xref: /openbmc/qemu/hw/sparc64/sun4u.c (revision b45c03f5)
1 /*
2  * QEMU Sun4u/Sun4v System Emulator
3  *
4  * Copyright (c) 2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/pci/pci.h"
26 #include "hw/pci-host/apb.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/timer/m48t59.h"
30 #include "hw/block/fdc.h"
31 #include "net/net.h"
32 #include "qemu/timer.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/boards.h"
35 #include "hw/nvram/openbios_firmware_abi.h"
36 #include "hw/nvram/fw_cfg.h"
37 #include "hw/sysbus.h"
38 #include "hw/ide.h"
39 #include "hw/loader.h"
40 #include "elf.h"
41 #include "sysemu/block-backend.h"
42 #include "exec/address-spaces.h"
43 
44 //#define DEBUG_IRQ
45 //#define DEBUG_EBUS
46 //#define DEBUG_TIMER
47 
48 #ifdef DEBUG_IRQ
49 #define CPUIRQ_DPRINTF(fmt, ...)                                \
50     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
51 #else
52 #define CPUIRQ_DPRINTF(fmt, ...)
53 #endif
54 
55 #ifdef DEBUG_EBUS
56 #define EBUS_DPRINTF(fmt, ...)                                  \
57     do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
58 #else
59 #define EBUS_DPRINTF(fmt, ...)
60 #endif
61 
62 #ifdef DEBUG_TIMER
63 #define TIMER_DPRINTF(fmt, ...)                                  \
64     do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define TIMER_DPRINTF(fmt, ...)
67 #endif
68 
69 #define KERNEL_LOAD_ADDR     0x00404000
70 #define CMDLINE_ADDR         0x003ff000
71 #define PROM_SIZE_MAX        (4 * 1024 * 1024)
72 #define PROM_VADDR           0x000ffd00000ULL
73 #define APB_SPECIAL_BASE     0x1fe00000000ULL
74 #define APB_MEM_BASE         0x1ff00000000ULL
75 #define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
76 #define PROM_FILENAME        "openbios-sparc64"
77 #define NVRAM_SIZE           0x2000
78 #define MAX_IDE_BUS          2
79 #define BIOS_CFG_IOPORT      0x510
80 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
81 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
82 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
83 
84 #define IVEC_MAX             0x40
85 
86 #define TICK_MAX             0x7fffffffffffffffULL
87 
88 struct hwdef {
89     const char * const default_cpu_model;
90     uint16_t machine_id;
91     uint64_t prom_addr;
92     uint64_t console_serial_base;
93 };
94 
95 typedef struct EbusState {
96     PCIDevice pci_dev;
97     MemoryRegion bar0;
98     MemoryRegion bar1;
99 } EbusState;
100 
101 int DMA_get_channel_mode (int nchan)
102 {
103     return 0;
104 }
105 int DMA_read_memory (int nchan, void *buf, int pos, int size)
106 {
107     return 0;
108 }
109 int DMA_write_memory (int nchan, void *buf, int pos, int size)
110 {
111     return 0;
112 }
113 void DMA_hold_DREQ (int nchan) {}
114 void DMA_release_DREQ (int nchan) {}
115 void DMA_schedule(int nchan) {}
116 
117 void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
118 {
119 }
120 
121 void DMA_register_channel (int nchan,
122                            DMA_transfer_handler transfer_handler,
123                            void *opaque)
124 {
125 }
126 
127 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
128                             Error **errp)
129 {
130     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
131 }
132 
133 static int sun4u_NVRAM_set_params(Nvram *nvram, uint16_t NVRAM_size,
134                                   const char *arch, ram_addr_t RAM_size,
135                                   const char *boot_devices,
136                                   uint32_t kernel_image, uint32_t kernel_size,
137                                   const char *cmdline,
138                                   uint32_t initrd_image, uint32_t initrd_size,
139                                   uint32_t NVRAM_image,
140                                   int width, int height, int depth,
141                                   const uint8_t *macaddr)
142 {
143     unsigned int i;
144     uint32_t start, end;
145     uint8_t image[0x1ff0];
146     struct OpenBIOS_nvpart_v1 *part_header;
147     NvramClass *k = NVRAM_GET_CLASS(nvram);
148 
149     memset(image, '\0', sizeof(image));
150 
151     start = 0;
152 
153     // OpenBIOS nvram variables
154     // Variable partition
155     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
156     part_header->signature = OPENBIOS_PART_SYSTEM;
157     pstrcpy(part_header->name, sizeof(part_header->name), "system");
158 
159     end = start + sizeof(struct OpenBIOS_nvpart_v1);
160     for (i = 0; i < nb_prom_envs; i++)
161         end = OpenBIOS_set_var(image, end, prom_envs[i]);
162 
163     // End marker
164     image[end++] = '\0';
165 
166     end = start + ((end - start + 15) & ~15);
167     OpenBIOS_finish_partition(part_header, end - start);
168 
169     // free partition
170     start = end;
171     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
172     part_header->signature = OPENBIOS_PART_FREE;
173     pstrcpy(part_header->name, sizeof(part_header->name), "free");
174 
175     end = 0x1fd0;
176     OpenBIOS_finish_partition(part_header, end - start);
177 
178     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
179 
180     for (i = 0; i < sizeof(image); i++) {
181         (k->write)(nvram, i, image[i]);
182     }
183 
184     return 0;
185 }
186 
187 static uint64_t sun4u_load_kernel(const char *kernel_filename,
188                                   const char *initrd_filename,
189                                   ram_addr_t RAM_size, uint64_t *initrd_size,
190                                   uint64_t *initrd_addr, uint64_t *kernel_addr,
191                                   uint64_t *kernel_entry)
192 {
193     int linux_boot;
194     unsigned int i;
195     long kernel_size;
196     uint8_t *ptr;
197     uint64_t kernel_top;
198 
199     linux_boot = (kernel_filename != NULL);
200 
201     kernel_size = 0;
202     if (linux_boot) {
203         int bswap_needed;
204 
205 #ifdef BSWAP_NEEDED
206         bswap_needed = 1;
207 #else
208         bswap_needed = 0;
209 #endif
210         kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry,
211                                kernel_addr, &kernel_top, 1, ELF_MACHINE, 0);
212         if (kernel_size < 0) {
213             *kernel_addr = KERNEL_LOAD_ADDR;
214             *kernel_entry = KERNEL_LOAD_ADDR;
215             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
216                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
217                                     TARGET_PAGE_SIZE);
218         }
219         if (kernel_size < 0) {
220             kernel_size = load_image_targphys(kernel_filename,
221                                               KERNEL_LOAD_ADDR,
222                                               RAM_size - KERNEL_LOAD_ADDR);
223         }
224         if (kernel_size < 0) {
225             fprintf(stderr, "qemu: could not load kernel '%s'\n",
226                     kernel_filename);
227             exit(1);
228         }
229         /* load initrd above kernel */
230         *initrd_size = 0;
231         if (initrd_filename) {
232             *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
233 
234             *initrd_size = load_image_targphys(initrd_filename,
235                                                *initrd_addr,
236                                                RAM_size - *initrd_addr);
237             if ((int)*initrd_size < 0) {
238                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
239                         initrd_filename);
240                 exit(1);
241             }
242         }
243         if (*initrd_size > 0) {
244             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
245                 ptr = rom_ptr(*kernel_addr + i);
246                 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
247                     stl_p(ptr + 24, *initrd_addr + *kernel_addr);
248                     stl_p(ptr + 28, *initrd_size);
249                     break;
250                 }
251             }
252         }
253     }
254     return kernel_size;
255 }
256 
257 void cpu_check_irqs(CPUSPARCState *env)
258 {
259     CPUState *cs;
260     uint32_t pil = env->pil_in |
261                   (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
262 
263     /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
264     if (env->ivec_status & 0x20) {
265         return;
266     }
267     cs = CPU(sparc_env_get_cpu(env));
268     /* check if TM or SM in SOFTINT are set
269        setting these also causes interrupt 14 */
270     if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
271         pil |= 1 << 14;
272     }
273 
274     /* The bit corresponding to psrpil is (1<< psrpil), the next bit
275        is (2 << psrpil). */
276     if (pil < (2 << env->psrpil)){
277         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
278             CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
279                            env->interrupt_index);
280             env->interrupt_index = 0;
281             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
282         }
283         return;
284     }
285 
286     if (cpu_interrupts_enabled(env)) {
287 
288         unsigned int i;
289 
290         for (i = 15; i > env->psrpil; i--) {
291             if (pil & (1 << i)) {
292                 int old_interrupt = env->interrupt_index;
293                 int new_interrupt = TT_EXTINT | i;
294 
295                 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
296                   && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
297                     CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
298                                    "current %x >= pending %x\n",
299                                    env->tl, cpu_tsptr(env)->tt, new_interrupt);
300                 } else if (old_interrupt != new_interrupt) {
301                     env->interrupt_index = new_interrupt;
302                     CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
303                                    old_interrupt, new_interrupt);
304                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
305                 }
306                 break;
307             }
308         }
309     } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
310         CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
311                        "current interrupt %x\n",
312                        pil, env->pil_in, env->softint, env->interrupt_index);
313         env->interrupt_index = 0;
314         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
315     }
316 }
317 
318 static void cpu_kick_irq(SPARCCPU *cpu)
319 {
320     CPUState *cs = CPU(cpu);
321     CPUSPARCState *env = &cpu->env;
322 
323     cs->halted = 0;
324     cpu_check_irqs(env);
325     qemu_cpu_kick(cs);
326 }
327 
328 static void cpu_set_ivec_irq(void *opaque, int irq, int level)
329 {
330     SPARCCPU *cpu = opaque;
331     CPUSPARCState *env = &cpu->env;
332     CPUState *cs;
333 
334     if (level) {
335         if (!(env->ivec_status & 0x20)) {
336             CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
337             cs = CPU(cpu);
338             cs->halted = 0;
339             env->interrupt_index = TT_IVEC;
340             env->ivec_status |= 0x20;
341             env->ivec_data[0] = (0x1f << 6) | irq;
342             env->ivec_data[1] = 0;
343             env->ivec_data[2] = 0;
344             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
345         }
346     } else {
347         if (env->ivec_status & 0x20) {
348             CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
349             cs = CPU(cpu);
350             env->ivec_status &= ~0x20;
351             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
352         }
353     }
354 }
355 
356 typedef struct ResetData {
357     SPARCCPU *cpu;
358     uint64_t prom_addr;
359 } ResetData;
360 
361 void cpu_put_timer(QEMUFile *f, CPUTimer *s)
362 {
363     qemu_put_be32s(f, &s->frequency);
364     qemu_put_be32s(f, &s->disabled);
365     qemu_put_be64s(f, &s->disabled_mask);
366     qemu_put_sbe64s(f, &s->clock_offset);
367 
368     timer_put(f, s->qtimer);
369 }
370 
371 void cpu_get_timer(QEMUFile *f, CPUTimer *s)
372 {
373     qemu_get_be32s(f, &s->frequency);
374     qemu_get_be32s(f, &s->disabled);
375     qemu_get_be64s(f, &s->disabled_mask);
376     qemu_get_sbe64s(f, &s->clock_offset);
377 
378     timer_get(f, s->qtimer);
379 }
380 
381 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
382                                   QEMUBHFunc *cb, uint32_t frequency,
383                                   uint64_t disabled_mask)
384 {
385     CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
386 
387     timer->name = name;
388     timer->frequency = frequency;
389     timer->disabled_mask = disabled_mask;
390 
391     timer->disabled = 1;
392     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
393 
394     timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu);
395 
396     return timer;
397 }
398 
399 static void cpu_timer_reset(CPUTimer *timer)
400 {
401     timer->disabled = 1;
402     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
403 
404     timer_del(timer->qtimer);
405 }
406 
407 static void main_cpu_reset(void *opaque)
408 {
409     ResetData *s = (ResetData *)opaque;
410     CPUSPARCState *env = &s->cpu->env;
411     static unsigned int nr_resets;
412 
413     cpu_reset(CPU(s->cpu));
414 
415     cpu_timer_reset(env->tick);
416     cpu_timer_reset(env->stick);
417     cpu_timer_reset(env->hstick);
418 
419     env->gregs[1] = 0; // Memory start
420     env->gregs[2] = ram_size; // Memory size
421     env->gregs[3] = 0; // Machine description XXX
422     if (nr_resets++ == 0) {
423         /* Power on reset */
424         env->pc = s->prom_addr + 0x20ULL;
425     } else {
426         env->pc = s->prom_addr + 0x40ULL;
427     }
428     env->npc = env->pc + 4;
429 }
430 
431 static void tick_irq(void *opaque)
432 {
433     SPARCCPU *cpu = opaque;
434     CPUSPARCState *env = &cpu->env;
435 
436     CPUTimer* timer = env->tick;
437 
438     if (timer->disabled) {
439         CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
440         return;
441     } else {
442         CPUIRQ_DPRINTF("tick: fire\n");
443     }
444 
445     env->softint |= SOFTINT_TIMER;
446     cpu_kick_irq(cpu);
447 }
448 
449 static void stick_irq(void *opaque)
450 {
451     SPARCCPU *cpu = opaque;
452     CPUSPARCState *env = &cpu->env;
453 
454     CPUTimer* timer = env->stick;
455 
456     if (timer->disabled) {
457         CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
458         return;
459     } else {
460         CPUIRQ_DPRINTF("stick: fire\n");
461     }
462 
463     env->softint |= SOFTINT_STIMER;
464     cpu_kick_irq(cpu);
465 }
466 
467 static void hstick_irq(void *opaque)
468 {
469     SPARCCPU *cpu = opaque;
470     CPUSPARCState *env = &cpu->env;
471 
472     CPUTimer* timer = env->hstick;
473 
474     if (timer->disabled) {
475         CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
476         return;
477     } else {
478         CPUIRQ_DPRINTF("hstick: fire\n");
479     }
480 
481     env->softint |= SOFTINT_STIMER;
482     cpu_kick_irq(cpu);
483 }
484 
485 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
486 {
487     return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
488 }
489 
490 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
491 {
492     return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
493 }
494 
495 void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
496 {
497     uint64_t real_count = count & ~timer->disabled_mask;
498     uint64_t disabled_bit = count & timer->disabled_mask;
499 
500     int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
501                     cpu_to_timer_ticks(real_count, timer->frequency);
502 
503     TIMER_DPRINTF("%s set_count count=0x%016lx (%s) p=%p\n",
504                   timer->name, real_count,
505                   timer->disabled?"disabled":"enabled", timer);
506 
507     timer->disabled = disabled_bit ? 1 : 0;
508     timer->clock_offset = vm_clock_offset;
509 }
510 
511 uint64_t cpu_tick_get_count(CPUTimer *timer)
512 {
513     uint64_t real_count = timer_to_cpu_ticks(
514                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset,
515                     timer->frequency);
516 
517     TIMER_DPRINTF("%s get_count count=0x%016lx (%s) p=%p\n",
518            timer->name, real_count,
519            timer->disabled?"disabled":"enabled", timer);
520 
521     if (timer->disabled)
522         real_count |= timer->disabled_mask;
523 
524     return real_count;
525 }
526 
527 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
528 {
529     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
530 
531     uint64_t real_limit = limit & ~timer->disabled_mask;
532     timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
533 
534     int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
535                     timer->clock_offset;
536 
537     if (expires < now) {
538         expires = now + 1;
539     }
540 
541     TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
542                   "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
543                   timer->name, real_limit,
544                   timer->disabled?"disabled":"enabled",
545                   timer, limit,
546                   timer_to_cpu_ticks(now - timer->clock_offset,
547                                      timer->frequency),
548                   timer_to_cpu_ticks(expires - now, timer->frequency));
549 
550     if (!real_limit) {
551         TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
552                 timer->name);
553         timer_del(timer->qtimer);
554     } else if (timer->disabled) {
555         timer_del(timer->qtimer);
556     } else {
557         timer_mod(timer->qtimer, expires);
558     }
559 }
560 
561 static void isa_irq_handler(void *opaque, int n, int level)
562 {
563     static const int isa_irq_to_ivec[16] = {
564         [1] = 0x29, /* keyboard */
565         [4] = 0x2b, /* serial */
566         [6] = 0x27, /* floppy */
567         [7] = 0x22, /* parallel */
568         [12] = 0x2a, /* mouse */
569     };
570     qemu_irq *irqs = opaque;
571     int ivec;
572 
573     assert(n < 16);
574     ivec = isa_irq_to_ivec[n];
575     EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec);
576     if (ivec) {
577         qemu_set_irq(irqs[ivec], level);
578     }
579 }
580 
581 /* EBUS (Eight bit bus) bridge */
582 static ISABus *
583 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs)
584 {
585     qemu_irq *isa_irq;
586     PCIDevice *pci_dev;
587     ISABus *isa_bus;
588 
589     pci_dev = pci_create_simple(bus, devfn, "ebus");
590     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci_dev), "isa.0"));
591     isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16);
592     isa_bus_irqs(isa_bus, isa_irq);
593     return isa_bus;
594 }
595 
596 static int
597 pci_ebus_init1(PCIDevice *pci_dev)
598 {
599     EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
600 
601     isa_bus_new(DEVICE(pci_dev), get_system_memory(),
602                 pci_address_space_io(pci_dev));
603 
604     pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
605     pci_dev->config[0x05] = 0x00;
606     pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
607     pci_dev->config[0x07] = 0x03; // status = medium devsel
608     pci_dev->config[0x09] = 0x00; // programming i/f
609     pci_dev->config[0x0D] = 0x0a; // latency_timer
610 
611     memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(),
612                              0, 0x1000000);
613     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
614     memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(),
615                              0, 0x4000);
616     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1);
617     return 0;
618 }
619 
620 static void ebus_class_init(ObjectClass *klass, void *data)
621 {
622     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
623 
624     k->init = pci_ebus_init1;
625     k->vendor_id = PCI_VENDOR_ID_SUN;
626     k->device_id = PCI_DEVICE_ID_SUN_EBUS;
627     k->revision = 0x01;
628     k->class_id = PCI_CLASS_BRIDGE_OTHER;
629 }
630 
631 static const TypeInfo ebus_info = {
632     .name          = "ebus",
633     .parent        = TYPE_PCI_DEVICE,
634     .instance_size = sizeof(EbusState),
635     .class_init    = ebus_class_init,
636 };
637 
638 #define TYPE_OPENPROM "openprom"
639 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
640 
641 typedef struct PROMState {
642     SysBusDevice parent_obj;
643 
644     MemoryRegion prom;
645 } PROMState;
646 
647 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
648 {
649     hwaddr *base_addr = (hwaddr *)opaque;
650     return addr + *base_addr - PROM_VADDR;
651 }
652 
653 /* Boot PROM (OpenBIOS) */
654 static void prom_init(hwaddr addr, const char *bios_name)
655 {
656     DeviceState *dev;
657     SysBusDevice *s;
658     char *filename;
659     int ret;
660 
661     dev = qdev_create(NULL, TYPE_OPENPROM);
662     qdev_init_nofail(dev);
663     s = SYS_BUS_DEVICE(dev);
664 
665     sysbus_mmio_map(s, 0, addr);
666 
667     /* load boot prom */
668     if (bios_name == NULL) {
669         bios_name = PROM_FILENAME;
670     }
671     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
672     if (filename) {
673         ret = load_elf(filename, translate_prom_address, &addr,
674                        NULL, NULL, NULL, 1, ELF_MACHINE, 0);
675         if (ret < 0 || ret > PROM_SIZE_MAX) {
676             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
677         }
678         g_free(filename);
679     } else {
680         ret = -1;
681     }
682     if (ret < 0 || ret > PROM_SIZE_MAX) {
683         fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
684         exit(1);
685     }
686 }
687 
688 static int prom_init1(SysBusDevice *dev)
689 {
690     PROMState *s = OPENPROM(dev);
691 
692     memory_region_init_ram(&s->prom, OBJECT(s), "sun4u.prom", PROM_SIZE_MAX,
693                            &error_abort);
694     vmstate_register_ram_global(&s->prom);
695     memory_region_set_readonly(&s->prom, true);
696     sysbus_init_mmio(dev, &s->prom);
697     return 0;
698 }
699 
700 static Property prom_properties[] = {
701     {/* end of property list */},
702 };
703 
704 static void prom_class_init(ObjectClass *klass, void *data)
705 {
706     DeviceClass *dc = DEVICE_CLASS(klass);
707     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
708 
709     k->init = prom_init1;
710     dc->props = prom_properties;
711 }
712 
713 static const TypeInfo prom_info = {
714     .name          = TYPE_OPENPROM,
715     .parent        = TYPE_SYS_BUS_DEVICE,
716     .instance_size = sizeof(PROMState),
717     .class_init    = prom_class_init,
718 };
719 
720 
721 #define TYPE_SUN4U_MEMORY "memory"
722 #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY)
723 
724 typedef struct RamDevice {
725     SysBusDevice parent_obj;
726 
727     MemoryRegion ram;
728     uint64_t size;
729 } RamDevice;
730 
731 /* System RAM */
732 static int ram_init1(SysBusDevice *dev)
733 {
734     RamDevice *d = SUN4U_RAM(dev);
735 
736     memory_region_init_ram(&d->ram, OBJECT(d), "sun4u.ram", d->size,
737                            &error_abort);
738     vmstate_register_ram_global(&d->ram);
739     sysbus_init_mmio(dev, &d->ram);
740     return 0;
741 }
742 
743 static void ram_init(hwaddr addr, ram_addr_t RAM_size)
744 {
745     DeviceState *dev;
746     SysBusDevice *s;
747     RamDevice *d;
748 
749     /* allocate RAM */
750     dev = qdev_create(NULL, TYPE_SUN4U_MEMORY);
751     s = SYS_BUS_DEVICE(dev);
752 
753     d = SUN4U_RAM(dev);
754     d->size = RAM_size;
755     qdev_init_nofail(dev);
756 
757     sysbus_mmio_map(s, 0, addr);
758 }
759 
760 static Property ram_properties[] = {
761     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
762     DEFINE_PROP_END_OF_LIST(),
763 };
764 
765 static void ram_class_init(ObjectClass *klass, void *data)
766 {
767     DeviceClass *dc = DEVICE_CLASS(klass);
768     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
769 
770     k->init = ram_init1;
771     dc->props = ram_properties;
772 }
773 
774 static const TypeInfo ram_info = {
775     .name          = TYPE_SUN4U_MEMORY,
776     .parent        = TYPE_SYS_BUS_DEVICE,
777     .instance_size = sizeof(RamDevice),
778     .class_init    = ram_class_init,
779 };
780 
781 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
782 {
783     SPARCCPU *cpu;
784     CPUSPARCState *env;
785     ResetData *reset_info;
786 
787     uint32_t   tick_frequency = 100*1000000;
788     uint32_t  stick_frequency = 100*1000000;
789     uint32_t hstick_frequency = 100*1000000;
790 
791     if (cpu_model == NULL) {
792         cpu_model = hwdef->default_cpu_model;
793     }
794     cpu = cpu_sparc_init(cpu_model);
795     if (cpu == NULL) {
796         fprintf(stderr, "Unable to find Sparc CPU definition\n");
797         exit(1);
798     }
799     env = &cpu->env;
800 
801     env->tick = cpu_timer_create("tick", cpu, tick_irq,
802                                   tick_frequency, TICK_NPT_MASK);
803 
804     env->stick = cpu_timer_create("stick", cpu, stick_irq,
805                                    stick_frequency, TICK_INT_DIS);
806 
807     env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
808                                     hstick_frequency, TICK_INT_DIS);
809 
810     reset_info = g_malloc0(sizeof(ResetData));
811     reset_info->cpu = cpu;
812     reset_info->prom_addr = hwdef->prom_addr;
813     qemu_register_reset(main_cpu_reset, reset_info);
814 
815     return cpu;
816 }
817 
818 static void sun4uv_init(MemoryRegion *address_space_mem,
819                         MachineState *machine,
820                         const struct hwdef *hwdef)
821 {
822     SPARCCPU *cpu;
823     Nvram *nvram;
824     unsigned int i;
825     uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
826     PCIBus *pci_bus, *pci_bus2, *pci_bus3;
827     ISABus *isa_bus;
828     SysBusDevice *s;
829     qemu_irq *ivec_irqs, *pbm_irqs;
830     DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
831     DriveInfo *fd[MAX_FD];
832     FWCfgState *fw_cfg;
833 
834     /* init CPUs */
835     cpu = cpu_devinit(machine->cpu_model, hwdef);
836 
837     /* set up devices */
838     ram_init(0, machine->ram_size);
839 
840     prom_init(hwdef->prom_addr, bios_name);
841 
842     ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX);
843     pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2,
844                            &pci_bus3, &pbm_irqs);
845     pci_vga_init(pci_bus);
846 
847     // XXX Should be pci_bus3
848     isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs);
849 
850     i = 0;
851     if (hwdef->console_serial_base) {
852         serial_mm_init(address_space_mem, hwdef->console_serial_base, 0,
853                        NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
854         i++;
855     }
856 
857     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
858     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
859 
860     for(i = 0; i < nb_nics; i++)
861         pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
862 
863     ide_drive_get(hd, ARRAY_SIZE(hd));
864 
865     pci_cmd646_ide_init(pci_bus, hd, 1);
866 
867     isa_create_simple(isa_bus, "i8042");
868     for(i = 0; i < MAX_FD; i++) {
869         fd[i] = drive_get(IF_FLOPPY, 0, i);
870     }
871     fdctrl_init_isa(isa_bus, fd);
872 
873     /* Map NVRAM into I/O (ebus) space */
874     nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59);
875     s = SYS_BUS_DEVICE(nvram);
876     memory_region_add_subregion(get_system_io(), 0x2000,
877                                 sysbus_mmio_get_region(s, 0));
878 
879     initrd_size = 0;
880     initrd_addr = 0;
881     kernel_size = sun4u_load_kernel(machine->kernel_filename,
882                                     machine->initrd_filename,
883                                     ram_size, &initrd_size, &initrd_addr,
884                                     &kernel_addr, &kernel_entry);
885 
886     sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size,
887                            machine->boot_order,
888                            kernel_addr, kernel_size,
889                            machine->kernel_cmdline,
890                            initrd_addr, initrd_size,
891                            /* XXX: need an option to load a NVRAM image */
892                            0,
893                            graphic_width, graphic_height, graphic_depth,
894                            (uint8_t *)&nd_table[0].macaddr);
895 
896     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
897     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
898     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
899     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
900     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
901     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
902     if (machine->kernel_cmdline) {
903         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
904                        strlen(machine->kernel_cmdline) + 1);
905         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
906     } else {
907         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
908     }
909     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
910     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
911     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
912 
913     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
914     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
915     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
916 
917     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
918 }
919 
920 enum {
921     sun4u_id = 0,
922     sun4v_id = 64,
923     niagara_id,
924 };
925 
926 static const struct hwdef hwdefs[] = {
927     /* Sun4u generic PC-like machine */
928     {
929         .default_cpu_model = "TI UltraSparc IIi",
930         .machine_id = sun4u_id,
931         .prom_addr = 0x1fff0000000ULL,
932         .console_serial_base = 0,
933     },
934     /* Sun4v generic PC-like machine */
935     {
936         .default_cpu_model = "Sun UltraSparc T1",
937         .machine_id = sun4v_id,
938         .prom_addr = 0x1fff0000000ULL,
939         .console_serial_base = 0,
940     },
941     /* Sun4v generic Niagara machine */
942     {
943         .default_cpu_model = "Sun UltraSparc T1",
944         .machine_id = niagara_id,
945         .prom_addr = 0xfff0000000ULL,
946         .console_serial_base = 0xfff0c2c000ULL,
947     },
948 };
949 
950 /* Sun4u hardware initialisation */
951 static void sun4u_init(MachineState *machine)
952 {
953     sun4uv_init(get_system_memory(), machine, &hwdefs[0]);
954 }
955 
956 /* Sun4v hardware initialisation */
957 static void sun4v_init(MachineState *machine)
958 {
959     sun4uv_init(get_system_memory(), machine, &hwdefs[1]);
960 }
961 
962 /* Niagara hardware initialisation */
963 static void niagara_init(MachineState *machine)
964 {
965     sun4uv_init(get_system_memory(), machine, &hwdefs[2]);
966 }
967 
968 static QEMUMachine sun4u_machine = {
969     .name = "sun4u",
970     .desc = "Sun4u platform",
971     .init = sun4u_init,
972     .max_cpus = 1, // XXX for now
973     .is_default = 1,
974     .default_boot_order = "c",
975 };
976 
977 static QEMUMachine sun4v_machine = {
978     .name = "sun4v",
979     .desc = "Sun4v platform",
980     .init = sun4v_init,
981     .max_cpus = 1, // XXX for now
982     .default_boot_order = "c",
983 };
984 
985 static QEMUMachine niagara_machine = {
986     .name = "Niagara",
987     .desc = "Sun4v platform, Niagara",
988     .init = niagara_init,
989     .max_cpus = 1, // XXX for now
990     .default_boot_order = "c",
991 };
992 
993 static void sun4u_register_types(void)
994 {
995     type_register_static(&ebus_info);
996     type_register_static(&prom_info);
997     type_register_static(&ram_info);
998 }
999 
1000 static void sun4u_machine_init(void)
1001 {
1002     qemu_register_machine(&sun4u_machine);
1003     qemu_register_machine(&sun4v_machine);
1004     qemu_register_machine(&niagara_machine);
1005 }
1006 
1007 type_init(sun4u_register_types)
1008 machine_init(sun4u_machine_init);
1009