xref: /openbmc/qemu/hw/sparc64/sun4u.c (revision c71c3e99)
1 /*
2  * QEMU Sun4u/Sun4v System Emulator
3  *
4  * Copyright (c) 2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/pci/pci.h"
26 #include "hw/apb_pci.h"
27 #include "hw/pc.h"
28 #include "hw/serial.h"
29 #include "hw/nvram.h"
30 #include "hw/fdc.h"
31 #include "net/net.h"
32 #include "qemu/timer.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/boards.h"
35 #include "hw/firmware_abi.h"
36 #include "hw/fw_cfg.h"
37 #include "hw/sysbus.h"
38 #include "hw/ide.h"
39 #include "hw/loader.h"
40 #include "elf.h"
41 #include "sysemu/blockdev.h"
42 #include "exec/address-spaces.h"
43 
44 //#define DEBUG_IRQ
45 //#define DEBUG_EBUS
46 //#define DEBUG_TIMER
47 
48 #ifdef DEBUG_IRQ
49 #define CPUIRQ_DPRINTF(fmt, ...)                                \
50     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
51 #else
52 #define CPUIRQ_DPRINTF(fmt, ...)
53 #endif
54 
55 #ifdef DEBUG_EBUS
56 #define EBUS_DPRINTF(fmt, ...)                                  \
57     do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
58 #else
59 #define EBUS_DPRINTF(fmt, ...)
60 #endif
61 
62 #ifdef DEBUG_TIMER
63 #define TIMER_DPRINTF(fmt, ...)                                  \
64     do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define TIMER_DPRINTF(fmt, ...)
67 #endif
68 
69 #define KERNEL_LOAD_ADDR     0x00404000
70 #define CMDLINE_ADDR         0x003ff000
71 #define PROM_SIZE_MAX        (4 * 1024 * 1024)
72 #define PROM_VADDR           0x000ffd00000ULL
73 #define APB_SPECIAL_BASE     0x1fe00000000ULL
74 #define APB_MEM_BASE         0x1ff00000000ULL
75 #define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
76 #define PROM_FILENAME        "openbios-sparc64"
77 #define NVRAM_SIZE           0x2000
78 #define MAX_IDE_BUS          2
79 #define BIOS_CFG_IOPORT      0x510
80 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
81 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
82 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
83 
84 #define IVEC_MAX             0x30
85 
86 #define TICK_MAX             0x7fffffffffffffffULL
87 
88 struct hwdef {
89     const char * const default_cpu_model;
90     uint16_t machine_id;
91     uint64_t prom_addr;
92     uint64_t console_serial_base;
93 };
94 
95 typedef struct EbusState {
96     PCIDevice pci_dev;
97     MemoryRegion bar0;
98     MemoryRegion bar1;
99 } EbusState;
100 
101 int DMA_get_channel_mode (int nchan)
102 {
103     return 0;
104 }
105 int DMA_read_memory (int nchan, void *buf, int pos, int size)
106 {
107     return 0;
108 }
109 int DMA_write_memory (int nchan, void *buf, int pos, int size)
110 {
111     return 0;
112 }
113 void DMA_hold_DREQ (int nchan) {}
114 void DMA_release_DREQ (int nchan) {}
115 void DMA_schedule(int nchan) {}
116 
117 void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
118 {
119 }
120 
121 void DMA_register_channel (int nchan,
122                            DMA_transfer_handler transfer_handler,
123                            void *opaque)
124 {
125 }
126 
127 static int fw_cfg_boot_set(void *opaque, const char *boot_device)
128 {
129     fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
130     return 0;
131 }
132 
133 static int sun4u_NVRAM_set_params(M48t59State *nvram, uint16_t NVRAM_size,
134                                   const char *arch, ram_addr_t RAM_size,
135                                   const char *boot_devices,
136                                   uint32_t kernel_image, uint32_t kernel_size,
137                                   const char *cmdline,
138                                   uint32_t initrd_image, uint32_t initrd_size,
139                                   uint32_t NVRAM_image,
140                                   int width, int height, int depth,
141                                   const uint8_t *macaddr)
142 {
143     unsigned int i;
144     uint32_t start, end;
145     uint8_t image[0x1ff0];
146     struct OpenBIOS_nvpart_v1 *part_header;
147 
148     memset(image, '\0', sizeof(image));
149 
150     start = 0;
151 
152     // OpenBIOS nvram variables
153     // Variable partition
154     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
155     part_header->signature = OPENBIOS_PART_SYSTEM;
156     pstrcpy(part_header->name, sizeof(part_header->name), "system");
157 
158     end = start + sizeof(struct OpenBIOS_nvpart_v1);
159     for (i = 0; i < nb_prom_envs; i++)
160         end = OpenBIOS_set_var(image, end, prom_envs[i]);
161 
162     // End marker
163     image[end++] = '\0';
164 
165     end = start + ((end - start + 15) & ~15);
166     OpenBIOS_finish_partition(part_header, end - start);
167 
168     // free partition
169     start = end;
170     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
171     part_header->signature = OPENBIOS_PART_FREE;
172     pstrcpy(part_header->name, sizeof(part_header->name), "free");
173 
174     end = 0x1fd0;
175     OpenBIOS_finish_partition(part_header, end - start);
176 
177     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
178 
179     for (i = 0; i < sizeof(image); i++)
180         m48t59_write(nvram, i, image[i]);
181 
182     return 0;
183 }
184 
185 static uint64_t sun4u_load_kernel(const char *kernel_filename,
186                                   const char *initrd_filename,
187                                   ram_addr_t RAM_size, uint64_t *initrd_size,
188                                   uint64_t *initrd_addr, uint64_t *kernel_addr,
189                                   uint64_t *kernel_entry)
190 {
191     int linux_boot;
192     unsigned int i;
193     long kernel_size;
194     uint8_t *ptr;
195     uint64_t kernel_top;
196 
197     linux_boot = (kernel_filename != NULL);
198 
199     kernel_size = 0;
200     if (linux_boot) {
201         int bswap_needed;
202 
203 #ifdef BSWAP_NEEDED
204         bswap_needed = 1;
205 #else
206         bswap_needed = 0;
207 #endif
208         kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry,
209                                kernel_addr, &kernel_top, 1, ELF_MACHINE, 0);
210         if (kernel_size < 0) {
211             *kernel_addr = KERNEL_LOAD_ADDR;
212             *kernel_entry = KERNEL_LOAD_ADDR;
213             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
214                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
215                                     TARGET_PAGE_SIZE);
216         }
217         if (kernel_size < 0) {
218             kernel_size = load_image_targphys(kernel_filename,
219                                               KERNEL_LOAD_ADDR,
220                                               RAM_size - KERNEL_LOAD_ADDR);
221         }
222         if (kernel_size < 0) {
223             fprintf(stderr, "qemu: could not load kernel '%s'\n",
224                     kernel_filename);
225             exit(1);
226         }
227         /* load initrd above kernel */
228         *initrd_size = 0;
229         if (initrd_filename) {
230             *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
231 
232             *initrd_size = load_image_targphys(initrd_filename,
233                                                *initrd_addr,
234                                                RAM_size - *initrd_addr);
235             if ((int)*initrd_size < 0) {
236                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
237                         initrd_filename);
238                 exit(1);
239             }
240         }
241         if (*initrd_size > 0) {
242             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
243                 ptr = rom_ptr(*kernel_addr + i);
244                 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
245                     stl_p(ptr + 24, *initrd_addr + *kernel_addr);
246                     stl_p(ptr + 28, *initrd_size);
247                     break;
248                 }
249             }
250         }
251     }
252     return kernel_size;
253 }
254 
255 void cpu_check_irqs(CPUSPARCState *env)
256 {
257     uint32_t pil = env->pil_in |
258                   (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
259 
260     /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
261     if (env->ivec_status & 0x20) {
262         return;
263     }
264     /* check if TM or SM in SOFTINT are set
265        setting these also causes interrupt 14 */
266     if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
267         pil |= 1 << 14;
268     }
269 
270     /* The bit corresponding to psrpil is (1<< psrpil), the next bit
271        is (2 << psrpil). */
272     if (pil < (2 << env->psrpil)){
273         if (env->interrupt_request & CPU_INTERRUPT_HARD) {
274             CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
275                            env->interrupt_index);
276             env->interrupt_index = 0;
277             cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
278         }
279         return;
280     }
281 
282     if (cpu_interrupts_enabled(env)) {
283 
284         unsigned int i;
285 
286         for (i = 15; i > env->psrpil; i--) {
287             if (pil & (1 << i)) {
288                 int old_interrupt = env->interrupt_index;
289                 int new_interrupt = TT_EXTINT | i;
290 
291                 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
292                   && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
293                     CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
294                                    "current %x >= pending %x\n",
295                                    env->tl, cpu_tsptr(env)->tt, new_interrupt);
296                 } else if (old_interrupt != new_interrupt) {
297                     env->interrupt_index = new_interrupt;
298                     CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
299                                    old_interrupt, new_interrupt);
300                     cpu_interrupt(env, CPU_INTERRUPT_HARD);
301                 }
302                 break;
303             }
304         }
305     } else if (env->interrupt_request & CPU_INTERRUPT_HARD) {
306         CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
307                        "current interrupt %x\n",
308                        pil, env->pil_in, env->softint, env->interrupt_index);
309         env->interrupt_index = 0;
310         cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
311     }
312 }
313 
314 static void cpu_kick_irq(SPARCCPU *cpu)
315 {
316     CPUSPARCState *env = &cpu->env;
317 
318     env->halted = 0;
319     cpu_check_irqs(env);
320     qemu_cpu_kick(CPU(cpu));
321 }
322 
323 static void cpu_set_ivec_irq(void *opaque, int irq, int level)
324 {
325     SPARCCPU *cpu = opaque;
326     CPUSPARCState *env = &cpu->env;
327 
328     if (level) {
329         if (!(env->ivec_status & 0x20)) {
330             CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
331             env->halted = 0;
332             env->interrupt_index = TT_IVEC;
333             env->ivec_status |= 0x20;
334             env->ivec_data[0] = (0x1f << 6) | irq;
335             env->ivec_data[1] = 0;
336             env->ivec_data[2] = 0;
337             cpu_interrupt(env, CPU_INTERRUPT_HARD);
338         }
339     } else {
340         if (env->ivec_status & 0x20) {
341             CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
342             env->ivec_status &= ~0x20;
343             cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
344         }
345     }
346 }
347 
348 typedef struct ResetData {
349     SPARCCPU *cpu;
350     uint64_t prom_addr;
351 } ResetData;
352 
353 void cpu_put_timer(QEMUFile *f, CPUTimer *s)
354 {
355     qemu_put_be32s(f, &s->frequency);
356     qemu_put_be32s(f, &s->disabled);
357     qemu_put_be64s(f, &s->disabled_mask);
358     qemu_put_sbe64s(f, &s->clock_offset);
359 
360     qemu_put_timer(f, s->qtimer);
361 }
362 
363 void cpu_get_timer(QEMUFile *f, CPUTimer *s)
364 {
365     qemu_get_be32s(f, &s->frequency);
366     qemu_get_be32s(f, &s->disabled);
367     qemu_get_be64s(f, &s->disabled_mask);
368     qemu_get_sbe64s(f, &s->clock_offset);
369 
370     qemu_get_timer(f, s->qtimer);
371 }
372 
373 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
374                                   QEMUBHFunc *cb, uint32_t frequency,
375                                   uint64_t disabled_mask)
376 {
377     CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
378 
379     timer->name = name;
380     timer->frequency = frequency;
381     timer->disabled_mask = disabled_mask;
382 
383     timer->disabled = 1;
384     timer->clock_offset = qemu_get_clock_ns(vm_clock);
385 
386     timer->qtimer = qemu_new_timer_ns(vm_clock, cb, cpu);
387 
388     return timer;
389 }
390 
391 static void cpu_timer_reset(CPUTimer *timer)
392 {
393     timer->disabled = 1;
394     timer->clock_offset = qemu_get_clock_ns(vm_clock);
395 
396     qemu_del_timer(timer->qtimer);
397 }
398 
399 static void main_cpu_reset(void *opaque)
400 {
401     ResetData *s = (ResetData *)opaque;
402     CPUSPARCState *env = &s->cpu->env;
403     static unsigned int nr_resets;
404 
405     cpu_reset(CPU(s->cpu));
406 
407     cpu_timer_reset(env->tick);
408     cpu_timer_reset(env->stick);
409     cpu_timer_reset(env->hstick);
410 
411     env->gregs[1] = 0; // Memory start
412     env->gregs[2] = ram_size; // Memory size
413     env->gregs[3] = 0; // Machine description XXX
414     if (nr_resets++ == 0) {
415         /* Power on reset */
416         env->pc = s->prom_addr + 0x20ULL;
417     } else {
418         env->pc = s->prom_addr + 0x40ULL;
419     }
420     env->npc = env->pc + 4;
421 }
422 
423 static void tick_irq(void *opaque)
424 {
425     SPARCCPU *cpu = opaque;
426     CPUSPARCState *env = &cpu->env;
427 
428     CPUTimer* timer = env->tick;
429 
430     if (timer->disabled) {
431         CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
432         return;
433     } else {
434         CPUIRQ_DPRINTF("tick: fire\n");
435     }
436 
437     env->softint |= SOFTINT_TIMER;
438     cpu_kick_irq(cpu);
439 }
440 
441 static void stick_irq(void *opaque)
442 {
443     SPARCCPU *cpu = opaque;
444     CPUSPARCState *env = &cpu->env;
445 
446     CPUTimer* timer = env->stick;
447 
448     if (timer->disabled) {
449         CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
450         return;
451     } else {
452         CPUIRQ_DPRINTF("stick: fire\n");
453     }
454 
455     env->softint |= SOFTINT_STIMER;
456     cpu_kick_irq(cpu);
457 }
458 
459 static void hstick_irq(void *opaque)
460 {
461     SPARCCPU *cpu = opaque;
462     CPUSPARCState *env = &cpu->env;
463 
464     CPUTimer* timer = env->hstick;
465 
466     if (timer->disabled) {
467         CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
468         return;
469     } else {
470         CPUIRQ_DPRINTF("hstick: fire\n");
471     }
472 
473     env->softint |= SOFTINT_STIMER;
474     cpu_kick_irq(cpu);
475 }
476 
477 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
478 {
479     return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
480 }
481 
482 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
483 {
484     return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
485 }
486 
487 void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
488 {
489     uint64_t real_count = count & ~timer->disabled_mask;
490     uint64_t disabled_bit = count & timer->disabled_mask;
491 
492     int64_t vm_clock_offset = qemu_get_clock_ns(vm_clock) -
493                     cpu_to_timer_ticks(real_count, timer->frequency);
494 
495     TIMER_DPRINTF("%s set_count count=0x%016lx (%s) p=%p\n",
496                   timer->name, real_count,
497                   timer->disabled?"disabled":"enabled", timer);
498 
499     timer->disabled = disabled_bit ? 1 : 0;
500     timer->clock_offset = vm_clock_offset;
501 }
502 
503 uint64_t cpu_tick_get_count(CPUTimer *timer)
504 {
505     uint64_t real_count = timer_to_cpu_ticks(
506                     qemu_get_clock_ns(vm_clock) - timer->clock_offset,
507                     timer->frequency);
508 
509     TIMER_DPRINTF("%s get_count count=0x%016lx (%s) p=%p\n",
510            timer->name, real_count,
511            timer->disabled?"disabled":"enabled", timer);
512 
513     if (timer->disabled)
514         real_count |= timer->disabled_mask;
515 
516     return real_count;
517 }
518 
519 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
520 {
521     int64_t now = qemu_get_clock_ns(vm_clock);
522 
523     uint64_t real_limit = limit & ~timer->disabled_mask;
524     timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
525 
526     int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
527                     timer->clock_offset;
528 
529     if (expires < now) {
530         expires = now + 1;
531     }
532 
533     TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
534                   "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
535                   timer->name, real_limit,
536                   timer->disabled?"disabled":"enabled",
537                   timer, limit,
538                   timer_to_cpu_ticks(now - timer->clock_offset,
539                                      timer->frequency),
540                   timer_to_cpu_ticks(expires - now, timer->frequency));
541 
542     if (!real_limit) {
543         TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
544                 timer->name);
545         qemu_del_timer(timer->qtimer);
546     } else if (timer->disabled) {
547         qemu_del_timer(timer->qtimer);
548     } else {
549         qemu_mod_timer(timer->qtimer, expires);
550     }
551 }
552 
553 static void isa_irq_handler(void *opaque, int n, int level)
554 {
555     static const int isa_irq_to_ivec[16] = {
556         [1] = 0x29, /* keyboard */
557         [4] = 0x2b, /* serial */
558         [6] = 0x27, /* floppy */
559         [7] = 0x22, /* parallel */
560         [12] = 0x2a, /* mouse */
561     };
562     qemu_irq *irqs = opaque;
563     int ivec;
564 
565     assert(n < 16);
566     ivec = isa_irq_to_ivec[n];
567     EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec);
568     if (ivec) {
569         qemu_set_irq(irqs[ivec], level);
570     }
571 }
572 
573 /* EBUS (Eight bit bus) bridge */
574 static ISABus *
575 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs)
576 {
577     qemu_irq *isa_irq;
578     PCIDevice *pci_dev;
579     ISABus *isa_bus;
580 
581     pci_dev = pci_create_simple(bus, devfn, "ebus");
582     isa_bus = DO_UPCAST(ISABus, qbus,
583                         qdev_get_child_bus(&pci_dev->qdev, "isa.0"));
584     isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16);
585     isa_bus_irqs(isa_bus, isa_irq);
586     return isa_bus;
587 }
588 
589 static int
590 pci_ebus_init1(PCIDevice *pci_dev)
591 {
592     EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
593 
594     isa_bus_new(&pci_dev->qdev, pci_address_space_io(pci_dev));
595 
596     pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
597     pci_dev->config[0x05] = 0x00;
598     pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
599     pci_dev->config[0x07] = 0x03; // status = medium devsel
600     pci_dev->config[0x09] = 0x00; // programming i/f
601     pci_dev->config[0x0D] = 0x0a; // latency_timer
602 
603     isa_mmio_setup(&s->bar0, 0x1000000);
604     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
605     isa_mmio_setup(&s->bar1, 0x800000);
606     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar1);
607     return 0;
608 }
609 
610 static void ebus_class_init(ObjectClass *klass, void *data)
611 {
612     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
613 
614     k->init = pci_ebus_init1;
615     k->vendor_id = PCI_VENDOR_ID_SUN;
616     k->device_id = PCI_DEVICE_ID_SUN_EBUS;
617     k->revision = 0x01;
618     k->class_id = PCI_CLASS_BRIDGE_OTHER;
619 }
620 
621 static const TypeInfo ebus_info = {
622     .name          = "ebus",
623     .parent        = TYPE_PCI_DEVICE,
624     .instance_size = sizeof(EbusState),
625     .class_init    = ebus_class_init,
626 };
627 
628 typedef struct PROMState {
629     SysBusDevice busdev;
630     MemoryRegion prom;
631 } PROMState;
632 
633 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
634 {
635     hwaddr *base_addr = (hwaddr *)opaque;
636     return addr + *base_addr - PROM_VADDR;
637 }
638 
639 /* Boot PROM (OpenBIOS) */
640 static void prom_init(hwaddr addr, const char *bios_name)
641 {
642     DeviceState *dev;
643     SysBusDevice *s;
644     char *filename;
645     int ret;
646 
647     dev = qdev_create(NULL, "openprom");
648     qdev_init_nofail(dev);
649     s = SYS_BUS_DEVICE(dev);
650 
651     sysbus_mmio_map(s, 0, addr);
652 
653     /* load boot prom */
654     if (bios_name == NULL) {
655         bios_name = PROM_FILENAME;
656     }
657     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
658     if (filename) {
659         ret = load_elf(filename, translate_prom_address, &addr,
660                        NULL, NULL, NULL, 1, ELF_MACHINE, 0);
661         if (ret < 0 || ret > PROM_SIZE_MAX) {
662             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
663         }
664         g_free(filename);
665     } else {
666         ret = -1;
667     }
668     if (ret < 0 || ret > PROM_SIZE_MAX) {
669         fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
670         exit(1);
671     }
672 }
673 
674 static int prom_init1(SysBusDevice *dev)
675 {
676     PROMState *s = FROM_SYSBUS(PROMState, dev);
677 
678     memory_region_init_ram(&s->prom, "sun4u.prom", PROM_SIZE_MAX);
679     vmstate_register_ram_global(&s->prom);
680     memory_region_set_readonly(&s->prom, true);
681     sysbus_init_mmio(dev, &s->prom);
682     return 0;
683 }
684 
685 static Property prom_properties[] = {
686     {/* end of property list */},
687 };
688 
689 static void prom_class_init(ObjectClass *klass, void *data)
690 {
691     DeviceClass *dc = DEVICE_CLASS(klass);
692     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
693 
694     k->init = prom_init1;
695     dc->props = prom_properties;
696 }
697 
698 static const TypeInfo prom_info = {
699     .name          = "openprom",
700     .parent        = TYPE_SYS_BUS_DEVICE,
701     .instance_size = sizeof(PROMState),
702     .class_init    = prom_class_init,
703 };
704 
705 
706 typedef struct RamDevice
707 {
708     SysBusDevice busdev;
709     MemoryRegion ram;
710     uint64_t size;
711 } RamDevice;
712 
713 /* System RAM */
714 static int ram_init1(SysBusDevice *dev)
715 {
716     RamDevice *d = FROM_SYSBUS(RamDevice, dev);
717 
718     memory_region_init_ram(&d->ram, "sun4u.ram", d->size);
719     vmstate_register_ram_global(&d->ram);
720     sysbus_init_mmio(dev, &d->ram);
721     return 0;
722 }
723 
724 static void ram_init(hwaddr addr, ram_addr_t RAM_size)
725 {
726     DeviceState *dev;
727     SysBusDevice *s;
728     RamDevice *d;
729 
730     /* allocate RAM */
731     dev = qdev_create(NULL, "memory");
732     s = SYS_BUS_DEVICE(dev);
733 
734     d = FROM_SYSBUS(RamDevice, s);
735     d->size = RAM_size;
736     qdev_init_nofail(dev);
737 
738     sysbus_mmio_map(s, 0, addr);
739 }
740 
741 static Property ram_properties[] = {
742     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
743     DEFINE_PROP_END_OF_LIST(),
744 };
745 
746 static void ram_class_init(ObjectClass *klass, void *data)
747 {
748     DeviceClass *dc = DEVICE_CLASS(klass);
749     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
750 
751     k->init = ram_init1;
752     dc->props = ram_properties;
753 }
754 
755 static const TypeInfo ram_info = {
756     .name          = "memory",
757     .parent        = TYPE_SYS_BUS_DEVICE,
758     .instance_size = sizeof(RamDevice),
759     .class_init    = ram_class_init,
760 };
761 
762 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
763 {
764     SPARCCPU *cpu;
765     CPUSPARCState *env;
766     ResetData *reset_info;
767 
768     uint32_t   tick_frequency = 100*1000000;
769     uint32_t  stick_frequency = 100*1000000;
770     uint32_t hstick_frequency = 100*1000000;
771 
772     if (cpu_model == NULL) {
773         cpu_model = hwdef->default_cpu_model;
774     }
775     cpu = cpu_sparc_init(cpu_model);
776     if (cpu == NULL) {
777         fprintf(stderr, "Unable to find Sparc CPU definition\n");
778         exit(1);
779     }
780     env = &cpu->env;
781 
782     env->tick = cpu_timer_create("tick", cpu, tick_irq,
783                                   tick_frequency, TICK_NPT_MASK);
784 
785     env->stick = cpu_timer_create("stick", cpu, stick_irq,
786                                    stick_frequency, TICK_INT_DIS);
787 
788     env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
789                                     hstick_frequency, TICK_INT_DIS);
790 
791     reset_info = g_malloc0(sizeof(ResetData));
792     reset_info->cpu = cpu;
793     reset_info->prom_addr = hwdef->prom_addr;
794     qemu_register_reset(main_cpu_reset, reset_info);
795 
796     return cpu;
797 }
798 
799 static void sun4uv_init(MemoryRegion *address_space_mem,
800                         ram_addr_t RAM_size,
801                         const char *boot_devices,
802                         const char *kernel_filename, const char *kernel_cmdline,
803                         const char *initrd_filename, const char *cpu_model,
804                         const struct hwdef *hwdef)
805 {
806     SPARCCPU *cpu;
807     M48t59State *nvram;
808     unsigned int i;
809     uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
810     PCIBus *pci_bus, *pci_bus2, *pci_bus3;
811     ISABus *isa_bus;
812     qemu_irq *ivec_irqs, *pbm_irqs;
813     DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
814     DriveInfo *fd[MAX_FD];
815     void *fw_cfg;
816 
817     /* init CPUs */
818     cpu = cpu_devinit(cpu_model, hwdef);
819 
820     /* set up devices */
821     ram_init(0, RAM_size);
822 
823     prom_init(hwdef->prom_addr, bios_name);
824 
825     ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX);
826     pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2,
827                            &pci_bus3, &pbm_irqs);
828     pci_vga_init(pci_bus);
829 
830     // XXX Should be pci_bus3
831     isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs);
832 
833     i = 0;
834     if (hwdef->console_serial_base) {
835         serial_mm_init(address_space_mem, hwdef->console_serial_base, 0,
836                        NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
837         i++;
838     }
839     for(; i < MAX_SERIAL_PORTS; i++) {
840         if (serial_hds[i]) {
841             serial_isa_init(isa_bus, i, serial_hds[i]);
842         }
843     }
844 
845     for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
846         if (parallel_hds[i]) {
847             parallel_init(isa_bus, i, parallel_hds[i]);
848         }
849     }
850 
851     for(i = 0; i < nb_nics; i++)
852         pci_nic_init_nofail(&nd_table[i], "ne2k_pci", NULL);
853 
854     ide_drive_get(hd, MAX_IDE_BUS);
855 
856     pci_cmd646_ide_init(pci_bus, hd, 1);
857 
858     isa_create_simple(isa_bus, "i8042");
859     for(i = 0; i < MAX_FD; i++) {
860         fd[i] = drive_get(IF_FLOPPY, 0, i);
861     }
862     fdctrl_init_isa(isa_bus, fd);
863     nvram = m48t59_init_isa(isa_bus, 0x0074, NVRAM_SIZE, 59);
864 
865     initrd_size = 0;
866     initrd_addr = 0;
867     kernel_size = sun4u_load_kernel(kernel_filename, initrd_filename,
868                                     ram_size, &initrd_size, &initrd_addr,
869                                     &kernel_addr, &kernel_entry);
870 
871     sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", RAM_size, boot_devices,
872                            kernel_addr, kernel_size,
873                            kernel_cmdline,
874                            initrd_addr, initrd_size,
875                            /* XXX: need an option to load a NVRAM image */
876                            0,
877                            graphic_width, graphic_height, graphic_depth,
878                            (uint8_t *)&nd_table[0].macaddr);
879 
880     fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
881     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
882     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
883     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
884     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
885     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
886     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
887     if (kernel_cmdline) {
888         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
889                        strlen(kernel_cmdline) + 1);
890         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
891     } else {
892         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
893     }
894     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
895     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
896     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_devices[0]);
897 
898     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
899     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
900     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
901 
902     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
903 }
904 
905 enum {
906     sun4u_id = 0,
907     sun4v_id = 64,
908     niagara_id,
909 };
910 
911 static const struct hwdef hwdefs[] = {
912     /* Sun4u generic PC-like machine */
913     {
914         .default_cpu_model = "TI UltraSparc IIi",
915         .machine_id = sun4u_id,
916         .prom_addr = 0x1fff0000000ULL,
917         .console_serial_base = 0,
918     },
919     /* Sun4v generic PC-like machine */
920     {
921         .default_cpu_model = "Sun UltraSparc T1",
922         .machine_id = sun4v_id,
923         .prom_addr = 0x1fff0000000ULL,
924         .console_serial_base = 0,
925     },
926     /* Sun4v generic Niagara machine */
927     {
928         .default_cpu_model = "Sun UltraSparc T1",
929         .machine_id = niagara_id,
930         .prom_addr = 0xfff0000000ULL,
931         .console_serial_base = 0xfff0c2c000ULL,
932     },
933 };
934 
935 /* Sun4u hardware initialisation */
936 static void sun4u_init(QEMUMachineInitArgs *args)
937 {
938     ram_addr_t RAM_size = args->ram_size;
939     const char *cpu_model = args->cpu_model;
940     const char *kernel_filename = args->kernel_filename;
941     const char *kernel_cmdline = args->kernel_cmdline;
942     const char *initrd_filename = args->initrd_filename;
943     const char *boot_devices = args->boot_device;
944     sun4uv_init(get_system_memory(), RAM_size, boot_devices, kernel_filename,
945                 kernel_cmdline, initrd_filename, cpu_model, &hwdefs[0]);
946 }
947 
948 /* Sun4v hardware initialisation */
949 static void sun4v_init(QEMUMachineInitArgs *args)
950 {
951     ram_addr_t RAM_size = args->ram_size;
952     const char *cpu_model = args->cpu_model;
953     const char *kernel_filename = args->kernel_filename;
954     const char *kernel_cmdline = args->kernel_cmdline;
955     const char *initrd_filename = args->initrd_filename;
956     const char *boot_devices = args->boot_device;
957     sun4uv_init(get_system_memory(), RAM_size, boot_devices, kernel_filename,
958                 kernel_cmdline, initrd_filename, cpu_model, &hwdefs[1]);
959 }
960 
961 /* Niagara hardware initialisation */
962 static void niagara_init(QEMUMachineInitArgs *args)
963 {
964     ram_addr_t RAM_size = args->ram_size;
965     const char *cpu_model = args->cpu_model;
966     const char *kernel_filename = args->kernel_filename;
967     const char *kernel_cmdline = args->kernel_cmdline;
968     const char *initrd_filename = args->initrd_filename;
969     const char *boot_devices = args->boot_device;
970     sun4uv_init(get_system_memory(), RAM_size, boot_devices, kernel_filename,
971                 kernel_cmdline, initrd_filename, cpu_model, &hwdefs[2]);
972 }
973 
974 static QEMUMachine sun4u_machine = {
975     .name = "sun4u",
976     .desc = "Sun4u platform",
977     .init = sun4u_init,
978     .max_cpus = 1, // XXX for now
979     .is_default = 1,
980     DEFAULT_MACHINE_OPTIONS,
981 };
982 
983 static QEMUMachine sun4v_machine = {
984     .name = "sun4v",
985     .desc = "Sun4v platform",
986     .init = sun4v_init,
987     .max_cpus = 1, // XXX for now
988     DEFAULT_MACHINE_OPTIONS,
989 };
990 
991 static QEMUMachine niagara_machine = {
992     .name = "Niagara",
993     .desc = "Sun4v platform, Niagara",
994     .init = niagara_init,
995     .max_cpus = 1, // XXX for now
996     DEFAULT_MACHINE_OPTIONS,
997 };
998 
999 static void sun4u_register_types(void)
1000 {
1001     type_register_static(&ebus_info);
1002     type_register_static(&prom_info);
1003     type_register_static(&ram_info);
1004 }
1005 
1006 static void sun4u_machine_init(void)
1007 {
1008     qemu_register_machine(&sun4u_machine);
1009     qemu_register_machine(&sun4v_machine);
1010     qemu_register_machine(&niagara_machine);
1011 }
1012 
1013 type_init(sun4u_register_types)
1014 machine_init(sun4u_machine_init);
1015