BASE     0x1fe00000000ULL
74 #define APB_MEM_BASE         0x1ff00000000ULL
75 #define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
76 #define PROM_FILENAME        "openbios-sparc64"
77 #define NVRAM_SIZE           0x2000
78 #define MAX_IDE_BUS          2
79 #define BIOS_CFG_IOPORT      0x510
80 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
81 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
82 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
83 
84 #define IVEC_MAX             0x40
85 
86 #define TICK_MAX             0x7fffffffffffffffULL
87 
88 struct hwdef {
89     const char * const default_cpu_model;
90     uint16_t machine_id;
91     uint64_t prom_addr;
92     uint64_t console_serial_base;
93 };
94 
95 typedef struct EbusState {
96     PCIDevice pci_dev;
97     MemoryRegion bar0;
98     MemoryRegion bar1;
99 } EbusState;
100 
101 int DMA_get_channel_mode (int nchan)
102 {
103     return 0;
104 }
105 int DMA_read_memory (int nchan, void *buf, int pos, int size)
106 {
107     return 0;
108 }
109 int DMA_write_memory (int nchan, void *buf, int pos, int size)
110 {
111     return 0;
112 }
113 void DMA_hold_DREQ (int nchan) {}
114 void DMA_release_DREQ (int nchan) {}
115 void DMA_schedule(void) {}
116 
117 void DMA_init(int high_page_enable)
118 {
119 }
120 
121 void DMA_register_channel (int nchan,
122                            DMA_transfer_handler transfer_handler,
123                            void *opaque)
124 {
125 }
126 
127 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
128                             Error **errp)
129 {
130     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
131 }
132 
133 static int sun4u_NVRAM_set_params(Nvram *nvram, uint16_t NVRAM_size,
134                                   const char *arch, ram_addr_t RAM_size,
135                                   const char *boot_devices,
136                                   uint32_t kernel_image, uint32_t kernel_size,
137                                   const char *cmdline,
138                                   uint32_t initrd_image, uint32_t initrd_size,
139                                   uint32_t NVRAM_image,
140                                   int width, int height, int depth,
141                                   const uint8_t *macaddr)
142 {
143     unsigned int i;
144     uint32_t start, end;
145     uint8_t image[0x1ff0];
146     struct OpenBIOS_nvpart_v1 *part_header;
147     NvramClass *k = NVRAM_GET_CLASS(nvram);
148 
149     memset(image, '\0', sizeof(image));
150 
151     start = 0;
152 
153     // OpenBIOS nvram variables
154     // Variable partition
155     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
156     part_header->signature = OPENBIOS_PART_SYSTEM;
157     pstrcpy(part_header->name, sizeof(part_header->name), "system");
158 
159     end = start + sizeof(struct OpenBIOS_nvpart_v1);
160     for (i = 0; i < nb_prom_envs; i++)
161         end = OpenBIOS_set_var(image, end, prom_envs[i]);
162 
163     // End marker
164     image[end++] = '\0';
165 
166     end = start + ((end - start + 15) & ~15);
167     OpenBIOS_finish_partition(part_header, end - start);
168 
169     // free partition
170     start = end;
171     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
172     part_header->signature = OPENBIOS_PART_FREE;
173     pstrcpy(part_header->name, sizeof(part_header->name), "free");
174 
175     end = 0x1fd0;
176     OpenBIOS_finish_partition(part_header, end - start);
177 
178     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
179 
180     for (i = 0; i < sizeof(image); i++) {
181         (k->write)(nvram, i, image[i]);
182     }
183 
184     return 0;
185 }
186 
187 static uint64_t sun4u_load_kernel(const char *kernel_filename,
188                                   const char *initrd_filename,
189                                   ram_addr_t RAM_size, uint64_t *initrd_size,
190                                   uint64_t *initrd_addr, uint64_t *kernel_addr,
191                                   uint64_t *kernel_entry)
192 {
193     int linux_boot;
194     unsigned int i;
195     long kernel_size;
196     uint8_t *ptr;
197     uint64_t kernel_top;
198 
199     linux_boot = (kernel_filename != NULL);
200 
201     kernel_size = 0;
202     if (linux_boot) {
203         int bswap_needed;
204 
205 #ifdef BSWAP_NEEDED
206         bswap_needed = 1;
207 #else
208         bswap_needed = 0;
209 #endif
210         kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry,
211                                kernel_addr, &kernel_top, 1, EM_SPARCV9, 0);
212         if (kernel_size < 0) {
213             *kernel_addr = KERNEL_LOAD_ADDR;
214             *kernel_entry = KERNEL_LOAD_ADDR;
215             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
216                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
217                                     TARGET_PAGE_SIZE);
218         }
219         if (kernel_size < 0) {
220             kernel_size = load_image_targphys(kernel_filename,
221                                               KERNEL_LOAD_ADDR,
222                                               RAM_size - KERNEL_LOAD_ADDR);
223         }
224         if (kernel_size < 0) {
225             fprintf(stderr, "qemu: could not load kernel '%s'\n",
226                     kernel_filename);
227             exit(1);
228         }
229         /* load initrd above kernel */
230         *initrd_size = 0;
231         if (initrd_filename) {
232             *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
233 
234             *initrd_size = load_image_targphys(initrd_filename,
235                                                *initrd_addr,
236                                                RAM_size - *initrd_addr);
237             if ((int)*initrd_size < 0) {
238                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
239                         initrd_filename);
240                 exit(1);
241             }
242         }
243         if (*initrd_size > 0) {
244             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
245                 ptr = rom_ptr(*kernel_addr + i);
246                 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
247                     stl_p(ptr + 24, *initrd_addr + *kernel_addr);
248                     stl_p(ptr + 28, *initrd_size);
249                     break;
250                 }
251             }
252         }
253     }
254     return kernel_size;
255 }
256 
257 void cpu_check_irqs(CPUSPARCState *env)
258 {
259     CPUState *cs;
260     uint32_t pil = env->pil_in |
261                   (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
262 
263     /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
264     if (env->ivec_status & 0x20) {
265         return;
266     }
267     cs = CPU(sparc_env_get_cpu(env));
268     /* check if TM or SM in SOFTINT are set
269        setting these also causes interrupt 14 */
270     if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
271         pil |= 1 << 14;
272     }
273 
274     /* The bit corresponding to psrpil is (1<< psrpil), the next bit
275        is (2 << psrpil). */
276     if (pil < (2 << env->psrpil)){
277         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
278             CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
279                            env->interrupt_index);
280             env->interrupt_index = 0;
281             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
282         }
283         return;
284     }
285 
286     if (cpu_interrupts_enabled(env)) {
287 
288         unsigned int i;
289 
290         for (i = 15; i > env->psrpil; i--) {
291             if (pil & (1 << i)) {
292                 int old_interrupt = env->interrupt_index;
293                 int new_interrupt = TT_EXTINT | i;
294 
295                 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
296                   && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
297                     CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
298                                    "current %x >= pending %x\n",
299                                    env->tl, cpu_tsptr(env)->tt, new_interrupt);
300                 } else if (old_interrupt != new_interrupt) {
301                     env->interrupt_index = new_interrupt;
302                     CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
303                                    old_interrupt, new_interrupt);
304                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
305                 }
306                 break;
307             }
308         }
309     } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
310         CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
311                        "current interrupt %x\n",
312                        pil, env->pil_in, env->softint, env->interrupt_index);
313         env->interrupt_index = 0;
314         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
315     }
316 }
317 
318 static void cpu_kick_irq(SPARCCPU *cpu)
319 {
320     CPUState *cs = CPU(cpu);
321     CPUSPARCState *env = &cpu->env;
322 
323     cs->halted = 0;
324     cpu_check_irqs(env);
325     qemu_cpu_kick(cs);
326 }
327 
328 static void cpu_set_ivec_irq(void *opaque, int irq, int level)
329 {
330     SPARCCPU *cpu = opaque;
331     CPUSPARCState *env = &cpu->env;
332     CPUState *cs;
333 
334     if (level) {
335         if (!(env->ivec_status & 0x20)) {
336             CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
337             cs = CPU(cpu);
338             cs->halted = 0;
339             env->interrupt_index = TT_IVEC;
340             env->ivec_status |= 0x20;
341             env->ivec_data[0] = (0x1f << 6) | irq;
342             env->ivec_data[1] = 0;
343             env->ivec_data[2] = 0;
344             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
345         }
346     } else {
347         if (env->ivec_status & 0x20) {
348             CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
349             cs = CPU(cpu);
350             env->ivec_status &= ~0x20;
351             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
352         }
353     }
354 }
355 
356 typedef struct ResetData {
357     SPARCCPU *cpu;
358     uint64_t prom_addr;
359 } ResetData;
360 
361 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
362                                   QEMUBHFunc *cb, uint32_t frequency,
363                                   uint64_t disabled_mask, uint64_t npt_mask)
364 {
365     CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
366 
367     timer->name = name;
368     timer->frequency = frequency;
369     timer->disabled_mask = disabled_mask;
370     timer->npt_mask = npt_mask;
371 
372     timer->disabled = 1;
373     timer->npt = 1;
374     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
375 
376     timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu);
377 
378     return timer;
379 }
380 
381 static void cpu_timer_reset(CPUTimer *timer)
382 {
383     timer->disabled = 1;
384     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
385 
386     timer_del(timer->qtimer);
387 }
388 
389 static void main_cpu_reset(void *opaque)
390 {
391     ResetData *s = (ResetData *)opaque;
392     CPUSPARCState *env = &s->cpu->env;
393     static unsigned int nr_resets;
394 
395     cpu_reset(CPU(s->cpu));
396 
397     cpu_timer_reset(env->tick);
398     cpu_timer_reset(env->stick);
399     cpu_timer_reset(env->hstick);
400 
401     env->gregs[1] = 0; // Memory start
402     env->gregs[2] = ram_size; // Memory size
403     env->gregs[3] = 0; // Machine description XXX
404     if (nr_resets++ == 0) {
405         /* Power on reset */
406         env->pc = s->prom_addr + 0x20ULL;
407     } else {
408         env->pc = s->prom_addr + 0x40ULL;
409     }
410     env->npc = env->pc + 4;
411 }
412 
413 static void tick_irq(void *opaque)
414 {
415     SPARCCPU *cpu = opaque;
416     CPUSPARCState *env = &cpu->env;
417 
418     CPUTimer* timer = env->tick;
419 
420     if (timer->disabled) {
421         CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
422         return;
423     } else {
424         CPUIRQ_DPRINTF("tick: fire\n");
425     }
426 
427     env->softint |= SOFTINT_TIMER;
428     cpu_kick_irq(cpu);
429 }
430 
431 static void stick_irq(void *opaque)
432 {
433     SPARCCPU *cpu = opaque;
434     CPUSPARCState *env = &cpu->env;
435 
436     CPUTimer* timer = env->stick;
437 
438     if (timer->disabled) {
439         CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
440         return;
441     } else {
442         CPUIRQ_DPRINTF("stick: fire\n");
443     }
444 
445     env->softint |= SOFTINT_STIMER;
446     cpu_kick_irq(cpu);
447 }
448 
449 static void hstick_irq(void *opaque)
450 {
451     SPARCCPU *cpu = opaque;
452     CPUSPARCState *env = &cpu->env;
453 
454     CPUTimer* timer = env->hstick;
455 
456     if (timer->disabled) {
457         CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
458         return;
459     } else {
460         CPUIRQ_DPRINTF("hstick: fire\n");
461     }
462 
463     env->softint |= SOFTINT_STIMER;
464     cpu_kick_irq(cpu);
465 }
466 
467 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
468 {
469     return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
470 }
471 
472 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
473 {
474     return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
475 }
476 
477 void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
478 {
479     uint64_t real_count = count & ~timer->npt_mask;
480     uint64_t npt_bit = count & timer->npt_mask;
481 
482     int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
483                     cpu_to_timer_ticks(real_count, timer->frequency);
484 
485     TIMER_DPRINTF("%s set_count count=0x%016lx (npt %s) p=%p\n",
486                   timer->name, real_count,
487                   timer->npt ? "disabled" : "enabled", timer);
488 
489     timer->npt = npt_bit ? 1 : 0;
490     timer->clock_offset = vm_clock_offset;
491 }
492 
493 uint64_t cpu_tick_get_count(CPUTimer *timer)
494 {
495     uint64_t real_count = timer_to_cpu_ticks(
496                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset,
497                     timer->frequency);
498 
499     TIMER_DPRINTF("%s get_count count=0x%016lx (npt %s) p=%p\n",
500            timer->name, real_count,
501            timer->npt ? "disabled" : "enabled", timer);
502 
503     if (timer->npt) {
504         real_count |= timer->npt_mask;
505     }
506 
507     return real_count;
508 }
509 
510 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
511 {
512     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
513 
514     uint64_t real_limit = limit & ~timer->disabled_mask;
515     timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
516 
517     int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
518                     timer->clock_offset;
519 
520     if (expires < now) {
521         expires = now + 1;
522     }
523 
524     TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
525                   "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
526                   timer->name, real_limit,
527                   timer->disabled?"disabled":"enabled",
528                   timer, limit,
529                   timer_to_cpu_ticks(now - timer->clock_offset,
530                                      timer->frequency),
531                   timer_to_cpu_ticks(expires - now, timer->frequency));
532 
533     if (!real_limit) {
534         TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
535                 timer->name);
536         timer_del(timer->qtimer);
537     } else if (timer->disabled) {
538         timer_del(timer->qtimer);
539     } else {
540         timer_mod(timer->qtimer, expires);
541     }
542 }
543 
544 static void isa_irq_handler(void *opaque, int n, int level)
545 {
546     static const int isa_irq_to_ivec[16] = {
547         [1] = 0x29, /* keyboard */
548         [4] = 0x2b, /* serial */
549         [6] = 0x27, /* floppy */
550         [7] = 0x22, /* parallel */
551         [12] = 0x2a, /* mouse */
552     };
553     qemu_irq *irqs = opaque;
554     int ivec;
555 
556     assert(n < 16);
557     ivec = isa_irq_to_ivec[n];
558     EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec);
559     if (ivec) {
560         qemu_set_irq(irqs[ivec], level);
561     }
562 }
563 
564 /* EBUS (Eight bit bus) bridge */
565 static ISABus *
566 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs)
567 {
568     qemu_irq *isa_irq;
569     PCIDevice *pci_dev;
570     ISABus *isa_bus;
571 
572     pci_dev = pci_create_simple(bus, devfn, "ebus");
573     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci_dev), "isa.0"));
574     isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16);
575     isa_bus_irqs(isa_bus, isa_irq);
576     return isa_bus;
577 }
578 
579 static void pci_ebus_realize(PCIDevice *pci_dev, Error **errp)
580 {
581     EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
582 
583     if (!isa_bus_new(DEVICE(pci_dev), get_system_memory(),
584                      pci_address_space_io(pci_dev), errp)) {
585         return;
586     }
587 
588     pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
589     pci_dev->config[0x05] = 0x00;
590     pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
591     pci_dev->config[0x07] = 0x03; // status = medium devsel
592     pci_dev->config[0x09] = 0x00; // programming i/f
593     pci_dev->config[0x0D] = 0x0a; // latency_timer
594 
595     memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(),
596                              0, 0x1000000);
597     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
598     memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(),
599                              0, 0x4000);
600     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1);
601 }
602 
603 static void ebus_class_init(ObjectClass *klass, void *data)
604 {
605     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
606 
607     k->realize = pci_ebus_realize;
608     k->vendor_id = PCI_VENDOR_ID_SUN;
609     k->device_id = PCI_DEVICE_ID_SUN_EBUS;
610     k->revision = 0x01;
611     k->class_id = PCI_CLASS_BRIDGE_OTHER;
612 }
613 
614 static const TypeInfo ebus_info = {
615     .name          = "ebus",
616     .parent        = TYPE_PCI_DEVICE,
617     .instance_size = sizeof(EbusState),
618     .class_init    = ebus_class_init,
619 };
620 
621 #define TYPE_OPENPROM "openprom"
622 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
623 
624 typedef struct PROMState {
625     SysBusDevice parent_obj;
626 
627     MemoryRegion prom;
628 } PROMState;
629 
630 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
631 {
632     hwaddr *base_addr = (hwaddr *)opaque;
633     return addr + *base_addr - PROM_VADDR;
634 }
635 
636 /* Boot PROM (OpenBIOS) */
637 static void prom_init(hwaddr addr, const char *bios_name)
638 {
639     DeviceState *dev;
640     SysBusDevice *s;
641     char *filename;
642     int ret;
643 
644     dev = qdev_create(NULL, TYPE_OPENPROM);
645     qdev_init_nofail(dev);
646     s = SYS_BUS_DEVICE(dev);
647 
648     sysbus_mmio_map(s, 0, addr);
649 
650     /* load boot prom */
651     if (bios_name == NULL) {
652         bios_name = PROM_FILENAME;
653     }
654     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
655     if (filename) {
656         ret = load_elf(filename, translate_prom_address, &addr,
657                        NULL, NULL, NULL, 1, EM_SPARCV9, 0);
658         if (ret < 0 || ret > PROM_SIZE_MAX) {
659             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
660         }
661         g_free(filename);
662     } else {
663         ret = -1;
664     }
665     if (ret < 0 || ret > PROM_SIZE_MAX) {
666         fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
667         exit(1);
668     }
669 }
670 
671 static int prom_init1(SysBusDevice *dev)
672 {
673     PROMState *s = OPENPROM(dev);
674 
675     memory_region_init_ram(&s->prom, OBJECT(s), "sun4u.prom", PROM_SIZE_MAX,
676                            &error_fatal);
677     vmstate_register_ram_global(&s->prom);
678     memory_region_set_readonly(&s->prom, true);
679     sysbus_init_mmio(dev, &s->prom);
680     return 0;
681 }
682 
683 static Property prom_properties[] = {
684     {/* end of property list */},
685 };
686 
687 static void prom_class_init(ObjectClass *klass, void *data)
688 {
689     DeviceClass *dc = DEVICE_CLASS(klass);
690     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
691 
692     k->init = prom_init1;
693     dc->props = prom_properties;
694 }
695 
696 static const TypeInfo prom_info = {
697     .name          = TYPE_OPENPROM,
698     .parent        = TYPE_SYS_BUS_DEVICE,
699     .instance_size = sizeof(PROMState),
700     .class_init    = prom_class_init,
701 };
702 
703 
704 #define TYPE_SUN4U_MEMORY "memory"
705 #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY)
706 
707 typedef struct RamDevice {
708     SysBusDevice parent_obj;
709 
710     MemoryRegion ram;
711     uint64_t size;
712 } RamDevice;
713 
714 /* System RAM */
715 static int ram_init1(SysBusDevice *dev)
716 {
717     RamDevice *d = SUN4U_RAM(dev);
718 
719     memory_region_init_ram(&d->ram, OBJECT(d), "sun4u.ram", d->size,
720                            &error_fatal);
721     vmstate_register_ram_global(&d->ram);
722     sysbus_init_mmio(dev, &d->ram);
723     return 0;
724 }
725 
726 static void ram_init(hwaddr addr, ram_addr_t RAM_size)
727 {
728     DeviceState *dev;
729     SysBusDevice *s;
730     RamDevice *d;
731 
732     /* allocate RAM */
733     dev = qdev_create(NULL, TYPE_SUN4U_MEMORY);
734     s = SYS_BUS_DEVICE(dev);
735 
736     d = SUN4U_RAM(dev);
737     d->size = RAM_size;
738     qdev_init_nofail(dev);
739 
740     sysbus_mmio_map(s, 0, addr);
741 }
742 
743 static Property ram_properties[] = {
744     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
745     DEFINE_PROP_END_OF_LIST(),
746 };
747 
748 static void ram_class_init(ObjectClass *klass, void *data)
749 {
750     DeviceClass *dc = DEVICE_CLASS(klass);
751     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
752 
753     k->init = ram_init1;
754     dc->props = ram_properties;
755 }
756 
757 static const TypeInfo ram_info = {
758     .name          = TYPE_SUN4U_MEMORY,
759     .parent        = TYPE_SYS_BUS_DEVICE,
760     .instance_size = sizeof(RamDevice),
761     .class_init    = ram_class_init,
762 };
763 
764 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
765 {
766     SPARCCPU *cpu;
767     CPUSPARCState *env;
768     ResetData *reset_info;
769 
770     uint32_t   tick_frequency = 100*1000000;
771     uint32_t  stick_frequency = 100*1000000;
772     uint32_t hstick_frequency = 100*1000000;
773 
774     if (cpu_model == NULL) {
775         cpu_model = hwdef->default_cpu_model;
776     }
777     cpu = cpu_sparc_init(cpu_model);
778     if (cpu == NULL) {
779         fprintf(stderr, "Unable to find Sparc CPU definition\n");
780         exit(1);
781     }
782     env = &cpu->env;
783 
784     env->tick = cpu_timer_create("tick", cpu, tick_irq,
785                                   tick_frequency, TICK_INT_DIS,
786                                   TICK_NPT_MASK);
787 
788     env->stick = cpu_timer_create("stick", cpu, stick_irq,
789                                    stick_frequency, TICK_INT_DIS,
790                                    TICK_NPT_MASK);
791 
792     env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
793                                     hstick_frequency, TICK_INT_DIS,
794                                     TICK_NPT_MASK);
795 
796     reset_info = g_malloc0(sizeof(ResetData));
797     reset_info->cpu = cpu;
798     reset_info->prom_addr = hwdef->prom_addr;
799     qemu_register_reset(main_cpu_reset, reset_info);
800 
801     return cpu;
802 }
803 
804 static void sun4uv_init(MemoryRegion *address_space_mem,
805                         MachineState *machine,
806                         const struct hwdef *hwdef)
807 {
808     SPARCCPU *cpu;
809     Nvram *nvram;
810     unsigned int i;
811     uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
812     PCIBus *pci_bus, *pci_bus2, *pci_bus3;
813     ISABus *isa_bus;
814     SysBusDevice *s;
815     qemu_irq *ivec_irqs, *pbm_irqs;
816     DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
817     DriveInfo *fd[MAX_FD];
818     FWCfgState *fw_cfg;
819 
820     /* init CPUs */
821     cpu = cpu_devinit(machine->cpu_model, hwdef);
822 
823     /* set up devices */
824     ram_init(0, machine->ram_size);
825 
826     prom_init(hwdef->prom_addr, bios_name);
827 
828     ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX);
829     pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2,
830                            &pci_bus3, &pbm_irqs);
831     pci_vga_init(pci_bus);
832 
833     // XXX Should be pci_bus3
834     isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs);
835 
836     i = 0;
837     if (hwdef->console_serial_base) {
838         serial_mm_init(address_space_mem, hwdef->console_serial_base, 0,
839                        NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
840         i++;
841     }
842 
843     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
844     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
845 
846     for(i = 0; i < nb_nics; i++)
847         pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
848 
849     ide_drive_get(hd, ARRAY_SIZE(hd));
850 
851     pci_cmd646_ide_init(pci_bus, hd, 1);
852 
853     isa_create_simple(isa_bus, "i8042");
854     for(i = 0; i < MAX_FD; i++) {
855         fd[i] = drive_get(IF_FLOPPY, 0, i);
856     }
857     fdctrl_init_isa(isa_bus, fd);
858 
859     /* Map NVRAM into I/O (ebus) space */
860     nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59);
861     s = SYS_BUS_DEVICE(nvram);
862     memory_region_add_subregion(get_system_io(), 0x2000,
863                                 sysbus_mmio_get_region(s, 0));
864 
865     initrd_size = 0;
866     initrd_addr = 0;
867     kernel_size = sun4u_load_kernel(machine->kernel_filename,
868                                     machine->initrd_filename,
869                                     ram_size, &initrd_size, &initrd_addr,
870                                     &kernel_addr, &kernel_entry);
871 
872     sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size,
873                            machine->boot_order,
874                            kernel_addr, kernel_size,
875                            machine->kernel_cmdline,
876                            initrd_addr, initrd_size,
877                            /* XXX: need an option to load a NVRAM image */
878                            0,
879                            graphic_width, graphic_height, graphic_depth,
880                            (uint8_t *)&nd_table[0].macaddr);
881 
882     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
883     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
884     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
885     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
886     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
887     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
888     if (machine->kernel_cmdline) {
889         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
890                        strlen(machine->kernel_cmdline) + 1);
891         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
892     } else {
893         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
894     }
895     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
896     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
897     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
898 
899     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
900     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
901     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
902 
903     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
904 }
905 
906 enum {
907     sun4u_id = 0,
908     sun4v_id = 64,
909     niagara_id,
910 };
911 
912 static const struct hwdef hwdefs[] = {
913     /* Sun4u generic PC-like machine */
914     {
915         .default_cpu_model = "TI UltraSparc IIi",
916         .machine_id = sun4u_id,
917         .prom_addr = 0x1fff0000000ULL,
918         .console_serial_base = 0,
919     },
920     /* Sun4v generic PC-like machine */
921     {
922         .default_cpu_model = "Sun UltraSparc T1",
923         .machine_id = sun4v_id,
924         .prom_addr = 0x1fff0000000ULL,
925         .console_serial_base = 0,
926     },
927     /* Sun4v generic Niagara machine */
928     {
929         .default_cpu_model = "Sun UltraSparc T1",
930         .machine_id = niagara_id,
931         .prom_addr = 0xfff0000000ULL,
932         .console_serial_base = 0xfff0c2c000ULL,
933     },
934 };
935 
936 /* Sun4u hardware initialisation */
937 static void sun4u_init(MachineState *machine)
938 {
939     sun4uv_init(get_system_memory(), machine, &hwdefs[0]);
940 }
941 
942 /* Sun4v hardware initialisation */
943 static void sun4v_init(MachineState *machine)
944 {
945     sun4uv_init(get_system_memory(), machine, &hwdefs[1]);
946 }
947 
948 /* Niagara hardware initialisation */
949 static void niagara_init(MachineState *machine)
950 {
951     sun4uv_init(get_system_memory(), machine, &hwdefs[2]);
952 }
953 
954 static void sun4u_class_init(ObjectClass *oc, void *data)
955 {
956     MachineClass *mc = MACHINE_CLASS(oc);
957 
958     mc->desc = "Sun4u platform";
959     mc->init = sun4u_init;
960     mc->max_cpus = 1; /* XXX for now */
961     mc->is_default = 1;
962     mc->default_boot_order = "c";
963 }
964 
965 static const TypeInfo sun4u_type = {
966     .name = MACHINE_TYPE_NAME("sun4u"),
967     .parent = TYPE_MACHINE,
968     .class_init = sun4u_class_init,
969 };
970 
971 static void sun4v_class_init(ObjectClass *oc, void *data)
972 {
973     MachineClass *mc = MACHINE_CLASS(oc);
974 
975     mc->desc = "Sun4v platform";
976     mc->init = sun4v_init;
977     mc->max_cpus = 1; /* XXX for now */
978     mc->default_boot_order = "c";
979 }
980 
981 static const TypeInfo sun4v_type = {
982     .name = MACHINE_TYPE_NAME("sun4v"),
983     .parent = TYPE_MACHINE,
984     .class_init = sun4v_class_init,
985 };
986 
987 static void niagara_class_init(ObjectClass *oc, void *data)
988 {
989     MachineClass *mc = MACHINE_CLASS(oc);
990 
991     mc->desc = "Sun4v platform, Niagara";
992     mc->init = niagara_init;
993     mc->max_cpus = 1; /* XXX for now */
994     mc->default_boot_order = "c";
995 }
996 
997 static const TypeInfo niagara_type = {
998     .name = MACHINE_TYPE_NAME("Niagara"),
999     .parent = TYPE_MACHINE,
1000     .class_init = niagara_class_init,
1001 };
1002 
1003 static void sun4u_register_types(void)
1004 {
1005     type_register_static(&ebus_info);
1006     type_register_static(&prom_info);
1007     type_register_static(&ram_info);
1008 }
1009 
1010 static void sun4u_machine_init(void)
1011 {
1012     type_register_static(&sun4u_type);
1013     type_register_static(&sun4v_type);
1014     type_register_static(&niagara_type);
1015 }
1016 
1017 type_init(sun4u_register_types)
1018 machine_init(sun4u_machine_init)
1019