1 /* 2 * QEMU Sun4u/Sun4v System Emulator 3 * 4 * Copyright (c) 2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/hw.h" 25 #include "hw/pci/pci.h" 26 #include "hw/pci-host/apb.h" 27 #include "hw/i386/pc.h" 28 #include "hw/char/serial.h" 29 #include "hw/timer/m48t59.h" 30 #include "hw/block/fdc.h" 31 #include "net/net.h" 32 #include "qemu/timer.h" 33 #include "sysemu/sysemu.h" 34 #include "hw/boards.h" 35 #include "hw/nvram/openbios_firmware_abi.h" 36 #include "hw/nvram/fw_cfg.h" 37 #include "hw/sysbus.h" 38 #include "hw/ide.h" 39 #include "hw/loader.h" 40 #include "elf.h" 41 #include "sysemu/blockdev.h" 42 #include "exec/address-spaces.h" 43 44 //#define DEBUG_IRQ 45 //#define DEBUG_EBUS 46 //#define DEBUG_TIMER 47 48 #ifdef DEBUG_IRQ 49 #define CPUIRQ_DPRINTF(fmt, ...) \ 50 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 51 #else 52 #define CPUIRQ_DPRINTF(fmt, ...) 53 #endif 54 55 #ifdef DEBUG_EBUS 56 #define EBUS_DPRINTF(fmt, ...) \ 57 do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0) 58 #else 59 #define EBUS_DPRINTF(fmt, ...) 60 #endif 61 62 #ifdef DEBUG_TIMER 63 #define TIMER_DPRINTF(fmt, ...) \ 64 do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0) 65 #else 66 #define TIMER_DPRINTF(fmt, ...) 67 #endif 68 69 #define KERNEL_LOAD_ADDR 0x00404000 70 #define CMDLINE_ADDR 0x003ff000 71 #define PROM_SIZE_MAX (4 * 1024 * 1024) 72 #define PROM_VADDR 0x000ffd00000ULL 73 #define APB_SPECIAL_BASE 0x1fe00000000ULL 74 #define APB_MEM_BASE 0x1ff00000000ULL 75 #define APB_PCI_IO_BASE (APB_SPECIAL_BASE + 0x02000000ULL) 76 #define PROM_FILENAME "openbios-sparc64" 77 #define NVRAM_SIZE 0x2000 78 #define MAX_IDE_BUS 2 79 #define BIOS_CFG_IOPORT 0x510 80 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00) 81 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01) 82 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02) 83 84 #define IVEC_MAX 0x40 85 86 #define TICK_MAX 0x7fffffffffffffffULL 87 88 struct hwdef { 89 const char * const default_cpu_model; 90 uint16_t machine_id; 91 uint64_t prom_addr; 92 uint64_t console_serial_base; 93 }; 94 95 typedef struct EbusState { 96 PCIDevice pci_dev; 97 MemoryRegion bar0; 98 MemoryRegion bar1; 99 } EbusState; 100 101 int DMA_get_channel_mode (int nchan) 102 { 103 return 0; 104 } 105 int DMA_read_memory (int nchan, void *buf, int pos, int size) 106 { 107 return 0; 108 } 109 int DMA_write_memory (int nchan, void *buf, int pos, int size) 110 { 111 return 0; 112 } 113 void DMA_hold_DREQ (int nchan) {} 114 void DMA_release_DREQ (int nchan) {} 115 void DMA_schedule(int nchan) {} 116 117 void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit) 118 { 119 } 120 121 void DMA_register_channel (int nchan, 122 DMA_transfer_handler transfer_handler, 123 void *opaque) 124 { 125 } 126 127 static int fw_cfg_boot_set(void *opaque, const char *boot_device) 128 { 129 fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); 130 return 0; 131 } 132 133 static int sun4u_NVRAM_set_params(M48t59State *nvram, uint16_t NVRAM_size, 134 const char *arch, ram_addr_t RAM_size, 135 const char *boot_devices, 136 uint32_t kernel_image, uint32_t kernel_size, 137 const char *cmdline, 138 uint32_t initrd_image, uint32_t initrd_size, 139 uint32_t NVRAM_image, 140 int width, int height, int depth, 141 const uint8_t *macaddr) 142 { 143 unsigned int i; 144 uint32_t start, end; 145 uint8_t image[0x1ff0]; 146 struct OpenBIOS_nvpart_v1 *part_header; 147 148 memset(image, '\0', sizeof(image)); 149 150 start = 0; 151 152 // OpenBIOS nvram variables 153 // Variable partition 154 part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; 155 part_header->signature = OPENBIOS_PART_SYSTEM; 156 pstrcpy(part_header->name, sizeof(part_header->name), "system"); 157 158 end = start + sizeof(struct OpenBIOS_nvpart_v1); 159 for (i = 0; i < nb_prom_envs; i++) 160 end = OpenBIOS_set_var(image, end, prom_envs[i]); 161 162 // End marker 163 image[end++] = '\0'; 164 165 end = start + ((end - start + 15) & ~15); 166 OpenBIOS_finish_partition(part_header, end - start); 167 168 // free partition 169 start = end; 170 part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; 171 part_header->signature = OPENBIOS_PART_FREE; 172 pstrcpy(part_header->name, sizeof(part_header->name), "free"); 173 174 end = 0x1fd0; 175 OpenBIOS_finish_partition(part_header, end - start); 176 177 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80); 178 179 for (i = 0; i < sizeof(image); i++) 180 m48t59_write(nvram, i, image[i]); 181 182 return 0; 183 } 184 185 static uint64_t sun4u_load_kernel(const char *kernel_filename, 186 const char *initrd_filename, 187 ram_addr_t RAM_size, uint64_t *initrd_size, 188 uint64_t *initrd_addr, uint64_t *kernel_addr, 189 uint64_t *kernel_entry) 190 { 191 int linux_boot; 192 unsigned int i; 193 long kernel_size; 194 uint8_t *ptr; 195 uint64_t kernel_top; 196 197 linux_boot = (kernel_filename != NULL); 198 199 kernel_size = 0; 200 if (linux_boot) { 201 int bswap_needed; 202 203 #ifdef BSWAP_NEEDED 204 bswap_needed = 1; 205 #else 206 bswap_needed = 0; 207 #endif 208 kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry, 209 kernel_addr, &kernel_top, 1, ELF_MACHINE, 0); 210 if (kernel_size < 0) { 211 *kernel_addr = KERNEL_LOAD_ADDR; 212 *kernel_entry = KERNEL_LOAD_ADDR; 213 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, 214 RAM_size - KERNEL_LOAD_ADDR, bswap_needed, 215 TARGET_PAGE_SIZE); 216 } 217 if (kernel_size < 0) { 218 kernel_size = load_image_targphys(kernel_filename, 219 KERNEL_LOAD_ADDR, 220 RAM_size - KERNEL_LOAD_ADDR); 221 } 222 if (kernel_size < 0) { 223 fprintf(stderr, "qemu: could not load kernel '%s'\n", 224 kernel_filename); 225 exit(1); 226 } 227 /* load initrd above kernel */ 228 *initrd_size = 0; 229 if (initrd_filename) { 230 *initrd_addr = TARGET_PAGE_ALIGN(kernel_top); 231 232 *initrd_size = load_image_targphys(initrd_filename, 233 *initrd_addr, 234 RAM_size - *initrd_addr); 235 if ((int)*initrd_size < 0) { 236 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 237 initrd_filename); 238 exit(1); 239 } 240 } 241 if (*initrd_size > 0) { 242 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { 243 ptr = rom_ptr(*kernel_addr + i); 244 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */ 245 stl_p(ptr + 24, *initrd_addr + *kernel_addr); 246 stl_p(ptr + 28, *initrd_size); 247 break; 248 } 249 } 250 } 251 } 252 return kernel_size; 253 } 254 255 void cpu_check_irqs(CPUSPARCState *env) 256 { 257 CPUState *cs; 258 uint32_t pil = env->pil_in | 259 (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER)); 260 261 /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */ 262 if (env->ivec_status & 0x20) { 263 return; 264 } 265 cs = CPU(sparc_env_get_cpu(env)); 266 /* check if TM or SM in SOFTINT are set 267 setting these also causes interrupt 14 */ 268 if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) { 269 pil |= 1 << 14; 270 } 271 272 /* The bit corresponding to psrpil is (1<< psrpil), the next bit 273 is (2 << psrpil). */ 274 if (pil < (2 << env->psrpil)){ 275 if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 276 CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n", 277 env->interrupt_index); 278 env->interrupt_index = 0; 279 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 280 } 281 return; 282 } 283 284 if (cpu_interrupts_enabled(env)) { 285 286 unsigned int i; 287 288 for (i = 15; i > env->psrpil; i--) { 289 if (pil & (1 << i)) { 290 int old_interrupt = env->interrupt_index; 291 int new_interrupt = TT_EXTINT | i; 292 293 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt 294 && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) { 295 CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d " 296 "current %x >= pending %x\n", 297 env->tl, cpu_tsptr(env)->tt, new_interrupt); 298 } else if (old_interrupt != new_interrupt) { 299 env->interrupt_index = new_interrupt; 300 CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i, 301 old_interrupt, new_interrupt); 302 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 303 } 304 break; 305 } 306 } 307 } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) { 308 CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x " 309 "current interrupt %x\n", 310 pil, env->pil_in, env->softint, env->interrupt_index); 311 env->interrupt_index = 0; 312 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 313 } 314 } 315 316 static void cpu_kick_irq(SPARCCPU *cpu) 317 { 318 CPUState *cs = CPU(cpu); 319 CPUSPARCState *env = &cpu->env; 320 321 cs->halted = 0; 322 cpu_check_irqs(env); 323 qemu_cpu_kick(cs); 324 } 325 326 static void cpu_set_ivec_irq(void *opaque, int irq, int level) 327 { 328 SPARCCPU *cpu = opaque; 329 CPUSPARCState *env = &cpu->env; 330 CPUState *cs; 331 332 if (level) { 333 if (!(env->ivec_status & 0x20)) { 334 CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq); 335 cs = CPU(cpu); 336 cs->halted = 0; 337 env->interrupt_index = TT_IVEC; 338 env->ivec_status |= 0x20; 339 env->ivec_data[0] = (0x1f << 6) | irq; 340 env->ivec_data[1] = 0; 341 env->ivec_data[2] = 0; 342 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 343 } 344 } else { 345 if (env->ivec_status & 0x20) { 346 CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq); 347 cs = CPU(cpu); 348 env->ivec_status &= ~0x20; 349 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 350 } 351 } 352 } 353 354 typedef struct ResetData { 355 SPARCCPU *cpu; 356 uint64_t prom_addr; 357 } ResetData; 358 359 void cpu_put_timer(QEMUFile *f, CPUTimer *s) 360 { 361 qemu_put_be32s(f, &s->frequency); 362 qemu_put_be32s(f, &s->disabled); 363 qemu_put_be64s(f, &s->disabled_mask); 364 qemu_put_sbe64s(f, &s->clock_offset); 365 366 timer_put(f, s->qtimer); 367 } 368 369 void cpu_get_timer(QEMUFile *f, CPUTimer *s) 370 { 371 qemu_get_be32s(f, &s->frequency); 372 qemu_get_be32s(f, &s->disabled); 373 qemu_get_be64s(f, &s->disabled_mask); 374 qemu_get_sbe64s(f, &s->clock_offset); 375 376 timer_get(f, s->qtimer); 377 } 378 379 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu, 380 QEMUBHFunc *cb, uint32_t frequency, 381 uint64_t disabled_mask) 382 { 383 CPUTimer *timer = g_malloc0(sizeof (CPUTimer)); 384 385 timer->name = name; 386 timer->frequency = frequency; 387 timer->disabled_mask = disabled_mask; 388 389 timer->disabled = 1; 390 timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 391 392 timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu); 393 394 return timer; 395 } 396 397 static void cpu_timer_reset(CPUTimer *timer) 398 { 399 timer->disabled = 1; 400 timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 401 402 timer_del(timer->qtimer); 403 } 404 405 static void main_cpu_reset(void *opaque) 406 { 407 ResetData *s = (ResetData *)opaque; 408 CPUSPARCState *env = &s->cpu->env; 409 static unsigned int nr_resets; 410 411 cpu_reset(CPU(s->cpu)); 412 413 cpu_timer_reset(env->tick); 414 cpu_timer_reset(env->stick); 415 cpu_timer_reset(env->hstick); 416 417 env->gregs[1] = 0; // Memory start 418 env->gregs[2] = ram_size; // Memory size 419 env->gregs[3] = 0; // Machine description XXX 420 if (nr_resets++ == 0) { 421 /* Power on reset */ 422 env->pc = s->prom_addr + 0x20ULL; 423 } else { 424 env->pc = s->prom_addr + 0x40ULL; 425 } 426 env->npc = env->pc + 4; 427 } 428 429 static void tick_irq(void *opaque) 430 { 431 SPARCCPU *cpu = opaque; 432 CPUSPARCState *env = &cpu->env; 433 434 CPUTimer* timer = env->tick; 435 436 if (timer->disabled) { 437 CPUIRQ_DPRINTF("tick_irq: softint disabled\n"); 438 return; 439 } else { 440 CPUIRQ_DPRINTF("tick: fire\n"); 441 } 442 443 env->softint |= SOFTINT_TIMER; 444 cpu_kick_irq(cpu); 445 } 446 447 static void stick_irq(void *opaque) 448 { 449 SPARCCPU *cpu = opaque; 450 CPUSPARCState *env = &cpu->env; 451 452 CPUTimer* timer = env->stick; 453 454 if (timer->disabled) { 455 CPUIRQ_DPRINTF("stick_irq: softint disabled\n"); 456 return; 457 } else { 458 CPUIRQ_DPRINTF("stick: fire\n"); 459 } 460 461 env->softint |= SOFTINT_STIMER; 462 cpu_kick_irq(cpu); 463 } 464 465 static void hstick_irq(void *opaque) 466 { 467 SPARCCPU *cpu = opaque; 468 CPUSPARCState *env = &cpu->env; 469 470 CPUTimer* timer = env->hstick; 471 472 if (timer->disabled) { 473 CPUIRQ_DPRINTF("hstick_irq: softint disabled\n"); 474 return; 475 } else { 476 CPUIRQ_DPRINTF("hstick: fire\n"); 477 } 478 479 env->softint |= SOFTINT_STIMER; 480 cpu_kick_irq(cpu); 481 } 482 483 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency) 484 { 485 return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency); 486 } 487 488 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency) 489 { 490 return muldiv64(timer_ticks, frequency, get_ticks_per_sec()); 491 } 492 493 void cpu_tick_set_count(CPUTimer *timer, uint64_t count) 494 { 495 uint64_t real_count = count & ~timer->disabled_mask; 496 uint64_t disabled_bit = count & timer->disabled_mask; 497 498 int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - 499 cpu_to_timer_ticks(real_count, timer->frequency); 500 501 TIMER_DPRINTF("%s set_count count=0x%016lx (%s) p=%p\n", 502 timer->name, real_count, 503 timer->disabled?"disabled":"enabled", timer); 504 505 timer->disabled = disabled_bit ? 1 : 0; 506 timer->clock_offset = vm_clock_offset; 507 } 508 509 uint64_t cpu_tick_get_count(CPUTimer *timer) 510 { 511 uint64_t real_count = timer_to_cpu_ticks( 512 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset, 513 timer->frequency); 514 515 TIMER_DPRINTF("%s get_count count=0x%016lx (%s) p=%p\n", 516 timer->name, real_count, 517 timer->disabled?"disabled":"enabled", timer); 518 519 if (timer->disabled) 520 real_count |= timer->disabled_mask; 521 522 return real_count; 523 } 524 525 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit) 526 { 527 int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 528 529 uint64_t real_limit = limit & ~timer->disabled_mask; 530 timer->disabled = (limit & timer->disabled_mask) ? 1 : 0; 531 532 int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) + 533 timer->clock_offset; 534 535 if (expires < now) { 536 expires = now + 1; 537 } 538 539 TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p " 540 "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n", 541 timer->name, real_limit, 542 timer->disabled?"disabled":"enabled", 543 timer, limit, 544 timer_to_cpu_ticks(now - timer->clock_offset, 545 timer->frequency), 546 timer_to_cpu_ticks(expires - now, timer->frequency)); 547 548 if (!real_limit) { 549 TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n", 550 timer->name); 551 timer_del(timer->qtimer); 552 } else if (timer->disabled) { 553 timer_del(timer->qtimer); 554 } else { 555 timer_mod(timer->qtimer, expires); 556 } 557 } 558 559 static void isa_irq_handler(void *opaque, int n, int level) 560 { 561 static const int isa_irq_to_ivec[16] = { 562 [1] = 0x29, /* keyboard */ 563 [4] = 0x2b, /* serial */ 564 [6] = 0x27, /* floppy */ 565 [7] = 0x22, /* parallel */ 566 [12] = 0x2a, /* mouse */ 567 }; 568 qemu_irq *irqs = opaque; 569 int ivec; 570 571 assert(n < 16); 572 ivec = isa_irq_to_ivec[n]; 573 EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec); 574 if (ivec) { 575 qemu_set_irq(irqs[ivec], level); 576 } 577 } 578 579 /* EBUS (Eight bit bus) bridge */ 580 static ISABus * 581 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs) 582 { 583 qemu_irq *isa_irq; 584 PCIDevice *pci_dev; 585 ISABus *isa_bus; 586 587 pci_dev = pci_create_simple(bus, devfn, "ebus"); 588 isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci_dev), "isa.0")); 589 isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16); 590 isa_bus_irqs(isa_bus, isa_irq); 591 return isa_bus; 592 } 593 594 static int 595 pci_ebus_init1(PCIDevice *pci_dev) 596 { 597 EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev); 598 599 isa_bus_new(&pci_dev->qdev, pci_address_space_io(pci_dev)); 600 601 pci_dev->config[0x04] = 0x06; // command = bus master, pci mem 602 pci_dev->config[0x05] = 0x00; 603 pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error 604 pci_dev->config[0x07] = 0x03; // status = medium devsel 605 pci_dev->config[0x09] = 0x00; // programming i/f 606 pci_dev->config[0x0D] = 0x0a; // latency_timer 607 608 memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(), 609 0, 0x1000000); 610 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0); 611 memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(), 612 0, 0x1000); 613 pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1); 614 return 0; 615 } 616 617 static void ebus_class_init(ObjectClass *klass, void *data) 618 { 619 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 620 621 k->init = pci_ebus_init1; 622 k->vendor_id = PCI_VENDOR_ID_SUN; 623 k->device_id = PCI_DEVICE_ID_SUN_EBUS; 624 k->revision = 0x01; 625 k->class_id = PCI_CLASS_BRIDGE_OTHER; 626 } 627 628 static const TypeInfo ebus_info = { 629 .name = "ebus", 630 .parent = TYPE_PCI_DEVICE, 631 .instance_size = sizeof(EbusState), 632 .class_init = ebus_class_init, 633 }; 634 635 #define TYPE_OPENPROM "openprom" 636 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM) 637 638 typedef struct PROMState { 639 SysBusDevice parent_obj; 640 641 MemoryRegion prom; 642 } PROMState; 643 644 static uint64_t translate_prom_address(void *opaque, uint64_t addr) 645 { 646 hwaddr *base_addr = (hwaddr *)opaque; 647 return addr + *base_addr - PROM_VADDR; 648 } 649 650 /* Boot PROM (OpenBIOS) */ 651 static void prom_init(hwaddr addr, const char *bios_name) 652 { 653 DeviceState *dev; 654 SysBusDevice *s; 655 char *filename; 656 int ret; 657 658 dev = qdev_create(NULL, TYPE_OPENPROM); 659 qdev_init_nofail(dev); 660 s = SYS_BUS_DEVICE(dev); 661 662 sysbus_mmio_map(s, 0, addr); 663 664 /* load boot prom */ 665 if (bios_name == NULL) { 666 bios_name = PROM_FILENAME; 667 } 668 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 669 if (filename) { 670 ret = load_elf(filename, translate_prom_address, &addr, 671 NULL, NULL, NULL, 1, ELF_MACHINE, 0); 672 if (ret < 0 || ret > PROM_SIZE_MAX) { 673 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX); 674 } 675 g_free(filename); 676 } else { 677 ret = -1; 678 } 679 if (ret < 0 || ret > PROM_SIZE_MAX) { 680 fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name); 681 exit(1); 682 } 683 } 684 685 static int prom_init1(SysBusDevice *dev) 686 { 687 PROMState *s = OPENPROM(dev); 688 689 memory_region_init_ram(&s->prom, OBJECT(s), "sun4u.prom", PROM_SIZE_MAX, 690 &error_abort); 691 vmstate_register_ram_global(&s->prom); 692 memory_region_set_readonly(&s->prom, true); 693 sysbus_init_mmio(dev, &s->prom); 694 return 0; 695 } 696 697 static Property prom_properties[] = { 698 {/* end of property list */}, 699 }; 700 701 static void prom_class_init(ObjectClass *klass, void *data) 702 { 703 DeviceClass *dc = DEVICE_CLASS(klass); 704 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 705 706 k->init = prom_init1; 707 dc->props = prom_properties; 708 } 709 710 static const TypeInfo prom_info = { 711 .name = TYPE_OPENPROM, 712 .parent = TYPE_SYS_BUS_DEVICE, 713 .instance_size = sizeof(PROMState), 714 .class_init = prom_class_init, 715 }; 716 717 718 #define TYPE_SUN4U_MEMORY "memory" 719 #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY) 720 721 typedef struct RamDevice { 722 SysBusDevice parent_obj; 723 724 MemoryRegion ram; 725 uint64_t size; 726 } RamDevice; 727 728 /* System RAM */ 729 static int ram_init1(SysBusDevice *dev) 730 { 731 RamDevice *d = SUN4U_RAM(dev); 732 733 memory_region_init_ram(&d->ram, OBJECT(d), "sun4u.ram", d->size, 734 &error_abort); 735 vmstate_register_ram_global(&d->ram); 736 sysbus_init_mmio(dev, &d->ram); 737 return 0; 738 } 739 740 static void ram_init(hwaddr addr, ram_addr_t RAM_size) 741 { 742 DeviceState *dev; 743 SysBusDevice *s; 744 RamDevice *d; 745 746 /* allocate RAM */ 747 dev = qdev_create(NULL, TYPE_SUN4U_MEMORY); 748 s = SYS_BUS_DEVICE(dev); 749 750 d = SUN4U_RAM(dev); 751 d->size = RAM_size; 752 qdev_init_nofail(dev); 753 754 sysbus_mmio_map(s, 0, addr); 755 } 756 757 static Property ram_properties[] = { 758 DEFINE_PROP_UINT64("size", RamDevice, size, 0), 759 DEFINE_PROP_END_OF_LIST(), 760 }; 761 762 static void ram_class_init(ObjectClass *klass, void *data) 763 { 764 DeviceClass *dc = DEVICE_CLASS(klass); 765 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 766 767 k->init = ram_init1; 768 dc->props = ram_properties; 769 } 770 771 static const TypeInfo ram_info = { 772 .name = TYPE_SUN4U_MEMORY, 773 .parent = TYPE_SYS_BUS_DEVICE, 774 .instance_size = sizeof(RamDevice), 775 .class_init = ram_class_init, 776 }; 777 778 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef) 779 { 780 SPARCCPU *cpu; 781 CPUSPARCState *env; 782 ResetData *reset_info; 783 784 uint32_t tick_frequency = 100*1000000; 785 uint32_t stick_frequency = 100*1000000; 786 uint32_t hstick_frequency = 100*1000000; 787 788 if (cpu_model == NULL) { 789 cpu_model = hwdef->default_cpu_model; 790 } 791 cpu = cpu_sparc_init(cpu_model); 792 if (cpu == NULL) { 793 fprintf(stderr, "Unable to find Sparc CPU definition\n"); 794 exit(1); 795 } 796 env = &cpu->env; 797 798 env->tick = cpu_timer_create("tick", cpu, tick_irq, 799 tick_frequency, TICK_NPT_MASK); 800 801 env->stick = cpu_timer_create("stick", cpu, stick_irq, 802 stick_frequency, TICK_INT_DIS); 803 804 env->hstick = cpu_timer_create("hstick", cpu, hstick_irq, 805 hstick_frequency, TICK_INT_DIS); 806 807 reset_info = g_malloc0(sizeof(ResetData)); 808 reset_info->cpu = cpu; 809 reset_info->prom_addr = hwdef->prom_addr; 810 qemu_register_reset(main_cpu_reset, reset_info); 811 812 return cpu; 813 } 814 815 static void sun4uv_init(MemoryRegion *address_space_mem, 816 MachineState *machine, 817 const struct hwdef *hwdef) 818 { 819 SPARCCPU *cpu; 820 M48t59State *nvram; 821 unsigned int i; 822 uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry; 823 PCIBus *pci_bus, *pci_bus2, *pci_bus3; 824 ISABus *isa_bus; 825 qemu_irq *ivec_irqs, *pbm_irqs; 826 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; 827 DriveInfo *fd[MAX_FD]; 828 FWCfgState *fw_cfg; 829 830 /* init CPUs */ 831 cpu = cpu_devinit(machine->cpu_model, hwdef); 832 833 /* set up devices */ 834 ram_init(0, machine->ram_size); 835 836 prom_init(hwdef->prom_addr, bios_name); 837 838 ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX); 839 pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2, 840 &pci_bus3, &pbm_irqs); 841 pci_vga_init(pci_bus); 842 843 // XXX Should be pci_bus3 844 isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs); 845 846 i = 0; 847 if (hwdef->console_serial_base) { 848 serial_mm_init(address_space_mem, hwdef->console_serial_base, 0, 849 NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN); 850 i++; 851 } 852 for(; i < MAX_SERIAL_PORTS; i++) { 853 if (serial_hds[i]) { 854 serial_isa_init(isa_bus, i, serial_hds[i]); 855 } 856 } 857 858 for(i = 0; i < MAX_PARALLEL_PORTS; i++) { 859 if (parallel_hds[i]) { 860 parallel_init(isa_bus, i, parallel_hds[i]); 861 } 862 } 863 864 for(i = 0; i < nb_nics; i++) 865 pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL); 866 867 ide_drive_get(hd, MAX_IDE_BUS); 868 869 pci_cmd646_ide_init(pci_bus, hd, 1); 870 871 isa_create_simple(isa_bus, "i8042"); 872 for(i = 0; i < MAX_FD; i++) { 873 fd[i] = drive_get(IF_FLOPPY, 0, i); 874 } 875 fdctrl_init_isa(isa_bus, fd); 876 nvram = m48t59_init_isa(isa_bus, 0x0074, NVRAM_SIZE, 59); 877 878 initrd_size = 0; 879 initrd_addr = 0; 880 kernel_size = sun4u_load_kernel(machine->kernel_filename, 881 machine->initrd_filename, 882 ram_size, &initrd_size, &initrd_addr, 883 &kernel_addr, &kernel_entry); 884 885 sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size, 886 machine->boot_order, 887 kernel_addr, kernel_size, 888 machine->kernel_cmdline, 889 initrd_addr, initrd_size, 890 /* XXX: need an option to load a NVRAM image */ 891 0, 892 graphic_width, graphic_height, graphic_depth, 893 (uint8_t *)&nd_table[0].macaddr); 894 895 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); 896 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); 897 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); 898 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 899 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); 900 fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry); 901 fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 902 if (machine->kernel_cmdline) { 903 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 904 strlen(machine->kernel_cmdline) + 1); 905 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline); 906 } else { 907 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); 908 } 909 fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 910 fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 911 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]); 912 913 fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width); 914 fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height); 915 fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth); 916 917 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); 918 } 919 920 enum { 921 sun4u_id = 0, 922 sun4v_id = 64, 923 niagara_id, 924 }; 925 926 static const struct hwdef hwdefs[] = { 927 /* Sun4u generic PC-like machine */ 928 { 929 .default_cpu_model = "TI UltraSparc IIi", 930 .machine_id = sun4u_id, 931 .prom_addr = 0x1fff0000000ULL, 932 .console_serial_base = 0, 933 }, 934 /* Sun4v generic PC-like machine */ 935 { 936 .default_cpu_model = "Sun UltraSparc T1", 937 .machine_id = sun4v_id, 938 .prom_addr = 0x1fff0000000ULL, 939 .console_serial_base = 0, 940 }, 941 /* Sun4v generic Niagara machine */ 942 { 943 .default_cpu_model = "Sun UltraSparc T1", 944 .machine_id = niagara_id, 945 .prom_addr = 0xfff0000000ULL, 946 .console_serial_base = 0xfff0c2c000ULL, 947 }, 948 }; 949 950 /* Sun4u hardware initialisation */ 951 static void sun4u_init(MachineState *machine) 952 { 953 sun4uv_init(get_system_memory(), machine, &hwdefs[0]); 954 } 955 956 /* Sun4v hardware initialisation */ 957 static void sun4v_init(MachineState *machine) 958 { 959 sun4uv_init(get_system_memory(), machine, &hwdefs[1]); 960 } 961 962 /* Niagara hardware initialisation */ 963 static void niagara_init(MachineState *machine) 964 { 965 sun4uv_init(get_system_memory(), machine, &hwdefs[2]); 966 } 967 968 static QEMUMachine sun4u_machine = { 969 .name = "sun4u", 970 .desc = "Sun4u platform", 971 .init = sun4u_init, 972 .max_cpus = 1, // XXX for now 973 .is_default = 1, 974 .default_boot_order = "c", 975 }; 976 977 static QEMUMachine sun4v_machine = { 978 .name = "sun4v", 979 .desc = "Sun4v platform", 980 .init = sun4v_init, 981 .max_cpus = 1, // XXX for now 982 .default_boot_order = "c", 983 }; 984 985 static QEMUMachine niagara_machine = { 986 .name = "Niagara", 987 .desc = "Sun4v platform, Niagara", 988 .init = niagara_init, 989 .max_cpus = 1, // XXX for now 990 .default_boot_order = "c", 991 }; 992 993 static void sun4u_register_types(void) 994 { 995 type_register_static(&ebus_info); 996 type_register_static(&prom_info); 997 type_register_static(&ram_info); 998 } 999 1000 static void sun4u_machine_init(void) 1001 { 1002 qemu_register_machine(&sun4u_machine); 1003 qemu_register_machine(&sun4v_machine); 1004 qemu_register_machine(&niagara_machine); 1005 } 1006 1007 type_init(sun4u_register_types) 1008 machine_init(sun4u_machine_init); 1009