xref: /openbmc/qemu/hw/sparc64/sun4u.c (revision 9884abee)
1 /*
2  * QEMU Sun4u/Sun4v System Emulator
3  *
4  * Copyright (c) 2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci-host/apb.h"
28 #include "hw/i386/pc.h"
29 #include "hw/char/serial.h"
30 #include "hw/timer/m48t59.h"
31 #include "hw/block/fdc.h"
32 #include "net/net.h"
33 #include "qemu/timer.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/boards.h"
36 #include "hw/nvram/openbios_firmware_abi.h"
37 #include "hw/nvram/fw_cfg.h"
38 #include "hw/sysbus.h"
39 #include "hw/ide.h"
40 #include "hw/loader.h"
41 #include "elf.h"
42 #include "sysemu/block-backend.h"
43 #include "exec/address-spaces.h"
44 
45 //#define DEBUG_IRQ
46 //#define DEBUG_EBUS
47 //#define DEBUG_TIMER
48 
49 #ifdef DEBUG_IRQ
50 #define CPUIRQ_DPRINTF(fmt, ...)                                \
51     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
52 #else
53 #define CPUIRQ_DPRINTF(fmt, ...)
54 #endif
55 
56 #ifdef DEBUG_EBUS
57 #define EBUS_DPRINTF(fmt, ...)                                  \
58     do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
59 #else
60 #define EBUS_DPRINTF(fmt, ...)
61 #endif
62 
63 #ifdef DEBUG_TIMER
64 #define TIMER_DPRINTF(fmt, ...)                                  \
65     do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
66 #else
67 #define TIMER_DPRINTF(fmt, ...)
68 #endif
69 
70 #define KERNEL_LOAD_ADDR     0x00404000
71 #define CMDLINE_ADDR         0x003ff000
72 #define PROM_SIZE_MAX        (4 * 1024 * 1024)
73 #define PROM_VADDR           0x000ffd00000ULL
74 #define APB_SPECIAL_BASE     0x1fe00000000ULL
75 #define APB_MEM_BASE         0x1ff00000000ULL
76 #define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
77 #define PROM_FILENAME        "openbios-sparc64"
78 #define NVRAM_SIZE           0x2000
79 #define MAX_IDE_BUS          2
80 #define BIOS_CFG_IOPORT      0x510
81 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
82 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
83 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
84 
85 #define IVEC_MAX             0x40
86 
87 #define TICK_MAX             0x7fffffffffffffffULL
88 
89 struct hwdef {
90     const char * const default_cpu_model;
91     uint16_t machine_id;
92     uint64_t prom_addr;
93     uint64_t console_serial_base;
94 };
95 
96 typedef struct EbusState {
97     PCIDevice pci_dev;
98     MemoryRegion bar0;
99     MemoryRegion bar1;
100 } EbusState;
101 
102 int DMA_get_channel_mode (int nchan)
103 {
104     return 0;
105 }
106 int DMA_read_memory (int nchan, void *buf, int pos, int size)
107 {
108     return 0;
109 }
110 int DMA_write_memory (int nchan, void *buf, int pos, int size)
111 {
112     return 0;
113 }
114 void DMA_hold_DREQ (int nchan) {}
115 void DMA_release_DREQ (int nchan) {}
116 void DMA_schedule(void) {}
117 
118 void DMA_init(int high_page_enable)
119 {
120 }
121 
122 void DMA_register_channel (int nchan,
123                            DMA_transfer_handler transfer_handler,
124                            void *opaque)
125 {
126 }
127 
128 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
129                             Error **errp)
130 {
131     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
132 }
133 
134 static int sun4u_NVRAM_set_params(Nvram *nvram, uint16_t NVRAM_size,
135                                   const char *arch, ram_addr_t RAM_size,
136                                   const char *boot_devices,
137                                   uint32_t kernel_image, uint32_t kernel_size,
138                                   const char *cmdline,
139                                   uint32_t initrd_image, uint32_t initrd_size,
140                                   uint32_t NVRAM_image,
141                                   int width, int height, int depth,
142                                   const uint8_t *macaddr)
143 {
144     unsigned int i;
145     uint32_t start, end;
146     uint8_t image[0x1ff0];
147     struct OpenBIOS_nvpart_v1 *part_header;
148     NvramClass *k = NVRAM_GET_CLASS(nvram);
149 
150     memset(image, '\0', sizeof(image));
151 
152     start = 0;
153 
154     // OpenBIOS nvram variables
155     // Variable partition
156     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
157     part_header->signature = OPENBIOS_PART_SYSTEM;
158     pstrcpy(part_header->name, sizeof(part_header->name), "system");
159 
160     end = start + sizeof(struct OpenBIOS_nvpart_v1);
161     for (i = 0; i < nb_prom_envs; i++)
162         end = OpenBIOS_set_var(image, end, prom_envs[i]);
163 
164     // End marker
165     image[end++] = '\0';
166 
167     end = start + ((end - start + 15) & ~15);
168     OpenBIOS_finish_partition(part_header, end - start);
169 
170     // free partition
171     start = end;
172     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
173     part_header->signature = OPENBIOS_PART_FREE;
174     pstrcpy(part_header->name, sizeof(part_header->name), "free");
175 
176     end = 0x1fd0;
177     OpenBIOS_finish_partition(part_header, end - start);
178 
179     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
180 
181     for (i = 0; i < sizeof(image); i++) {
182         (k->write)(nvram, i, image[i]);
183     }
184 
185     return 0;
186 }
187 
188 static uint64_t sun4u_load_kernel(const char *kernel_filename,
189                                   const char *initrd_filename,
190                                   ram_addr_t RAM_size, uint64_t *initrd_size,
191                                   uint64_t *initrd_addr, uint64_t *kernel_addr,
192                                   uint64_t *kernel_entry)
193 {
194     int linux_boot;
195     unsigned int i;
196     long kernel_size;
197     uint8_t *ptr;
198     uint64_t kernel_top;
199 
200     linux_boot = (kernel_filename != NULL);
201 
202     kernel_size = 0;
203     if (linux_boot) {
204         int bswap_needed;
205 
206 #ifdef BSWAP_NEEDED
207         bswap_needed = 1;
208 #else
209         bswap_needed = 0;
210 #endif
211         kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry,
212                                kernel_addr, &kernel_top, 1, EM_SPARCV9, 0);
213         if (kernel_size < 0) {
214             *kernel_addr = KERNEL_LOAD_ADDR;
215             *kernel_entry = KERNEL_LOAD_ADDR;
216             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
217                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
218                                     TARGET_PAGE_SIZE);
219         }
220         if (kernel_size < 0) {
221             kernel_size = load_image_targphys(kernel_filename,
222                                               KERNEL_LOAD_ADDR,
223                                               RAM_size - KERNEL_LOAD_ADDR);
224         }
225         if (kernel_size < 0) {
226             fprintf(stderr, "qemu: could not load kernel '%s'\n",
227                     kernel_filename);
228             exit(1);
229         }
230         /* load initrd above kernel */
231         *initrd_size = 0;
232         if (initrd_filename) {
233             *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
234 
235             *initrd_size = load_image_targphys(initrd_filename,
236                                                *initrd_addr,
237                                                RAM_size - *initrd_addr);
238             if ((int)*initrd_size < 0) {
239                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
240                         initrd_filename);
241                 exit(1);
242             }
243         }
244         if (*initrd_size > 0) {
245             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
246                 ptr = rom_ptr(*kernel_addr + i);
247                 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
248                     stl_p(ptr + 24, *initrd_addr + *kernel_addr);
249                     stl_p(ptr + 28, *initrd_size);
250                     break;
251                 }
252             }
253         }
254     }
255     return kernel_size;
256 }
257 
258 void cpu_check_irqs(CPUSPARCState *env)
259 {
260     CPUState *cs;
261     uint32_t pil = env->pil_in |
262                   (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
263 
264     /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
265     if (env->ivec_status & 0x20) {
266         return;
267     }
268     cs = CPU(sparc_env_get_cpu(env));
269     /* check if TM or SM in SOFTINT are set
270        setting these also causes interrupt 14 */
271     if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
272         pil |= 1 << 14;
273     }
274 
275     /* The bit corresponding to psrpil is (1<< psrpil), the next bit
276        is (2 << psrpil). */
277     if (pil < (2 << env->psrpil)){
278         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
279             CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
280                            env->interrupt_index);
281             env->interrupt_index = 0;
282             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
283         }
284         return;
285     }
286 
287     if (cpu_interrupts_enabled(env)) {
288 
289         unsigned int i;
290 
291         for (i = 15; i > env->psrpil; i--) {
292             if (pil & (1 << i)) {
293                 int old_interrupt = env->interrupt_index;
294                 int new_interrupt = TT_EXTINT | i;
295 
296                 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
297                   && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
298                     CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
299                                    "current %x >= pending %x\n",
300                                    env->tl, cpu_tsptr(env)->tt, new_interrupt);
301                 } else if (old_interrupt != new_interrupt) {
302                     env->interrupt_index = new_interrupt;
303                     CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
304                                    old_interrupt, new_interrupt);
305                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
306                 }
307                 break;
308             }
309         }
310     } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
311         CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
312                        "current interrupt %x\n",
313                        pil, env->pil_in, env->softint, env->interrupt_index);
314         env->interrupt_index = 0;
315         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
316     }
317 }
318 
319 static void cpu_kick_irq(SPARCCPU *cpu)
320 {
321     CPUState *cs = CPU(cpu);
322     CPUSPARCState *env = &cpu->env;
323 
324     cs->halted = 0;
325     cpu_check_irqs(env);
326     qemu_cpu_kick(cs);
327 }
328 
329 static void cpu_set_ivec_irq(void *opaque, int irq, int level)
330 {
331     SPARCCPU *cpu = opaque;
332     CPUSPARCState *env = &cpu->env;
333     CPUState *cs;
334 
335     if (level) {
336         if (!(env->ivec_status & 0x20)) {
337             CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
338             cs = CPU(cpu);
339             cs->halted = 0;
340             env->interrupt_index = TT_IVEC;
341             env->ivec_status |= 0x20;
342             env->ivec_data[0] = (0x1f << 6) | irq;
343             env->ivec_data[1] = 0;
344             env->ivec_data[2] = 0;
345             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
346         }
347     } else {
348         if (env->ivec_status & 0x20) {
349             CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
350             cs = CPU(cpu);
351             env->ivec_status &= ~0x20;
352             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
353         }
354     }
355 }
356 
357 typedef struct ResetData {
358     SPARCCPU *cpu;
359     uint64_t prom_addr;
360 } ResetData;
361 
362 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
363                                   QEMUBHFunc *cb, uint32_t frequency,
364                                   uint64_t disabled_mask, uint64_t npt_mask)
365 {
366     CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
367 
368     timer->name = name;
369     timer->frequency = frequency;
370     timer->disabled_mask = disabled_mask;
371     timer->npt_mask = npt_mask;
372 
373     timer->disabled = 1;
374     timer->npt = 1;
375     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
376 
377     timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu);
378 
379     return timer;
380 }
381 
382 static void cpu_timer_reset(CPUTimer *timer)
383 {
384     timer->disabled = 1;
385     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
386 
387     timer_del(timer->qtimer);
388 }
389 
390 static void main_cpu_reset(void *opaque)
391 {
392     ResetData *s = (ResetData *)opaque;
393     CPUSPARCState *env = &s->cpu->env;
394     static unsigned int nr_resets;
395 
396     cpu_reset(CPU(s->cpu));
397 
398     cpu_timer_reset(env->tick);
399     cpu_timer_reset(env->stick);
400     cpu_timer_reset(env->hstick);
401 
402     env->gregs[1] = 0; // Memory start
403     env->gregs[2] = ram_size; // Memory size
404     env->gregs[3] = 0; // Machine description XXX
405     if (nr_resets++ == 0) {
406         /* Power on reset */
407         env->pc = s->prom_addr + 0x20ULL;
408     } else {
409         env->pc = s->prom_addr + 0x40ULL;
410     }
411     env->npc = env->pc + 4;
412 }
413 
414 static void tick_irq(void *opaque)
415 {
416     SPARCCPU *cpu = opaque;
417     CPUSPARCState *env = &cpu->env;
418 
419     CPUTimer* timer = env->tick;
420 
421     if (timer->disabled) {
422         CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
423         return;
424     } else {
425         CPUIRQ_DPRINTF("tick: fire\n");
426     }
427 
428     env->softint |= SOFTINT_TIMER;
429     cpu_kick_irq(cpu);
430 }
431 
432 static void stick_irq(void *opaque)
433 {
434     SPARCCPU *cpu = opaque;
435     CPUSPARCState *env = &cpu->env;
436 
437     CPUTimer* timer = env->stick;
438 
439     if (timer->disabled) {
440         CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
441         return;
442     } else {
443         CPUIRQ_DPRINTF("stick: fire\n");
444     }
445 
446     env->softint |= SOFTINT_STIMER;
447     cpu_kick_irq(cpu);
448 }
449 
450 static void hstick_irq(void *opaque)
451 {
452     SPARCCPU *cpu = opaque;
453     CPUSPARCState *env = &cpu->env;
454 
455     CPUTimer* timer = env->hstick;
456 
457     if (timer->disabled) {
458         CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
459         return;
460     } else {
461         CPUIRQ_DPRINTF("hstick: fire\n");
462     }
463 
464     env->softint |= SOFTINT_STIMER;
465     cpu_kick_irq(cpu);
466 }
467 
468 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
469 {
470     return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
471 }
472 
473 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
474 {
475     return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
476 }
477 
478 void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
479 {
480     uint64_t real_count = count & ~timer->npt_mask;
481     uint64_t npt_bit = count & timer->npt_mask;
482 
483     int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
484                     cpu_to_timer_ticks(real_count, timer->frequency);
485 
486     TIMER_DPRINTF("%s set_count count=0x%016lx (npt %s) p=%p\n",
487                   timer->name, real_count,
488                   timer->npt ? "disabled" : "enabled", timer);
489 
490     timer->npt = npt_bit ? 1 : 0;
491     timer->clock_offset = vm_clock_offset;
492 }
493 
494 uint64_t cpu_tick_get_count(CPUTimer *timer)
495 {
496     uint64_t real_count = timer_to_cpu_ticks(
497                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset,
498                     timer->frequency);
499 
500     TIMER_DPRINTF("%s get_count count=0x%016lx (npt %s) p=%p\n",
501            timer->name, real_count,
502            timer->npt ? "disabled" : "enabled", timer);
503 
504     if (timer->npt) {
505         real_count |= timer->npt_mask;
506     }
507 
508     return real_count;
509 }
510 
511 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
512 {
513     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
514 
515     uint64_t real_limit = limit & ~timer->disabled_mask;
516     timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
517 
518     int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
519                     timer->clock_offset;
520 
521     if (expires < now) {
522         expires = now + 1;
523     }
524 
525     TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
526                   "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
527                   timer->name, real_limit,
528                   timer->disabled?"disabled":"enabled",
529                   timer, limit,
530                   timer_to_cpu_ticks(now - timer->clock_offset,
531                                      timer->frequency),
532                   timer_to_cpu_ticks(expires - now, timer->frequency));
533 
534     if (!real_limit) {
535         TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
536                 timer->name);
537         timer_del(timer->qtimer);
538     } else if (timer->disabled) {
539         timer_del(timer->qtimer);
540     } else {
541         timer_mod(timer->qtimer, expires);
542     }
543 }
544 
545 static void isa_irq_handler(void *opaque, int n, int level)
546 {
547     static const int isa_irq_to_ivec[16] = {
548         [1] = 0x29, /* keyboard */
549         [4] = 0x2b, /* serial */
550         [6] = 0x27, /* floppy */
551         [7] = 0x22, /* parallel */
552         [12] = 0x2a, /* mouse */
553     };
554     qemu_irq *irqs = opaque;
555     int ivec;
556 
557     assert(n < 16);
558     ivec = isa_irq_to_ivec[n];
559     EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec);
560     if (ivec) {
561         qemu_set_irq(irqs[ivec], level);
562     }
563 }
564 
565 /* EBUS (Eight bit bus) bridge */
566 static ISABus *
567 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs)
568 {
569     qemu_irq *isa_irq;
570     PCIDevice *pci_dev;
571     ISABus *isa_bus;
572 
573     pci_dev = pci_create_simple(bus, devfn, "ebus");
574     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci_dev), "isa.0"));
575     isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16);
576     isa_bus_irqs(isa_bus, isa_irq);
577     return isa_bus;
578 }
579 
580 static void pci_ebus_realize(PCIDevice *pci_dev, Error **errp)
581 {
582     EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
583 
584     if (!isa_bus_new(DEVICE(pci_dev), get_system_memory(),
585                      pci_address_space_io(pci_dev), errp)) {
586         return;
587     }
588 
589     pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
590     pci_dev->config[0x05] = 0x00;
591     pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
592     pci_dev->config[0x07] = 0x03; // status = medium devsel
593     pci_dev->config[0x09] = 0x00; // programming i/f
594     pci_dev->config[0x0D] = 0x0a; // latency_timer
595 
596     memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(),
597                              0, 0x1000000);
598     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
599     memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(),
600                              0, 0x4000);
601     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1);
602 }
603 
604 static void ebus_class_init(ObjectClass *klass, void *data)
605 {
606     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
607 
608     k->realize = pci_ebus_realize;
609     k->vendor_id = PCI_VENDOR_ID_SUN;
610     k->device_id = PCI_DEVICE_ID_SUN_EBUS;
611     k->revision = 0x01;
612     k->class_id = PCI_CLASS_BRIDGE_OTHER;
613 }
614 
615 static const TypeInfo ebus_info = {
616     .name          = "ebus",
617     .parent        = TYPE_PCI_DEVICE,
618     .instance_size = sizeof(EbusState),
619     .class_init    = ebus_class_init,
620 };
621 
622 #define TYPE_OPENPROM "openprom"
623 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
624 
625 typedef struct PROMState {
626     SysBusDevice parent_obj;
627 
628     MemoryRegion prom;
629 } PROMState;
630 
631 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
632 {
633     hwaddr *base_addr = (hwaddr *)opaque;
634     return addr + *base_addr - PROM_VADDR;
635 }
636 
637 /* Boot PROM (OpenBIOS) */
638 static void prom_init(hwaddr addr, const char *bios_name)
639 {
640     DeviceState *dev;
641     SysBusDevice *s;
642     char *filename;
643     int ret;
644 
645     dev = qdev_create(NULL, TYPE_OPENPROM);
646     qdev_init_nofail(dev);
647     s = SYS_BUS_DEVICE(dev);
648 
649     sysbus_mmio_map(s, 0, addr);
650 
651     /* load boot prom */
652     if (bios_name == NULL) {
653         bios_name = PROM_FILENAME;
654     }
655     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
656     if (filename) {
657         ret = load_elf(filename, translate_prom_address, &addr,
658                        NULL, NULL, NULL, 1, EM_SPARCV9, 0);
659         if (ret < 0 || ret > PROM_SIZE_MAX) {
660             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
661         }
662         g_free(filename);
663     } else {
664         ret = -1;
665     }
666     if (ret < 0 || ret > PROM_SIZE_MAX) {
667         fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
668         exit(1);
669     }
670 }
671 
672 static int prom_init1(SysBusDevice *dev)
673 {
674     PROMState *s = OPENPROM(dev);
675 
676     memory_region_init_ram(&s->prom, OBJECT(s), "sun4u.prom", PROM_SIZE_MAX,
677                            &error_fatal);
678     vmstate_register_ram_global(&s->prom);
679     memory_region_set_readonly(&s->prom, true);
680     sysbus_init_mmio(dev, &s->prom);
681     return 0;
682 }
683 
684 static Property prom_properties[] = {
685     {/* end of property list */},
686 };
687 
688 static void prom_class_init(ObjectClass *klass, void *data)
689 {
690     DeviceClass *dc = DEVICE_CLASS(klass);
691     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
692 
693     k->init = prom_init1;
694     dc->props = prom_properties;
695 }
696 
697 static const TypeInfo prom_info = {
698     .name          = TYPE_OPENPROM,
699     .parent        = TYPE_SYS_BUS_DEVICE,
700     .instance_size = sizeof(PROMState),
701     .class_init    = prom_class_init,
702 };
703 
704 
705 #define TYPE_SUN4U_MEMORY "memory"
706 #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY)
707 
708 typedef struct RamDevice {
709     SysBusDevice parent_obj;
710 
711     MemoryRegion ram;
712     uint64_t size;
713 } RamDevice;
714 
715 /* System RAM */
716 static int ram_init1(SysBusDevice *dev)
717 {
718     RamDevice *d = SUN4U_RAM(dev);
719 
720     memory_region_init_ram(&d->ram, OBJECT(d), "sun4u.ram", d->size,
721                            &error_fatal);
722     vmstate_register_ram_global(&d->ram);
723     sysbus_init_mmio(dev, &d->ram);
724     return 0;
725 }
726 
727 static void ram_init(hwaddr addr, ram_addr_t RAM_size)
728 {
729     DeviceState *dev;
730     SysBusDevice *s;
731     RamDevice *d;
732 
733     /* allocate RAM */
734     dev = qdev_create(NULL, TYPE_SUN4U_MEMORY);
735     s = SYS_BUS_DEVICE(dev);
736 
737     d = SUN4U_RAM(dev);
738     d->size = RAM_size;
739     qdev_init_nofail(dev);
740 
741     sysbus_mmio_map(s, 0, addr);
742 }
743 
744 static Property ram_properties[] = {
745     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
746     DEFINE_PROP_END_OF_LIST(),
747 };
748 
749 static void ram_class_init(ObjectClass *klass, void *data)
750 {
751     DeviceClass *dc = DEVICE_CLASS(klass);
752     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
753 
754     k->init = ram_init1;
755     dc->props = ram_properties;
756 }
757 
758 static const TypeInfo ram_info = {
759     .name          = TYPE_SUN4U_MEMORY,
760     .parent        = TYPE_SYS_BUS_DEVICE,
761     .instance_size = sizeof(RamDevice),
762     .class_init    = ram_class_init,
763 };
764 
765 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
766 {
767     SPARCCPU *cpu;
768     CPUSPARCState *env;
769     ResetData *reset_info;
770 
771     uint32_t   tick_frequency = 100*1000000;
772     uint32_t  stick_frequency = 100*1000000;
773     uint32_t hstick_frequency = 100*1000000;
774 
775     if (cpu_model == NULL) {
776         cpu_model = hwdef->default_cpu_model;
777     }
778     cpu = cpu_sparc_init(cpu_model);
779     if (cpu == NULL) {
780         fprintf(stderr, "Unable to find Sparc CPU definition\n");
781         exit(1);
782     }
783     env = &cpu->env;
784 
785     env->tick = cpu_timer_create("tick", cpu, tick_irq,
786                                   tick_frequency, TICK_INT_DIS,
787                                   TICK_NPT_MASK);
788 
789     env->stick = cpu_timer_create("stick", cpu, stick_irq,
790                                    stick_frequency, TICK_INT_DIS,
791                                    TICK_NPT_MASK);
792 
793     env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
794                                     hstick_frequency, TICK_INT_DIS,
795                                     TICK_NPT_MASK);
796 
797     reset_info = g_malloc0(sizeof(ResetData));
798     reset_info->cpu = cpu;
799     reset_info->prom_addr = hwdef->prom_addr;
800     qemu_register_reset(main_cpu_reset, reset_info);
801 
802     return cpu;
803 }
804 
805 static void sun4uv_init(MemoryRegion *address_space_mem,
806                         MachineState *machine,
807                         const struct hwdef *hwdef)
808 {
809     SPARCCPU *cpu;
810     Nvram *nvram;
811     unsigned int i;
812     uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
813     PCIBus *pci_bus, *pci_bus2, *pci_bus3;
814     ISABus *isa_bus;
815     SysBusDevice *s;
816     qemu_irq *ivec_irqs, *pbm_irqs;
817     DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
818     DriveInfo *fd[MAX_FD];
819     FWCfgState *fw_cfg;
820 
821     /* init CPUs */
822     cpu = cpu_devinit(machine->cpu_model, hwdef);
823 
824     /* set up devices */
825     ram_init(0, machine->ram_size);
826 
827     prom_init(hwdef->prom_addr, bios_name);
828 
829     ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX);
830     pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2,
831                            &pci_bus3, &pbm_irqs);
832     pci_vga_init(pci_bus);
833 
834     // XXX Should be pci_bus3
835     isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs);
836 
837     i = 0;
838     if (hwdef->console_serial_base) {
839         serial_mm_init(address_space_mem, hwdef->console_serial_base, 0,
840                        NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
841         i++;
842     }
843 
844     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
845     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
846 
847     for(i = 0; i < nb_nics; i++)
848         pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
849 
850     ide_drive_get(hd, ARRAY_SIZE(hd));
851 
852     pci_cmd646_ide_init(pci_bus, hd, 1);
853 
854     isa_create_simple(isa_bus, "i8042");
855     for(i = 0; i < MAX_FD; i++) {
856         fd[i] = drive_get(IF_FLOPPY, 0, i);
857     }
858     fdctrl_init_isa(isa_bus, fd);
859 
860     /* Map NVRAM into I/O (ebus) space */
861     nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59);
862     s = SYS_BUS_DEVICE(nvram);
863     memory_region_add_subregion(get_system_io(), 0x2000,
864                                 sysbus_mmio_get_region(s, 0));
865 
866     initrd_size = 0;
867     initrd_addr = 0;
868     kernel_size = sun4u_load_kernel(machine->kernel_filename,
869                                     machine->initrd_filename,
870                                     ram_size, &initrd_size, &initrd_addr,
871                                     &kernel_addr, &kernel_entry);
872 
873     sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size,
874                            machine->boot_order,
875                            kernel_addr, kernel_size,
876                            machine->kernel_cmdline,
877                            initrd_addr, initrd_size,
878                            /* XXX: need an option to load a NVRAM image */
879                            0,
880                            graphic_width, graphic_height, graphic_depth,
881                            (uint8_t *)&nd_table[0].macaddr);
882 
883     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
884     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
885     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
886     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
887     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
888     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
889     if (machine->kernel_cmdline) {
890         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
891                        strlen(machine->kernel_cmdline) + 1);
892         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
893     } else {
894         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
895     }
896     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
897     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
898     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
899 
900     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
901     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
902     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
903 
904     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
905 }
906 
907 enum {
908     sun4u_id = 0,
909     sun4v_id = 64,
910     niagara_id,
911 };
912 
913 static const struct hwdef hwdefs[] = {
914     /* Sun4u generic PC-like machine */
915     {
916         .default_cpu_model = "TI UltraSparc IIi",
917         .machine_id = sun4u_id,
918         .prom_addr = 0x1fff0000000ULL,
919         .console_serial_base = 0,
920     },
921     /* Sun4v generic PC-like machine */
922     {
923         .default_cpu_model = "Sun UltraSparc T1",
924         .machine_id = sun4v_id,
925         .prom_addr = 0x1fff0000000ULL,
926         .console_serial_base = 0,
927     },
928     /* Sun4v generic Niagara machine */
929     {
930         .default_cpu_model = "Sun UltraSparc T1",
931         .machine_id = niagara_id,
932         .prom_addr = 0xfff0000000ULL,
933         .console_serial_base = 0xfff0c2c000ULL,
934     },
935 };
936 
937 /* Sun4u hardware initialisation */
938 static void sun4u_init(MachineState *machine)
939 {
940     sun4uv_init(get_system_memory(), machine, &hwdefs[0]);
941 }
942 
943 /* Sun4v hardware initialisation */
944 static void sun4v_init(MachineState *machine)
945 {
946     sun4uv_init(get_system_memory(), machine, &hwdefs[1]);
947 }
948 
949 /* Niagara hardware initialisation */
950 static void niagara_init(MachineState *machine)
951 {
952     sun4uv_init(get_system_memory(), machine, &hwdefs[2]);
953 }
954 
955 static void sun4u_class_init(ObjectClass *oc, void *data)
956 {
957     MachineClass *mc = MACHINE_CLASS(oc);
958 
959     mc->desc = "Sun4u platform";
960     mc->init = sun4u_init;
961     mc->max_cpus = 1; /* XXX for now */
962     mc->is_default = 1;
963     mc->default_boot_order = "c";
964 }
965 
966 static const TypeInfo sun4u_type = {
967     .name = MACHINE_TYPE_NAME("sun4u"),
968     .parent = TYPE_MACHINE,
969     .class_init = sun4u_class_init,
970 };
971 
972 static void sun4v_class_init(ObjectClass *oc, void *data)
973 {
974     MachineClass *mc = MACHINE_CLASS(oc);
975 
976     mc->desc = "Sun4v platform";
977     mc->init = sun4v_init;
978     mc->max_cpus = 1; /* XXX for now */
979     mc->default_boot_order = "c";
980 }
981 
982 static const TypeInfo sun4v_type = {
983     .name = MACHINE_TYPE_NAME("sun4v"),
984     .parent = TYPE_MACHINE,
985     .class_init = sun4v_class_init,
986 };
987 
988 static void niagara_class_init(ObjectClass *oc, void *data)
989 {
990     MachineClass *mc = MACHINE_CLASS(oc);
991 
992     mc->desc = "Sun4v platform, Niagara";
993     mc->init = niagara_init;
994     mc->max_cpus = 1; /* XXX for now */
995     mc->default_boot_order = "c";
996 }
997 
998 static const TypeInfo niagara_type = {
999     .name = MACHINE_TYPE_NAME("Niagara"),
1000     .parent = TYPE_MACHINE,
1001     .class_init = niagara_class_init,
1002 };
1003 
1004 static void sun4u_register_types(void)
1005 {
1006     type_register_static(&ebus_info);
1007     type_register_static(&prom_info);
1008     type_register_static(&ram_info);
1009 }
1010 
1011 static void sun4u_machine_init(void)
1012 {
1013     type_register_static(&sun4u_type);
1014     type_register_static(&sun4v_type);
1015     type_register_static(&niagara_type);
1016 }
1017 
1018 type_init(sun4u_register_types)
1019 machine_init(sun4u_machine_init)
1020