xref: /openbmc/qemu/hw/sparc64/sun4u.c (revision 6e99f574)
1 /*
2  * QEMU Sun4u/Sun4v System Emulator
3  *
4  * Copyright (c) 2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu-common.h"
27 #include "cpu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/pci.h"
30 #include "hw/pci-host/apb.h"
31 #include "hw/i386/pc.h"
32 #include "hw/char/serial.h"
33 #include "hw/timer/m48t59.h"
34 #include "hw/block/fdc.h"
35 #include "net/net.h"
36 #include "qemu/timer.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/boards.h"
39 #include "hw/nvram/openbios_firmware_abi.h"
40 #include "hw/nvram/fw_cfg.h"
41 #include "hw/sysbus.h"
42 #include "hw/ide.h"
43 #include "hw/loader.h"
44 #include "elf.h"
45 #include "sysemu/block-backend.h"
46 #include "exec/address-spaces.h"
47 #include "qemu/cutils.h"
48 
49 //#define DEBUG_IRQ
50 //#define DEBUG_EBUS
51 //#define DEBUG_TIMER
52 
53 #ifdef DEBUG_IRQ
54 #define CPUIRQ_DPRINTF(fmt, ...)                                \
55     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
56 #else
57 #define CPUIRQ_DPRINTF(fmt, ...)
58 #endif
59 
60 #ifdef DEBUG_EBUS
61 #define EBUS_DPRINTF(fmt, ...)                                  \
62     do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
63 #else
64 #define EBUS_DPRINTF(fmt, ...)
65 #endif
66 
67 #ifdef DEBUG_TIMER
68 #define TIMER_DPRINTF(fmt, ...)                                  \
69     do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
70 #else
71 #define TIMER_DPRINTF(fmt, ...)
72 #endif
73 
74 #define KERNEL_LOAD_ADDR     0x00404000
75 #define CMDLINE_ADDR         0x003ff000
76 #define PROM_SIZE_MAX        (4 * 1024 * 1024)
77 #define PROM_VADDR           0x000ffd00000ULL
78 #define APB_SPECIAL_BASE     0x1fe00000000ULL
79 #define APB_MEM_BASE         0x1ff00000000ULL
80 #define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
81 #define PROM_FILENAME        "openbios-sparc64"
82 #define NVRAM_SIZE           0x2000
83 #define MAX_IDE_BUS          2
84 #define BIOS_CFG_IOPORT      0x510
85 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
86 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
87 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
88 
89 #define IVEC_MAX             0x40
90 
91 #define TICK_MAX             0x7fffffffffffffffULL
92 
93 struct hwdef {
94     const char * const default_cpu_model;
95     uint16_t machine_id;
96     uint64_t prom_addr;
97     uint64_t console_serial_base;
98 };
99 
100 typedef struct EbusState {
101     PCIDevice pci_dev;
102     MemoryRegion bar0;
103     MemoryRegion bar1;
104 } EbusState;
105 
106 void DMA_init(ISABus *bus, int high_page_enable)
107 {
108 }
109 
110 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
111                             Error **errp)
112 {
113     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
114 }
115 
116 static int sun4u_NVRAM_set_params(Nvram *nvram, uint16_t NVRAM_size,
117                                   const char *arch, ram_addr_t RAM_size,
118                                   const char *boot_devices,
119                                   uint32_t kernel_image, uint32_t kernel_size,
120                                   const char *cmdline,
121                                   uint32_t initrd_image, uint32_t initrd_size,
122                                   uint32_t NVRAM_image,
123                                   int width, int height, int depth,
124                                   const uint8_t *macaddr)
125 {
126     unsigned int i;
127     uint32_t start, end;
128     uint8_t image[0x1ff0];
129     struct OpenBIOS_nvpart_v1 *part_header;
130     NvramClass *k = NVRAM_GET_CLASS(nvram);
131 
132     memset(image, '\0', sizeof(image));
133 
134     start = 0;
135 
136     // OpenBIOS nvram variables
137     // Variable partition
138     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
139     part_header->signature = OPENBIOS_PART_SYSTEM;
140     pstrcpy(part_header->name, sizeof(part_header->name), "system");
141 
142     end = start + sizeof(struct OpenBIOS_nvpart_v1);
143     for (i = 0; i < nb_prom_envs; i++)
144         end = OpenBIOS_set_var(image, end, prom_envs[i]);
145 
146     // End marker
147     image[end++] = '\0';
148 
149     end = start + ((end - start + 15) & ~15);
150     OpenBIOS_finish_partition(part_header, end - start);
151 
152     // free partition
153     start = end;
154     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
155     part_header->signature = OPENBIOS_PART_FREE;
156     pstrcpy(part_header->name, sizeof(part_header->name), "free");
157 
158     end = 0x1fd0;
159     OpenBIOS_finish_partition(part_header, end - start);
160 
161     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
162 
163     for (i = 0; i < sizeof(image); i++) {
164         (k->write)(nvram, i, image[i]);
165     }
166 
167     return 0;
168 }
169 
170 static uint64_t sun4u_load_kernel(const char *kernel_filename,
171                                   const char *initrd_filename,
172                                   ram_addr_t RAM_size, uint64_t *initrd_size,
173                                   uint64_t *initrd_addr, uint64_t *kernel_addr,
174                                   uint64_t *kernel_entry)
175 {
176     int linux_boot;
177     unsigned int i;
178     long kernel_size;
179     uint8_t *ptr;
180     uint64_t kernel_top;
181 
182     linux_boot = (kernel_filename != NULL);
183 
184     kernel_size = 0;
185     if (linux_boot) {
186         int bswap_needed;
187 
188 #ifdef BSWAP_NEEDED
189         bswap_needed = 1;
190 #else
191         bswap_needed = 0;
192 #endif
193         kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry,
194                                kernel_addr, &kernel_top, 1, EM_SPARCV9, 0, 0);
195         if (kernel_size < 0) {
196             *kernel_addr = KERNEL_LOAD_ADDR;
197             *kernel_entry = KERNEL_LOAD_ADDR;
198             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
199                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
200                                     TARGET_PAGE_SIZE);
201         }
202         if (kernel_size < 0) {
203             kernel_size = load_image_targphys(kernel_filename,
204                                               KERNEL_LOAD_ADDR,
205                                               RAM_size - KERNEL_LOAD_ADDR);
206         }
207         if (kernel_size < 0) {
208             fprintf(stderr, "qemu: could not load kernel '%s'\n",
209                     kernel_filename);
210             exit(1);
211         }
212         /* load initrd above kernel */
213         *initrd_size = 0;
214         if (initrd_filename) {
215             *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
216 
217             *initrd_size = load_image_targphys(initrd_filename,
218                                                *initrd_addr,
219                                                RAM_size - *initrd_addr);
220             if ((int)*initrd_size < 0) {
221                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
222                         initrd_filename);
223                 exit(1);
224             }
225         }
226         if (*initrd_size > 0) {
227             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
228                 ptr = rom_ptr(*kernel_addr + i);
229                 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
230                     stl_p(ptr + 24, *initrd_addr + *kernel_addr);
231                     stl_p(ptr + 28, *initrd_size);
232                     break;
233                 }
234             }
235         }
236     }
237     return kernel_size;
238 }
239 
240 void cpu_check_irqs(CPUSPARCState *env)
241 {
242     CPUState *cs;
243     uint32_t pil = env->pil_in |
244                   (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
245 
246     /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
247     if (env->ivec_status & 0x20) {
248         return;
249     }
250     cs = CPU(sparc_env_get_cpu(env));
251     /* check if TM or SM in SOFTINT are set
252        setting these also causes interrupt 14 */
253     if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
254         pil |= 1 << 14;
255     }
256 
257     /* The bit corresponding to psrpil is (1<< psrpil), the next bit
258        is (2 << psrpil). */
259     if (pil < (2 << env->psrpil)){
260         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
261             CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
262                            env->interrupt_index);
263             env->interrupt_index = 0;
264             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
265         }
266         return;
267     }
268 
269     if (cpu_interrupts_enabled(env)) {
270 
271         unsigned int i;
272 
273         for (i = 15; i > env->psrpil; i--) {
274             if (pil & (1 << i)) {
275                 int old_interrupt = env->interrupt_index;
276                 int new_interrupt = TT_EXTINT | i;
277 
278                 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
279                   && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
280                     CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
281                                    "current %x >= pending %x\n",
282                                    env->tl, cpu_tsptr(env)->tt, new_interrupt);
283                 } else if (old_interrupt != new_interrupt) {
284                     env->interrupt_index = new_interrupt;
285                     CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
286                                    old_interrupt, new_interrupt);
287                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
288                 }
289                 break;
290             }
291         }
292     } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
293         CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
294                        "current interrupt %x\n",
295                        pil, env->pil_in, env->softint, env->interrupt_index);
296         env->interrupt_index = 0;
297         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
298     }
299 }
300 
301 static void cpu_kick_irq(SPARCCPU *cpu)
302 {
303     CPUState *cs = CPU(cpu);
304     CPUSPARCState *env = &cpu->env;
305 
306     cs->halted = 0;
307     cpu_check_irqs(env);
308     qemu_cpu_kick(cs);
309 }
310 
311 static void cpu_set_ivec_irq(void *opaque, int irq, int level)
312 {
313     SPARCCPU *cpu = opaque;
314     CPUSPARCState *env = &cpu->env;
315     CPUState *cs;
316 
317     if (level) {
318         if (!(env->ivec_status & 0x20)) {
319             CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
320             cs = CPU(cpu);
321             cs->halted = 0;
322             env->interrupt_index = TT_IVEC;
323             env->ivec_status |= 0x20;
324             env->ivec_data[0] = (0x1f << 6) | irq;
325             env->ivec_data[1] = 0;
326             env->ivec_data[2] = 0;
327             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
328         }
329     } else {
330         if (env->ivec_status & 0x20) {
331             CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
332             cs = CPU(cpu);
333             env->ivec_status &= ~0x20;
334             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
335         }
336     }
337 }
338 
339 typedef struct ResetData {
340     SPARCCPU *cpu;
341     uint64_t prom_addr;
342 } ResetData;
343 
344 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
345                                   QEMUBHFunc *cb, uint32_t frequency,
346                                   uint64_t disabled_mask, uint64_t npt_mask)
347 {
348     CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
349 
350     timer->name = name;
351     timer->frequency = frequency;
352     timer->disabled_mask = disabled_mask;
353     timer->npt_mask = npt_mask;
354 
355     timer->disabled = 1;
356     timer->npt = 1;
357     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
358 
359     timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu);
360 
361     return timer;
362 }
363 
364 static void cpu_timer_reset(CPUTimer *timer)
365 {
366     timer->disabled = 1;
367     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
368 
369     timer_del(timer->qtimer);
370 }
371 
372 static void main_cpu_reset(void *opaque)
373 {
374     ResetData *s = (ResetData *)opaque;
375     CPUSPARCState *env = &s->cpu->env;
376     static unsigned int nr_resets;
377 
378     cpu_reset(CPU(s->cpu));
379 
380     cpu_timer_reset(env->tick);
381     cpu_timer_reset(env->stick);
382     cpu_timer_reset(env->hstick);
383 
384     env->gregs[1] = 0; // Memory start
385     env->gregs[2] = ram_size; // Memory size
386     env->gregs[3] = 0; // Machine description XXX
387     if (nr_resets++ == 0) {
388         /* Power on reset */
389         env->pc = s->prom_addr + 0x20ULL;
390     } else {
391         env->pc = s->prom_addr + 0x40ULL;
392     }
393     env->npc = env->pc + 4;
394 }
395 
396 static void tick_irq(void *opaque)
397 {
398     SPARCCPU *cpu = opaque;
399     CPUSPARCState *env = &cpu->env;
400 
401     CPUTimer* timer = env->tick;
402 
403     if (timer->disabled) {
404         CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
405         return;
406     } else {
407         CPUIRQ_DPRINTF("tick: fire\n");
408     }
409 
410     env->softint |= SOFTINT_TIMER;
411     cpu_kick_irq(cpu);
412 }
413 
414 static void stick_irq(void *opaque)
415 {
416     SPARCCPU *cpu = opaque;
417     CPUSPARCState *env = &cpu->env;
418 
419     CPUTimer* timer = env->stick;
420 
421     if (timer->disabled) {
422         CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
423         return;
424     } else {
425         CPUIRQ_DPRINTF("stick: fire\n");
426     }
427 
428     env->softint |= SOFTINT_STIMER;
429     cpu_kick_irq(cpu);
430 }
431 
432 static void hstick_irq(void *opaque)
433 {
434     SPARCCPU *cpu = opaque;
435     CPUSPARCState *env = &cpu->env;
436 
437     CPUTimer* timer = env->hstick;
438 
439     if (timer->disabled) {
440         CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
441         return;
442     } else {
443         CPUIRQ_DPRINTF("hstick: fire\n");
444     }
445 
446     env->softint |= SOFTINT_STIMER;
447     cpu_kick_irq(cpu);
448 }
449 
450 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
451 {
452     return muldiv64(cpu_ticks, NANOSECONDS_PER_SECOND, frequency);
453 }
454 
455 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
456 {
457     return muldiv64(timer_ticks, frequency, NANOSECONDS_PER_SECOND);
458 }
459 
460 void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
461 {
462     uint64_t real_count = count & ~timer->npt_mask;
463     uint64_t npt_bit = count & timer->npt_mask;
464 
465     int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
466                     cpu_to_timer_ticks(real_count, timer->frequency);
467 
468     TIMER_DPRINTF("%s set_count count=0x%016lx (npt %s) p=%p\n",
469                   timer->name, real_count,
470                   timer->npt ? "disabled" : "enabled", timer);
471 
472     timer->npt = npt_bit ? 1 : 0;
473     timer->clock_offset = vm_clock_offset;
474 }
475 
476 uint64_t cpu_tick_get_count(CPUTimer *timer)
477 {
478     uint64_t real_count = timer_to_cpu_ticks(
479                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset,
480                     timer->frequency);
481 
482     TIMER_DPRINTF("%s get_count count=0x%016lx (npt %s) p=%p\n",
483            timer->name, real_count,
484            timer->npt ? "disabled" : "enabled", timer);
485 
486     if (timer->npt) {
487         real_count |= timer->npt_mask;
488     }
489 
490     return real_count;
491 }
492 
493 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
494 {
495     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
496 
497     uint64_t real_limit = limit & ~timer->disabled_mask;
498     timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
499 
500     int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
501                     timer->clock_offset;
502 
503     if (expires < now) {
504         expires = now + 1;
505     }
506 
507     TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
508                   "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
509                   timer->name, real_limit,
510                   timer->disabled?"disabled":"enabled",
511                   timer, limit,
512                   timer_to_cpu_ticks(now - timer->clock_offset,
513                                      timer->frequency),
514                   timer_to_cpu_ticks(expires - now, timer->frequency));
515 
516     if (!real_limit) {
517         TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
518                 timer->name);
519         timer_del(timer->qtimer);
520     } else if (timer->disabled) {
521         timer_del(timer->qtimer);
522     } else {
523         timer_mod(timer->qtimer, expires);
524     }
525 }
526 
527 static void isa_irq_handler(void *opaque, int n, int level)
528 {
529     static const int isa_irq_to_ivec[16] = {
530         [1] = 0x29, /* keyboard */
531         [4] = 0x2b, /* serial */
532         [6] = 0x27, /* floppy */
533         [7] = 0x22, /* parallel */
534         [12] = 0x2a, /* mouse */
535     };
536     qemu_irq *irqs = opaque;
537     int ivec;
538 
539     assert(n < 16);
540     ivec = isa_irq_to_ivec[n];
541     EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec);
542     if (ivec) {
543         qemu_set_irq(irqs[ivec], level);
544     }
545 }
546 
547 /* EBUS (Eight bit bus) bridge */
548 static ISABus *
549 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs)
550 {
551     qemu_irq *isa_irq;
552     PCIDevice *pci_dev;
553     ISABus *isa_bus;
554 
555     pci_dev = pci_create_simple(bus, devfn, "ebus");
556     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci_dev), "isa.0"));
557     isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16);
558     isa_bus_irqs(isa_bus, isa_irq);
559     return isa_bus;
560 }
561 
562 static void pci_ebus_realize(PCIDevice *pci_dev, Error **errp)
563 {
564     EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
565 
566     if (!isa_bus_new(DEVICE(pci_dev), get_system_memory(),
567                      pci_address_space_io(pci_dev), errp)) {
568         return;
569     }
570 
571     pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
572     pci_dev->config[0x05] = 0x00;
573     pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
574     pci_dev->config[0x07] = 0x03; // status = medium devsel
575     pci_dev->config[0x09] = 0x00; // programming i/f
576     pci_dev->config[0x0D] = 0x0a; // latency_timer
577 
578     memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(),
579                              0, 0x1000000);
580     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
581     memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(),
582                              0, 0x4000);
583     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1);
584 }
585 
586 static void ebus_class_init(ObjectClass *klass, void *data)
587 {
588     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
589 
590     k->realize = pci_ebus_realize;
591     k->vendor_id = PCI_VENDOR_ID_SUN;
592     k->device_id = PCI_DEVICE_ID_SUN_EBUS;
593     k->revision = 0x01;
594     k->class_id = PCI_CLASS_BRIDGE_OTHER;
595 }
596 
597 static const TypeInfo ebus_info = {
598     .name          = "ebus",
599     .parent        = TYPE_PCI_DEVICE,
600     .instance_size = sizeof(EbusState),
601     .class_init    = ebus_class_init,
602 };
603 
604 #define TYPE_OPENPROM "openprom"
605 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
606 
607 typedef struct PROMState {
608     SysBusDevice parent_obj;
609 
610     MemoryRegion prom;
611 } PROMState;
612 
613 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
614 {
615     hwaddr *base_addr = (hwaddr *)opaque;
616     return addr + *base_addr - PROM_VADDR;
617 }
618 
619 /* Boot PROM (OpenBIOS) */
620 static void prom_init(hwaddr addr, const char *bios_name)
621 {
622     DeviceState *dev;
623     SysBusDevice *s;
624     char *filename;
625     int ret;
626 
627     dev = qdev_create(NULL, TYPE_OPENPROM);
628     qdev_init_nofail(dev);
629     s = SYS_BUS_DEVICE(dev);
630 
631     sysbus_mmio_map(s, 0, addr);
632 
633     /* load boot prom */
634     if (bios_name == NULL) {
635         bios_name = PROM_FILENAME;
636     }
637     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
638     if (filename) {
639         ret = load_elf(filename, translate_prom_address, &addr,
640                        NULL, NULL, NULL, 1, EM_SPARCV9, 0, 0);
641         if (ret < 0 || ret > PROM_SIZE_MAX) {
642             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
643         }
644         g_free(filename);
645     } else {
646         ret = -1;
647     }
648     if (ret < 0 || ret > PROM_SIZE_MAX) {
649         fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
650         exit(1);
651     }
652 }
653 
654 static int prom_init1(SysBusDevice *dev)
655 {
656     PROMState *s = OPENPROM(dev);
657 
658     memory_region_init_ram(&s->prom, OBJECT(s), "sun4u.prom", PROM_SIZE_MAX,
659                            &error_fatal);
660     vmstate_register_ram_global(&s->prom);
661     memory_region_set_readonly(&s->prom, true);
662     sysbus_init_mmio(dev, &s->prom);
663     return 0;
664 }
665 
666 static Property prom_properties[] = {
667     {/* end of property list */},
668 };
669 
670 static void prom_class_init(ObjectClass *klass, void *data)
671 {
672     DeviceClass *dc = DEVICE_CLASS(klass);
673     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
674 
675     k->init = prom_init1;
676     dc->props = prom_properties;
677 }
678 
679 static const TypeInfo prom_info = {
680     .name          = TYPE_OPENPROM,
681     .parent        = TYPE_SYS_BUS_DEVICE,
682     .instance_size = sizeof(PROMState),
683     .class_init    = prom_class_init,
684 };
685 
686 
687 #define TYPE_SUN4U_MEMORY "memory"
688 #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY)
689 
690 typedef struct RamDevice {
691     SysBusDevice parent_obj;
692 
693     MemoryRegion ram;
694     uint64_t size;
695 } RamDevice;
696 
697 /* System RAM */
698 static int ram_init1(SysBusDevice *dev)
699 {
700     RamDevice *d = SUN4U_RAM(dev);
701 
702     memory_region_init_ram(&d->ram, OBJECT(d), "sun4u.ram", d->size,
703                            &error_fatal);
704     vmstate_register_ram_global(&d->ram);
705     sysbus_init_mmio(dev, &d->ram);
706     return 0;
707 }
708 
709 static void ram_init(hwaddr addr, ram_addr_t RAM_size)
710 {
711     DeviceState *dev;
712     SysBusDevice *s;
713     RamDevice *d;
714 
715     /* allocate RAM */
716     dev = qdev_create(NULL, TYPE_SUN4U_MEMORY);
717     s = SYS_BUS_DEVICE(dev);
718 
719     d = SUN4U_RAM(dev);
720     d->size = RAM_size;
721     qdev_init_nofail(dev);
722 
723     sysbus_mmio_map(s, 0, addr);
724 }
725 
726 static Property ram_properties[] = {
727     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
728     DEFINE_PROP_END_OF_LIST(),
729 };
730 
731 static void ram_class_init(ObjectClass *klass, void *data)
732 {
733     DeviceClass *dc = DEVICE_CLASS(klass);
734     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
735 
736     k->init = ram_init1;
737     dc->props = ram_properties;
738 }
739 
740 static const TypeInfo ram_info = {
741     .name          = TYPE_SUN4U_MEMORY,
742     .parent        = TYPE_SYS_BUS_DEVICE,
743     .instance_size = sizeof(RamDevice),
744     .class_init    = ram_class_init,
745 };
746 
747 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
748 {
749     SPARCCPU *cpu;
750     CPUSPARCState *env;
751     ResetData *reset_info;
752 
753     uint32_t   tick_frequency = 100*1000000;
754     uint32_t  stick_frequency = 100*1000000;
755     uint32_t hstick_frequency = 100*1000000;
756 
757     if (cpu_model == NULL) {
758         cpu_model = hwdef->default_cpu_model;
759     }
760     cpu = cpu_sparc_init(cpu_model);
761     if (cpu == NULL) {
762         fprintf(stderr, "Unable to find Sparc CPU definition\n");
763         exit(1);
764     }
765     env = &cpu->env;
766 
767     env->tick = cpu_timer_create("tick", cpu, tick_irq,
768                                   tick_frequency, TICK_INT_DIS,
769                                   TICK_NPT_MASK);
770 
771     env->stick = cpu_timer_create("stick", cpu, stick_irq,
772                                    stick_frequency, TICK_INT_DIS,
773                                    TICK_NPT_MASK);
774 
775     env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
776                                     hstick_frequency, TICK_INT_DIS,
777                                     TICK_NPT_MASK);
778 
779     reset_info = g_malloc0(sizeof(ResetData));
780     reset_info->cpu = cpu;
781     reset_info->prom_addr = hwdef->prom_addr;
782     qemu_register_reset(main_cpu_reset, reset_info);
783 
784     return cpu;
785 }
786 
787 static void sun4uv_init(MemoryRegion *address_space_mem,
788                         MachineState *machine,
789                         const struct hwdef *hwdef)
790 {
791     SPARCCPU *cpu;
792     Nvram *nvram;
793     unsigned int i;
794     uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
795     PCIBus *pci_bus, *pci_bus2, *pci_bus3;
796     ISABus *isa_bus;
797     SysBusDevice *s;
798     qemu_irq *ivec_irqs, *pbm_irqs;
799     DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
800     DriveInfo *fd[MAX_FD];
801     DeviceState *dev;
802     FWCfgState *fw_cfg;
803 
804     /* init CPUs */
805     cpu = cpu_devinit(machine->cpu_model, hwdef);
806 
807     /* set up devices */
808     ram_init(0, machine->ram_size);
809 
810     prom_init(hwdef->prom_addr, bios_name);
811 
812     ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX);
813     pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2,
814                            &pci_bus3, &pbm_irqs);
815     pci_vga_init(pci_bus);
816 
817     // XXX Should be pci_bus3
818     isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs);
819 
820     i = 0;
821     if (hwdef->console_serial_base) {
822         serial_mm_init(address_space_mem, hwdef->console_serial_base, 0,
823                        NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
824         i++;
825     }
826 
827     serial_hds_isa_init(isa_bus, i, MAX_SERIAL_PORTS);
828     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
829 
830     for(i = 0; i < nb_nics; i++)
831         pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
832 
833     ide_drive_get(hd, ARRAY_SIZE(hd));
834 
835     pci_cmd646_ide_init(pci_bus, hd, 1);
836 
837     isa_create_simple(isa_bus, "i8042");
838 
839     /* Floppy */
840     for(i = 0; i < MAX_FD; i++) {
841         fd[i] = drive_get(IF_FLOPPY, 0, i);
842     }
843     dev = DEVICE(isa_create(isa_bus, TYPE_ISA_FDC));
844     if (fd[0]) {
845         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fd[0]),
846                             &error_abort);
847     }
848     if (fd[1]) {
849         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fd[1]),
850                             &error_abort);
851     }
852     qdev_prop_set_uint32(dev, "dma", -1);
853     qdev_init_nofail(dev);
854 
855     /* Map NVRAM into I/O (ebus) space */
856     nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59);
857     s = SYS_BUS_DEVICE(nvram);
858     memory_region_add_subregion(get_system_io(), 0x2000,
859                                 sysbus_mmio_get_region(s, 0));
860 
861     initrd_size = 0;
862     initrd_addr = 0;
863     kernel_size = sun4u_load_kernel(machine->kernel_filename,
864                                     machine->initrd_filename,
865                                     ram_size, &initrd_size, &initrd_addr,
866                                     &kernel_addr, &kernel_entry);
867 
868     sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size,
869                            machine->boot_order,
870                            kernel_addr, kernel_size,
871                            machine->kernel_cmdline,
872                            initrd_addr, initrd_size,
873                            /* XXX: need an option to load a NVRAM image */
874                            0,
875                            graphic_width, graphic_height, graphic_depth,
876                            (uint8_t *)&nd_table[0].macaddr);
877 
878     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
879     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
880     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
881     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
882     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
883     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
884     if (machine->kernel_cmdline) {
885         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
886                        strlen(machine->kernel_cmdline) + 1);
887         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
888     } else {
889         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
890     }
891     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
892     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
893     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
894 
895     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
896     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
897     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
898 
899     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
900 }
901 
902 enum {
903     sun4u_id = 0,
904     sun4v_id = 64,
905     niagara_id,
906 };
907 
908 static const struct hwdef hwdefs[] = {
909     /* Sun4u generic PC-like machine */
910     {
911         .default_cpu_model = "TI UltraSparc IIi",
912         .machine_id = sun4u_id,
913         .prom_addr = 0x1fff0000000ULL,
914         .console_serial_base = 0,
915     },
916     /* Sun4v generic PC-like machine */
917     {
918         .default_cpu_model = "Sun UltraSparc T1",
919         .machine_id = sun4v_id,
920         .prom_addr = 0x1fff0000000ULL,
921         .console_serial_base = 0,
922     },
923     /* Sun4v generic Niagara machine */
924     {
925         .default_cpu_model = "Sun UltraSparc T1",
926         .machine_id = niagara_id,
927         .prom_addr = 0xfff0000000ULL,
928         .console_serial_base = 0xfff0c2c000ULL,
929     },
930 };
931 
932 /* Sun4u hardware initialisation */
933 static void sun4u_init(MachineState *machine)
934 {
935     sun4uv_init(get_system_memory(), machine, &hwdefs[0]);
936 }
937 
938 /* Sun4v hardware initialisation */
939 static void sun4v_init(MachineState *machine)
940 {
941     sun4uv_init(get_system_memory(), machine, &hwdefs[1]);
942 }
943 
944 /* Niagara hardware initialisation */
945 static void niagara_init(MachineState *machine)
946 {
947     sun4uv_init(get_system_memory(), machine, &hwdefs[2]);
948 }
949 
950 static void sun4u_class_init(ObjectClass *oc, void *data)
951 {
952     MachineClass *mc = MACHINE_CLASS(oc);
953 
954     mc->desc = "Sun4u platform";
955     mc->init = sun4u_init;
956     mc->max_cpus = 1; /* XXX for now */
957     mc->is_default = 1;
958     mc->default_boot_order = "c";
959 }
960 
961 static const TypeInfo sun4u_type = {
962     .name = MACHINE_TYPE_NAME("sun4u"),
963     .parent = TYPE_MACHINE,
964     .class_init = sun4u_class_init,
965 };
966 
967 static void sun4v_class_init(ObjectClass *oc, void *data)
968 {
969     MachineClass *mc = MACHINE_CLASS(oc);
970 
971     mc->desc = "Sun4v platform";
972     mc->init = sun4v_init;
973     mc->max_cpus = 1; /* XXX for now */
974     mc->default_boot_order = "c";
975 }
976 
977 static const TypeInfo sun4v_type = {
978     .name = MACHINE_TYPE_NAME("sun4v"),
979     .parent = TYPE_MACHINE,
980     .class_init = sun4v_class_init,
981 };
982 
983 static void niagara_class_init(ObjectClass *oc, void *data)
984 {
985     MachineClass *mc = MACHINE_CLASS(oc);
986 
987     mc->desc = "Sun4v platform, Niagara";
988     mc->init = niagara_init;
989     mc->max_cpus = 1; /* XXX for now */
990     mc->default_boot_order = "c";
991 }
992 
993 static const TypeInfo niagara_type = {
994     .name = MACHINE_TYPE_NAME("Niagara"),
995     .parent = TYPE_MACHINE,
996     .class_init = niagara_class_init,
997 };
998 
999 static void sun4u_register_types(void)
1000 {
1001     type_register_static(&ebus_info);
1002     type_register_static(&prom_info);
1003     type_register_static(&ram_info);
1004 
1005     type_register_static(&sun4u_type);
1006     type_register_static(&sun4v_type);
1007     type_register_static(&niagara_type);
1008 }
1009 
1010 type_init(sun4u_register_types)
1011