xref: /openbmc/qemu/hw/sparc64/sun4u.c (revision 4771d756f46219762477aaeaaef9bd215e3d5c60)
1 /*
2  * QEMU Sun4u/Sun4v System Emulator
3  *
4  * Copyright (c) 2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu-common.h"
27 #include "cpu.h"
28 #include "hw/hw.h"
29 #include "hw/pci/pci.h"
30 #include "hw/pci-host/apb.h"
31 #include "hw/i386/pc.h"
32 #include "hw/char/serial.h"
33 #include "hw/timer/m48t59.h"
34 #include "hw/block/fdc.h"
35 #include "net/net.h"
36 #include "qemu/timer.h"
37 #include "sysemu/sysemu.h"
38 #include "hw/boards.h"
39 #include "hw/nvram/openbios_firmware_abi.h"
40 #include "hw/nvram/fw_cfg.h"
41 #include "hw/sysbus.h"
42 #include "hw/ide.h"
43 #include "hw/loader.h"
44 #include "elf.h"
45 #include "sysemu/block-backend.h"
46 #include "exec/address-spaces.h"
47 
48 //#define DEBUG_IRQ
49 //#define DEBUG_EBUS
50 //#define DEBUG_TIMER
51 
52 #ifdef DEBUG_IRQ
53 #define CPUIRQ_DPRINTF(fmt, ...)                                \
54     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
55 #else
56 #define CPUIRQ_DPRINTF(fmt, ...)
57 #endif
58 
59 #ifdef DEBUG_EBUS
60 #define EBUS_DPRINTF(fmt, ...)                                  \
61     do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
62 #else
63 #define EBUS_DPRINTF(fmt, ...)
64 #endif
65 
66 #ifdef DEBUG_TIMER
67 #define TIMER_DPRINTF(fmt, ...)                                  \
68     do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
69 #else
70 #define TIMER_DPRINTF(fmt, ...)
71 #endif
72 
73 #define KERNEL_LOAD_ADDR     0x00404000
74 #define CMDLINE_ADDR         0x003ff000
75 #define PROM_SIZE_MAX        (4 * 1024 * 1024)
76 #define PROM_VADDR           0x000ffd00000ULL
77 #define APB_SPECIAL_BASE     0x1fe00000000ULL
78 #define APB_MEM_BASE         0x1ff00000000ULL
79 #define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
80 #define PROM_FILENAME        "openbios-sparc64"
81 #define NVRAM_SIZE           0x2000
82 #define MAX_IDE_BUS          2
83 #define BIOS_CFG_IOPORT      0x510
84 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
85 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
86 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
87 
88 #define IVEC_MAX             0x40
89 
90 #define TICK_MAX             0x7fffffffffffffffULL
91 
92 struct hwdef {
93     const char * const default_cpu_model;
94     uint16_t machine_id;
95     uint64_t prom_addr;
96     uint64_t console_serial_base;
97 };
98 
99 typedef struct EbusState {
100     PCIDevice pci_dev;
101     MemoryRegion bar0;
102     MemoryRegion bar1;
103 } EbusState;
104 
105 void DMA_init(ISABus *bus, int high_page_enable)
106 {
107 }
108 
109 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
110                             Error **errp)
111 {
112     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
113 }
114 
115 static int sun4u_NVRAM_set_params(Nvram *nvram, uint16_t NVRAM_size,
116                                   const char *arch, ram_addr_t RAM_size,
117                                   const char *boot_devices,
118                                   uint32_t kernel_image, uint32_t kernel_size,
119                                   const char *cmdline,
120                                   uint32_t initrd_image, uint32_t initrd_size,
121                                   uint32_t NVRAM_image,
122                                   int width, int height, int depth,
123                                   const uint8_t *macaddr)
124 {
125     unsigned int i;
126     uint32_t start, end;
127     uint8_t image[0x1ff0];
128     struct OpenBIOS_nvpart_v1 *part_header;
129     NvramClass *k = NVRAM_GET_CLASS(nvram);
130 
131     memset(image, '\0', sizeof(image));
132 
133     start = 0;
134 
135     // OpenBIOS nvram variables
136     // Variable partition
137     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
138     part_header->signature = OPENBIOS_PART_SYSTEM;
139     pstrcpy(part_header->name, sizeof(part_header->name), "system");
140 
141     end = start + sizeof(struct OpenBIOS_nvpart_v1);
142     for (i = 0; i < nb_prom_envs; i++)
143         end = OpenBIOS_set_var(image, end, prom_envs[i]);
144 
145     // End marker
146     image[end++] = '\0';
147 
148     end = start + ((end - start + 15) & ~15);
149     OpenBIOS_finish_partition(part_header, end - start);
150 
151     // free partition
152     start = end;
153     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
154     part_header->signature = OPENBIOS_PART_FREE;
155     pstrcpy(part_header->name, sizeof(part_header->name), "free");
156 
157     end = 0x1fd0;
158     OpenBIOS_finish_partition(part_header, end - start);
159 
160     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
161 
162     for (i = 0; i < sizeof(image); i++) {
163         (k->write)(nvram, i, image[i]);
164     }
165 
166     return 0;
167 }
168 
169 static uint64_t sun4u_load_kernel(const char *kernel_filename,
170                                   const char *initrd_filename,
171                                   ram_addr_t RAM_size, uint64_t *initrd_size,
172                                   uint64_t *initrd_addr, uint64_t *kernel_addr,
173                                   uint64_t *kernel_entry)
174 {
175     int linux_boot;
176     unsigned int i;
177     long kernel_size;
178     uint8_t *ptr;
179     uint64_t kernel_top;
180 
181     linux_boot = (kernel_filename != NULL);
182 
183     kernel_size = 0;
184     if (linux_boot) {
185         int bswap_needed;
186 
187 #ifdef BSWAP_NEEDED
188         bswap_needed = 1;
189 #else
190         bswap_needed = 0;
191 #endif
192         kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry,
193                                kernel_addr, &kernel_top, 1, EM_SPARCV9, 0, 0);
194         if (kernel_size < 0) {
195             *kernel_addr = KERNEL_LOAD_ADDR;
196             *kernel_entry = KERNEL_LOAD_ADDR;
197             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
198                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
199                                     TARGET_PAGE_SIZE);
200         }
201         if (kernel_size < 0) {
202             kernel_size = load_image_targphys(kernel_filename,
203                                               KERNEL_LOAD_ADDR,
204                                               RAM_size - KERNEL_LOAD_ADDR);
205         }
206         if (kernel_size < 0) {
207             fprintf(stderr, "qemu: could not load kernel '%s'\n",
208                     kernel_filename);
209             exit(1);
210         }
211         /* load initrd above kernel */
212         *initrd_size = 0;
213         if (initrd_filename) {
214             *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
215 
216             *initrd_size = load_image_targphys(initrd_filename,
217                                                *initrd_addr,
218                                                RAM_size - *initrd_addr);
219             if ((int)*initrd_size < 0) {
220                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
221                         initrd_filename);
222                 exit(1);
223             }
224         }
225         if (*initrd_size > 0) {
226             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
227                 ptr = rom_ptr(*kernel_addr + i);
228                 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
229                     stl_p(ptr + 24, *initrd_addr + *kernel_addr);
230                     stl_p(ptr + 28, *initrd_size);
231                     break;
232                 }
233             }
234         }
235     }
236     return kernel_size;
237 }
238 
239 void cpu_check_irqs(CPUSPARCState *env)
240 {
241     CPUState *cs;
242     uint32_t pil = env->pil_in |
243                   (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
244 
245     /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
246     if (env->ivec_status & 0x20) {
247         return;
248     }
249     cs = CPU(sparc_env_get_cpu(env));
250     /* check if TM or SM in SOFTINT are set
251        setting these also causes interrupt 14 */
252     if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
253         pil |= 1 << 14;
254     }
255 
256     /* The bit corresponding to psrpil is (1<< psrpil), the next bit
257        is (2 << psrpil). */
258     if (pil < (2 << env->psrpil)){
259         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
260             CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
261                            env->interrupt_index);
262             env->interrupt_index = 0;
263             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
264         }
265         return;
266     }
267 
268     if (cpu_interrupts_enabled(env)) {
269 
270         unsigned int i;
271 
272         for (i = 15; i > env->psrpil; i--) {
273             if (pil & (1 << i)) {
274                 int old_interrupt = env->interrupt_index;
275                 int new_interrupt = TT_EXTINT | i;
276 
277                 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
278                   && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
279                     CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
280                                    "current %x >= pending %x\n",
281                                    env->tl, cpu_tsptr(env)->tt, new_interrupt);
282                 } else if (old_interrupt != new_interrupt) {
283                     env->interrupt_index = new_interrupt;
284                     CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
285                                    old_interrupt, new_interrupt);
286                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
287                 }
288                 break;
289             }
290         }
291     } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
292         CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
293                        "current interrupt %x\n",
294                        pil, env->pil_in, env->softint, env->interrupt_index);
295         env->interrupt_index = 0;
296         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
297     }
298 }
299 
300 static void cpu_kick_irq(SPARCCPU *cpu)
301 {
302     CPUState *cs = CPU(cpu);
303     CPUSPARCState *env = &cpu->env;
304 
305     cs->halted = 0;
306     cpu_check_irqs(env);
307     qemu_cpu_kick(cs);
308 }
309 
310 static void cpu_set_ivec_irq(void *opaque, int irq, int level)
311 {
312     SPARCCPU *cpu = opaque;
313     CPUSPARCState *env = &cpu->env;
314     CPUState *cs;
315 
316     if (level) {
317         if (!(env->ivec_status & 0x20)) {
318             CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
319             cs = CPU(cpu);
320             cs->halted = 0;
321             env->interrupt_index = TT_IVEC;
322             env->ivec_status |= 0x20;
323             env->ivec_data[0] = (0x1f << 6) | irq;
324             env->ivec_data[1] = 0;
325             env->ivec_data[2] = 0;
326             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
327         }
328     } else {
329         if (env->ivec_status & 0x20) {
330             CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
331             cs = CPU(cpu);
332             env->ivec_status &= ~0x20;
333             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
334         }
335     }
336 }
337 
338 typedef struct ResetData {
339     SPARCCPU *cpu;
340     uint64_t prom_addr;
341 } ResetData;
342 
343 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
344                                   QEMUBHFunc *cb, uint32_t frequency,
345                                   uint64_t disabled_mask, uint64_t npt_mask)
346 {
347     CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
348 
349     timer->name = name;
350     timer->frequency = frequency;
351     timer->disabled_mask = disabled_mask;
352     timer->npt_mask = npt_mask;
353 
354     timer->disabled = 1;
355     timer->npt = 1;
356     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
357 
358     timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu);
359 
360     return timer;
361 }
362 
363 static void cpu_timer_reset(CPUTimer *timer)
364 {
365     timer->disabled = 1;
366     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
367 
368     timer_del(timer->qtimer);
369 }
370 
371 static void main_cpu_reset(void *opaque)
372 {
373     ResetData *s = (ResetData *)opaque;
374     CPUSPARCState *env = &s->cpu->env;
375     static unsigned int nr_resets;
376 
377     cpu_reset(CPU(s->cpu));
378 
379     cpu_timer_reset(env->tick);
380     cpu_timer_reset(env->stick);
381     cpu_timer_reset(env->hstick);
382 
383     env->gregs[1] = 0; // Memory start
384     env->gregs[2] = ram_size; // Memory size
385     env->gregs[3] = 0; // Machine description XXX
386     if (nr_resets++ == 0) {
387         /* Power on reset */
388         env->pc = s->prom_addr + 0x20ULL;
389     } else {
390         env->pc = s->prom_addr + 0x40ULL;
391     }
392     env->npc = env->pc + 4;
393 }
394 
395 static void tick_irq(void *opaque)
396 {
397     SPARCCPU *cpu = opaque;
398     CPUSPARCState *env = &cpu->env;
399 
400     CPUTimer* timer = env->tick;
401 
402     if (timer->disabled) {
403         CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
404         return;
405     } else {
406         CPUIRQ_DPRINTF("tick: fire\n");
407     }
408 
409     env->softint |= SOFTINT_TIMER;
410     cpu_kick_irq(cpu);
411 }
412 
413 static void stick_irq(void *opaque)
414 {
415     SPARCCPU *cpu = opaque;
416     CPUSPARCState *env = &cpu->env;
417 
418     CPUTimer* timer = env->stick;
419 
420     if (timer->disabled) {
421         CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
422         return;
423     } else {
424         CPUIRQ_DPRINTF("stick: fire\n");
425     }
426 
427     env->softint |= SOFTINT_STIMER;
428     cpu_kick_irq(cpu);
429 }
430 
431 static void hstick_irq(void *opaque)
432 {
433     SPARCCPU *cpu = opaque;
434     CPUSPARCState *env = &cpu->env;
435 
436     CPUTimer* timer = env->hstick;
437 
438     if (timer->disabled) {
439         CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
440         return;
441     } else {
442         CPUIRQ_DPRINTF("hstick: fire\n");
443     }
444 
445     env->softint |= SOFTINT_STIMER;
446     cpu_kick_irq(cpu);
447 }
448 
449 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
450 {
451     return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
452 }
453 
454 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
455 {
456     return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
457 }
458 
459 void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
460 {
461     uint64_t real_count = count & ~timer->npt_mask;
462     uint64_t npt_bit = count & timer->npt_mask;
463 
464     int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
465                     cpu_to_timer_ticks(real_count, timer->frequency);
466 
467     TIMER_DPRINTF("%s set_count count=0x%016lx (npt %s) p=%p\n",
468                   timer->name, real_count,
469                   timer->npt ? "disabled" : "enabled", timer);
470 
471     timer->npt = npt_bit ? 1 : 0;
472     timer->clock_offset = vm_clock_offset;
473 }
474 
475 uint64_t cpu_tick_get_count(CPUTimer *timer)
476 {
477     uint64_t real_count = timer_to_cpu_ticks(
478                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset,
479                     timer->frequency);
480 
481     TIMER_DPRINTF("%s get_count count=0x%016lx (npt %s) p=%p\n",
482            timer->name, real_count,
483            timer->npt ? "disabled" : "enabled", timer);
484 
485     if (timer->npt) {
486         real_count |= timer->npt_mask;
487     }
488 
489     return real_count;
490 }
491 
492 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
493 {
494     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
495 
496     uint64_t real_limit = limit & ~timer->disabled_mask;
497     timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
498 
499     int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
500                     timer->clock_offset;
501 
502     if (expires < now) {
503         expires = now + 1;
504     }
505 
506     TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
507                   "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
508                   timer->name, real_limit,
509                   timer->disabled?"disabled":"enabled",
510                   timer, limit,
511                   timer_to_cpu_ticks(now - timer->clock_offset,
512                                      timer->frequency),
513                   timer_to_cpu_ticks(expires - now, timer->frequency));
514 
515     if (!real_limit) {
516         TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
517                 timer->name);
518         timer_del(timer->qtimer);
519     } else if (timer->disabled) {
520         timer_del(timer->qtimer);
521     } else {
522         timer_mod(timer->qtimer, expires);
523     }
524 }
525 
526 static void isa_irq_handler(void *opaque, int n, int level)
527 {
528     static const int isa_irq_to_ivec[16] = {
529         [1] = 0x29, /* keyboard */
530         [4] = 0x2b, /* serial */
531         [6] = 0x27, /* floppy */
532         [7] = 0x22, /* parallel */
533         [12] = 0x2a, /* mouse */
534     };
535     qemu_irq *irqs = opaque;
536     int ivec;
537 
538     assert(n < 16);
539     ivec = isa_irq_to_ivec[n];
540     EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec);
541     if (ivec) {
542         qemu_set_irq(irqs[ivec], level);
543     }
544 }
545 
546 /* EBUS (Eight bit bus) bridge */
547 static ISABus *
548 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs)
549 {
550     qemu_irq *isa_irq;
551     PCIDevice *pci_dev;
552     ISABus *isa_bus;
553 
554     pci_dev = pci_create_simple(bus, devfn, "ebus");
555     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci_dev), "isa.0"));
556     isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16);
557     isa_bus_irqs(isa_bus, isa_irq);
558     return isa_bus;
559 }
560 
561 static void pci_ebus_realize(PCIDevice *pci_dev, Error **errp)
562 {
563     EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
564 
565     if (!isa_bus_new(DEVICE(pci_dev), get_system_memory(),
566                      pci_address_space_io(pci_dev), errp)) {
567         return;
568     }
569 
570     pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
571     pci_dev->config[0x05] = 0x00;
572     pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
573     pci_dev->config[0x07] = 0x03; // status = medium devsel
574     pci_dev->config[0x09] = 0x00; // programming i/f
575     pci_dev->config[0x0D] = 0x0a; // latency_timer
576 
577     memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(),
578                              0, 0x1000000);
579     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
580     memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(),
581                              0, 0x4000);
582     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1);
583 }
584 
585 static void ebus_class_init(ObjectClass *klass, void *data)
586 {
587     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
588 
589     k->realize = pci_ebus_realize;
590     k->vendor_id = PCI_VENDOR_ID_SUN;
591     k->device_id = PCI_DEVICE_ID_SUN_EBUS;
592     k->revision = 0x01;
593     k->class_id = PCI_CLASS_BRIDGE_OTHER;
594 }
595 
596 static const TypeInfo ebus_info = {
597     .name          = "ebus",
598     .parent        = TYPE_PCI_DEVICE,
599     .instance_size = sizeof(EbusState),
600     .class_init    = ebus_class_init,
601 };
602 
603 #define TYPE_OPENPROM "openprom"
604 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
605 
606 typedef struct PROMState {
607     SysBusDevice parent_obj;
608 
609     MemoryRegion prom;
610 } PROMState;
611 
612 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
613 {
614     hwaddr *base_addr = (hwaddr *)opaque;
615     return addr + *base_addr - PROM_VADDR;
616 }
617 
618 /* Boot PROM (OpenBIOS) */
619 static void prom_init(hwaddr addr, const char *bios_name)
620 {
621     DeviceState *dev;
622     SysBusDevice *s;
623     char *filename;
624     int ret;
625 
626     dev = qdev_create(NULL, TYPE_OPENPROM);
627     qdev_init_nofail(dev);
628     s = SYS_BUS_DEVICE(dev);
629 
630     sysbus_mmio_map(s, 0, addr);
631 
632     /* load boot prom */
633     if (bios_name == NULL) {
634         bios_name = PROM_FILENAME;
635     }
636     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
637     if (filename) {
638         ret = load_elf(filename, translate_prom_address, &addr,
639                        NULL, NULL, NULL, 1, EM_SPARCV9, 0, 0);
640         if (ret < 0 || ret > PROM_SIZE_MAX) {
641             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
642         }
643         g_free(filename);
644     } else {
645         ret = -1;
646     }
647     if (ret < 0 || ret > PROM_SIZE_MAX) {
648         fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
649         exit(1);
650     }
651 }
652 
653 static int prom_init1(SysBusDevice *dev)
654 {
655     PROMState *s = OPENPROM(dev);
656 
657     memory_region_init_ram(&s->prom, OBJECT(s), "sun4u.prom", PROM_SIZE_MAX,
658                            &error_fatal);
659     vmstate_register_ram_global(&s->prom);
660     memory_region_set_readonly(&s->prom, true);
661     sysbus_init_mmio(dev, &s->prom);
662     return 0;
663 }
664 
665 static Property prom_properties[] = {
666     {/* end of property list */},
667 };
668 
669 static void prom_class_init(ObjectClass *klass, void *data)
670 {
671     DeviceClass *dc = DEVICE_CLASS(klass);
672     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
673 
674     k->init = prom_init1;
675     dc->props = prom_properties;
676 }
677 
678 static const TypeInfo prom_info = {
679     .name          = TYPE_OPENPROM,
680     .parent        = TYPE_SYS_BUS_DEVICE,
681     .instance_size = sizeof(PROMState),
682     .class_init    = prom_class_init,
683 };
684 
685 
686 #define TYPE_SUN4U_MEMORY "memory"
687 #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY)
688 
689 typedef struct RamDevice {
690     SysBusDevice parent_obj;
691 
692     MemoryRegion ram;
693     uint64_t size;
694 } RamDevice;
695 
696 /* System RAM */
697 static int ram_init1(SysBusDevice *dev)
698 {
699     RamDevice *d = SUN4U_RAM(dev);
700 
701     memory_region_init_ram(&d->ram, OBJECT(d), "sun4u.ram", d->size,
702                            &error_fatal);
703     vmstate_register_ram_global(&d->ram);
704     sysbus_init_mmio(dev, &d->ram);
705     return 0;
706 }
707 
708 static void ram_init(hwaddr addr, ram_addr_t RAM_size)
709 {
710     DeviceState *dev;
711     SysBusDevice *s;
712     RamDevice *d;
713 
714     /* allocate RAM */
715     dev = qdev_create(NULL, TYPE_SUN4U_MEMORY);
716     s = SYS_BUS_DEVICE(dev);
717 
718     d = SUN4U_RAM(dev);
719     d->size = RAM_size;
720     qdev_init_nofail(dev);
721 
722     sysbus_mmio_map(s, 0, addr);
723 }
724 
725 static Property ram_properties[] = {
726     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
727     DEFINE_PROP_END_OF_LIST(),
728 };
729 
730 static void ram_class_init(ObjectClass *klass, void *data)
731 {
732     DeviceClass *dc = DEVICE_CLASS(klass);
733     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
734 
735     k->init = ram_init1;
736     dc->props = ram_properties;
737 }
738 
739 static const TypeInfo ram_info = {
740     .name          = TYPE_SUN4U_MEMORY,
741     .parent        = TYPE_SYS_BUS_DEVICE,
742     .instance_size = sizeof(RamDevice),
743     .class_init    = ram_class_init,
744 };
745 
746 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
747 {
748     SPARCCPU *cpu;
749     CPUSPARCState *env;
750     ResetData *reset_info;
751 
752     uint32_t   tick_frequency = 100*1000000;
753     uint32_t  stick_frequency = 100*1000000;
754     uint32_t hstick_frequency = 100*1000000;
755 
756     if (cpu_model == NULL) {
757         cpu_model = hwdef->default_cpu_model;
758     }
759     cpu = cpu_sparc_init(cpu_model);
760     if (cpu == NULL) {
761         fprintf(stderr, "Unable to find Sparc CPU definition\n");
762         exit(1);
763     }
764     env = &cpu->env;
765 
766     env->tick = cpu_timer_create("tick", cpu, tick_irq,
767                                   tick_frequency, TICK_INT_DIS,
768                                   TICK_NPT_MASK);
769 
770     env->stick = cpu_timer_create("stick", cpu, stick_irq,
771                                    stick_frequency, TICK_INT_DIS,
772                                    TICK_NPT_MASK);
773 
774     env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
775                                     hstick_frequency, TICK_INT_DIS,
776                                     TICK_NPT_MASK);
777 
778     reset_info = g_malloc0(sizeof(ResetData));
779     reset_info->cpu = cpu;
780     reset_info->prom_addr = hwdef->prom_addr;
781     qemu_register_reset(main_cpu_reset, reset_info);
782 
783     return cpu;
784 }
785 
786 static void sun4uv_init(MemoryRegion *address_space_mem,
787                         MachineState *machine,
788                         const struct hwdef *hwdef)
789 {
790     SPARCCPU *cpu;
791     Nvram *nvram;
792     unsigned int i;
793     uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
794     PCIBus *pci_bus, *pci_bus2, *pci_bus3;
795     ISABus *isa_bus;
796     SysBusDevice *s;
797     qemu_irq *ivec_irqs, *pbm_irqs;
798     DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
799     DriveInfo *fd[MAX_FD];
800     DeviceState *dev;
801     FWCfgState *fw_cfg;
802 
803     /* init CPUs */
804     cpu = cpu_devinit(machine->cpu_model, hwdef);
805 
806     /* set up devices */
807     ram_init(0, machine->ram_size);
808 
809     prom_init(hwdef->prom_addr, bios_name);
810 
811     ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX);
812     pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2,
813                            &pci_bus3, &pbm_irqs);
814     pci_vga_init(pci_bus);
815 
816     // XXX Should be pci_bus3
817     isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs);
818 
819     i = 0;
820     if (hwdef->console_serial_base) {
821         serial_mm_init(address_space_mem, hwdef->console_serial_base, 0,
822                        NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
823         i++;
824     }
825 
826     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
827     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
828 
829     for(i = 0; i < nb_nics; i++)
830         pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
831 
832     ide_drive_get(hd, ARRAY_SIZE(hd));
833 
834     pci_cmd646_ide_init(pci_bus, hd, 1);
835 
836     isa_create_simple(isa_bus, "i8042");
837 
838     /* Floppy */
839     for(i = 0; i < MAX_FD; i++) {
840         fd[i] = drive_get(IF_FLOPPY, 0, i);
841     }
842     dev = DEVICE(isa_create(isa_bus, TYPE_ISA_FDC));
843     if (fd[0]) {
844         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fd[0]),
845                             &error_abort);
846     }
847     if (fd[1]) {
848         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fd[1]),
849                             &error_abort);
850     }
851     qdev_prop_set_uint32(dev, "dma", -1);
852     qdev_init_nofail(dev);
853 
854     /* Map NVRAM into I/O (ebus) space */
855     nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59);
856     s = SYS_BUS_DEVICE(nvram);
857     memory_region_add_subregion(get_system_io(), 0x2000,
858                                 sysbus_mmio_get_region(s, 0));
859 
860     initrd_size = 0;
861     initrd_addr = 0;
862     kernel_size = sun4u_load_kernel(machine->kernel_filename,
863                                     machine->initrd_filename,
864                                     ram_size, &initrd_size, &initrd_addr,
865                                     &kernel_addr, &kernel_entry);
866 
867     sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size,
868                            machine->boot_order,
869                            kernel_addr, kernel_size,
870                            machine->kernel_cmdline,
871                            initrd_addr, initrd_size,
872                            /* XXX: need an option to load a NVRAM image */
873                            0,
874                            graphic_width, graphic_height, graphic_depth,
875                            (uint8_t *)&nd_table[0].macaddr);
876 
877     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
878     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
879     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
880     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
881     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
882     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
883     if (machine->kernel_cmdline) {
884         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
885                        strlen(machine->kernel_cmdline) + 1);
886         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
887     } else {
888         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
889     }
890     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
891     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
892     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
893 
894     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
895     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
896     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
897 
898     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
899 }
900 
901 enum {
902     sun4u_id = 0,
903     sun4v_id = 64,
904     niagara_id,
905 };
906 
907 static const struct hwdef hwdefs[] = {
908     /* Sun4u generic PC-like machine */
909     {
910         .default_cpu_model = "TI UltraSparc IIi",
911         .machine_id = sun4u_id,
912         .prom_addr = 0x1fff0000000ULL,
913         .console_serial_base = 0,
914     },
915     /* Sun4v generic PC-like machine */
916     {
917         .default_cpu_model = "Sun UltraSparc T1",
918         .machine_id = sun4v_id,
919         .prom_addr = 0x1fff0000000ULL,
920         .console_serial_base = 0,
921     },
922     /* Sun4v generic Niagara machine */
923     {
924         .default_cpu_model = "Sun UltraSparc T1",
925         .machine_id = niagara_id,
926         .prom_addr = 0xfff0000000ULL,
927         .console_serial_base = 0xfff0c2c000ULL,
928     },
929 };
930 
931 /* Sun4u hardware initialisation */
932 static void sun4u_init(MachineState *machine)
933 {
934     sun4uv_init(get_system_memory(), machine, &hwdefs[0]);
935 }
936 
937 /* Sun4v hardware initialisation */
938 static void sun4v_init(MachineState *machine)
939 {
940     sun4uv_init(get_system_memory(), machine, &hwdefs[1]);
941 }
942 
943 /* Niagara hardware initialisation */
944 static void niagara_init(MachineState *machine)
945 {
946     sun4uv_init(get_system_memory(), machine, &hwdefs[2]);
947 }
948 
949 static void sun4u_class_init(ObjectClass *oc, void *data)
950 {
951     MachineClass *mc = MACHINE_CLASS(oc);
952 
953     mc->desc = "Sun4u platform";
954     mc->init = sun4u_init;
955     mc->max_cpus = 1; /* XXX for now */
956     mc->is_default = 1;
957     mc->default_boot_order = "c";
958 }
959 
960 static const TypeInfo sun4u_type = {
961     .name = MACHINE_TYPE_NAME("sun4u"),
962     .parent = TYPE_MACHINE,
963     .class_init = sun4u_class_init,
964 };
965 
966 static void sun4v_class_init(ObjectClass *oc, void *data)
967 {
968     MachineClass *mc = MACHINE_CLASS(oc);
969 
970     mc->desc = "Sun4v platform";
971     mc->init = sun4v_init;
972     mc->max_cpus = 1; /* XXX for now */
973     mc->default_boot_order = "c";
974 }
975 
976 static const TypeInfo sun4v_type = {
977     .name = MACHINE_TYPE_NAME("sun4v"),
978     .parent = TYPE_MACHINE,
979     .class_init = sun4v_class_init,
980 };
981 
982 static void niagara_class_init(ObjectClass *oc, void *data)
983 {
984     MachineClass *mc = MACHINE_CLASS(oc);
985 
986     mc->desc = "Sun4v platform, Niagara";
987     mc->init = niagara_init;
988     mc->max_cpus = 1; /* XXX for now */
989     mc->default_boot_order = "c";
990 }
991 
992 static const TypeInfo niagara_type = {
993     .name = MACHINE_TYPE_NAME("Niagara"),
994     .parent = TYPE_MACHINE,
995     .class_init = niagara_class_init,
996 };
997 
998 static void sun4u_register_types(void)
999 {
1000     type_register_static(&ebus_info);
1001     type_register_static(&prom_info);
1002     type_register_static(&ram_info);
1003 
1004     type_register_static(&sun4u_type);
1005     type_register_static(&sun4v_type);
1006     type_register_static(&niagara_type);
1007 }
1008 
1009 type_init(sun4u_register_types)
1010