xref: /openbmc/qemu/hw/sparc64/sun4u.c (revision 3a80ceadcbfa2bfd65ecfa81e389e93b738aaef0)
1 /*
2  * QEMU Sun4u/Sun4v System Emulator
3  *
4  * Copyright (c) 2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/pci/pci.h"
26 #include "hw/pci-host/apb.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/timer/m48t59.h"
30 #include "hw/block/fdc.h"
31 #include "net/net.h"
32 #include "qemu/timer.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/boards.h"
35 #include "hw/nvram/openbios_firmware_abi.h"
36 #include "hw/nvram/fw_cfg.h"
37 #include "hw/sysbus.h"
38 #include "hw/ide.h"
39 #include "hw/loader.h"
40 #include "elf.h"
41 #include "sysemu/block-backend.h"
42 #include "exec/address-spaces.h"
43 
44 //#define DEBUG_IRQ
45 //#define DEBUG_EBUS
46 //#define DEBUG_TIMER
47 
48 #ifdef DEBUG_IRQ
49 #define CPUIRQ_DPRINTF(fmt, ...)                                \
50     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
51 #else
52 #define CPUIRQ_DPRINTF(fmt, ...)
53 #endif
54 
55 #ifdef DEBUG_EBUS
56 #define EBUS_DPRINTF(fmt, ...)                                  \
57     do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
58 #else
59 #define EBUS_DPRINTF(fmt, ...)
60 #endif
61 
62 #ifdef DEBUG_TIMER
63 #define TIMER_DPRINTF(fmt, ...)                                  \
64     do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define TIMER_DPRINTF(fmt, ...)
67 #endif
68 
69 #define KERNEL_LOAD_ADDR     0x00404000
70 #define CMDLINE_ADDR         0x003ff000
71 #define PROM_SIZE_MAX        (4 * 1024 * 1024)
72 #define PROM_VADDR           0x000ffd00000ULL
73 #define APB_SPECIAL_BASE     0x1fe00000000ULL
74 #define APB_MEM_BASE         0x1ff00000000ULL
75 #define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
76 #define PROM_FILENAME        "openbios-sparc64"
77 #define NVRAM_SIZE           0x2000
78 #define MAX_IDE_BUS          2
79 #define BIOS_CFG_IOPORT      0x510
80 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
81 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
82 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
83 
84 #define IVEC_MAX             0x40
85 
86 #define TICK_MAX             0x7fffffffffffffffULL
87 
88 struct hwdef {
89     const char * const default_cpu_model;
90     uint16_t machine_id;
91     uint64_t prom_addr;
92     uint64_t console_serial_base;
93 };
94 
95 typedef struct EbusState {
96     PCIDevice pci_dev;
97     MemoryRegion bar0;
98     MemoryRegion bar1;
99 } EbusState;
100 
101 int DMA_get_channel_mode (int nchan)
102 {
103     return 0;
104 }
105 int DMA_read_memory (int nchan, void *buf, int pos, int size)
106 {
107     return 0;
108 }
109 int DMA_write_memory (int nchan, void *buf, int pos, int size)
110 {
111     return 0;
112 }
113 void DMA_hold_DREQ (int nchan) {}
114 void DMA_release_DREQ (int nchan) {}
115 void DMA_schedule(void) {}
116 
117 void DMA_init(int high_page_enable)
118 {
119 }
120 
121 void DMA_register_channel (int nchan,
122                            DMA_transfer_handler transfer_handler,
123                            void *opaque)
124 {
125 }
126 
127 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
128                             Error **errp)
129 {
130     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
131 }
132 
133 static int sun4u_NVRAM_set_params(Nvram *nvram, uint16_t NVRAM_size,
134                                   const char *arch, ram_addr_t RAM_size,
135                                   const char *boot_devices,
136                                   uint32_t kernel_image, uint32_t kernel_size,
137                                   const char *cmdline,
138                                   uint32_t initrd_image, uint32_t initrd_size,
139                                   uint32_t NVRAM_image,
140                                   int width, int height, int depth,
141                                   const uint8_t *macaddr)
142 {
143     unsigned int i;
144     uint32_t start, end;
145     uint8_t image[0x1ff0];
146     struct OpenBIOS_nvpart_v1 *part_header;
147     NvramClass *k = NVRAM_GET_CLASS(nvram);
148 
149     memset(image, '\0', sizeof(image));
150 
151     start = 0;
152 
153     // OpenBIOS nvram variables
154     // Variable partition
155     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
156     part_header->signature = OPENBIOS_PART_SYSTEM;
157     pstrcpy(part_header->name, sizeof(part_header->name), "system");
158 
159     end = start + sizeof(struct OpenBIOS_nvpart_v1);
160     for (i = 0; i < nb_prom_envs; i++)
161         end = OpenBIOS_set_var(image, end, prom_envs[i]);
162 
163     // End marker
164     image[end++] = '\0';
165 
166     end = start + ((end - start + 15) & ~15);
167     OpenBIOS_finish_partition(part_header, end - start);
168 
169     // free partition
170     start = end;
171     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
172     part_header->signature = OPENBIOS_PART_FREE;
173     pstrcpy(part_header->name, sizeof(part_header->name), "free");
174 
175     end = 0x1fd0;
176     OpenBIOS_finish_partition(part_header, end - start);
177 
178     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
179 
180     for (i = 0; i < sizeof(image); i++) {
181         (k->write)(nvram, i, image[i]);
182     }
183 
184     return 0;
185 }
186 
187 static uint64_t sun4u_load_kernel(const char *kernel_filename,
188                                   const char *initrd_filename,
189                                   ram_addr_t RAM_size, uint64_t *initrd_size,
190                                   uint64_t *initrd_addr, uint64_t *kernel_addr,
191                                   uint64_t *kernel_entry)
192 {
193     int linux_boot;
194     unsigned int i;
195     long kernel_size;
196     uint8_t *ptr;
197     uint64_t kernel_top;
198 
199     linux_boot = (kernel_filename != NULL);
200 
201     kernel_size = 0;
202     if (linux_boot) {
203         int bswap_needed;
204 
205 #ifdef BSWAP_NEEDED
206         bswap_needed = 1;
207 #else
208         bswap_needed = 0;
209 #endif
210         kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry,
211                                kernel_addr, &kernel_top, 1, EM_SPARCV9, 0);
212         if (kernel_size < 0) {
213             *kernel_addr = KERNEL_LOAD_ADDR;
214             *kernel_entry = KERNEL_LOAD_ADDR;
215             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
216                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
217                                     TARGET_PAGE_SIZE);
218         }
219         if (kernel_size < 0) {
220             kernel_size = load_image_targphys(kernel_filename,
221                                               KERNEL_LOAD_ADDR,
222                                               RAM_size - KERNEL_LOAD_ADDR);
223         }
224         if (kernel_size < 0) {
225             fprintf(stderr, "qemu: could not load kernel '%s'\n",
226                     kernel_filename);
227             exit(1);
228         }
229         /* load initrd above kernel */
230         *initrd_size = 0;
231         if (initrd_filename) {
232             *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
233 
234             *initrd_size = load_image_targphys(initrd_filename,
235                                                *initrd_addr,
236                                                RAM_size - *initrd_addr);
237             if ((int)*initrd_size < 0) {
238                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
239                         initrd_filename);
240                 exit(1);
241             }
242         }
243         if (*initrd_size > 0) {
244             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
245                 ptr = rom_ptr(*kernel_addr + i);
246                 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
247                     stl_p(ptr + 24, *initrd_addr + *kernel_addr);
248                     stl_p(ptr + 28, *initrd_size);
249                     break;
250                 }
251             }
252         }
253     }
254     return kernel_size;
255 }
256 
257 void cpu_check_irqs(CPUSPARCState *env)
258 {
259     CPUState *cs;
260     uint32_t pil = env->pil_in |
261                   (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
262 
263     /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
264     if (env->ivec_status & 0x20) {
265         return;
266     }
267     cs = CPU(sparc_env_get_cpu(env));
268     /* check if TM or SM in SOFTINT are set
269        setting these also causes interrupt 14 */
270     if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
271         pil |= 1 << 14;
272     }
273 
274     /* The bit corresponding to psrpil is (1<< psrpil), the next bit
275        is (2 << psrpil). */
276     if (pil < (2 << env->psrpil)){
277         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
278             CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
279                            env->interrupt_index);
280             env->interrupt_index = 0;
281             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
282         }
283         return;
284     }
285 
286     if (cpu_interrupts_enabled(env)) {
287 
288         unsigned int i;
289 
290         for (i = 15; i > env->psrpil; i--) {
291             if (pil & (1 << i)) {
292                 int old_interrupt = env->interrupt_index;
293                 int new_interrupt = TT_EXTINT | i;
294 
295                 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
296                   && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
297                     CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
298                                    "current %x >= pending %x\n",
299                                    env->tl, cpu_tsptr(env)->tt, new_interrupt);
300                 } else if (old_interrupt != new_interrupt) {
301                     env->interrupt_index = new_interrupt;
302                     CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
303                                    old_interrupt, new_interrupt);
304                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
305                 }
306                 break;
307             }
308         }
309     } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
310         CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
311                        "current interrupt %x\n",
312                        pil, env->pil_in, env->softint, env->interrupt_index);
313         env->interrupt_index = 0;
314         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
315     }
316 }
317 
318 static void cpu_kick_irq(SPARCCPU *cpu)
319 {
320     CPUState *cs = CPU(cpu);
321     CPUSPARCState *env = &cpu->env;
322 
323     cs->halted = 0;
324     cpu_check_irqs(env);
325     qemu_cpu_kick(cs);
326 }
327 
328 static void cpu_set_ivec_irq(void *opaque, int irq, int level)
329 {
330     SPARCCPU *cpu = opaque;
331     CPUSPARCState *env = &cpu->env;
332     CPUState *cs;
333 
334     if (level) {
335         if (!(env->ivec_status & 0x20)) {
336             CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
337             cs = CPU(cpu);
338             cs->halted = 0;
339             env->interrupt_index = TT_IVEC;
340             env->ivec_status |= 0x20;
341             env->ivec_data[0] = (0x1f << 6) | irq;
342             env->ivec_data[1] = 0;
343             env->ivec_data[2] = 0;
344             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
345         }
346     } else {
347         if (env->ivec_status & 0x20) {
348             CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
349             cs = CPU(cpu);
350             env->ivec_status &= ~0x20;
351             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
352         }
353     }
354 }
355 
356 typedef struct ResetData {
357     SPARCCPU *cpu;
358     uint64_t prom_addr;
359 } ResetData;
360 
361 void cpu_put_timer(QEMUFile *f, CPUTimer *s)
362 {
363     qemu_put_be32s(f, &s->frequency);
364     qemu_put_be32s(f, &s->disabled);
365     qemu_put_be64s(f, &s->disabled_mask);
366     qemu_put_be32s(f, &s->npt);
367     qemu_put_be64s(f, &s->npt_mask);
368     qemu_put_sbe64s(f, &s->clock_offset);
369 
370     timer_put(f, s->qtimer);
371 }
372 
373 void cpu_get_timer(QEMUFile *f, CPUTimer *s)
374 {
375     qemu_get_be32s(f, &s->frequency);
376     qemu_get_be32s(f, &s->disabled);
377     qemu_get_be64s(f, &s->disabled_mask);
378     qemu_get_be32s(f, &s->npt);
379     qemu_get_be64s(f, &s->npt_mask);
380     qemu_get_sbe64s(f, &s->clock_offset);
381 
382     timer_get(f, s->qtimer);
383 }
384 
385 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
386                                   QEMUBHFunc *cb, uint32_t frequency,
387                                   uint64_t disabled_mask, uint64_t npt_mask)
388 {
389     CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
390 
391     timer->name = name;
392     timer->frequency = frequency;
393     timer->disabled_mask = disabled_mask;
394     timer->npt_mask = npt_mask;
395 
396     timer->disabled = 1;
397     timer->npt = 1;
398     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
399 
400     timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu);
401 
402     return timer;
403 }
404 
405 static void cpu_timer_reset(CPUTimer *timer)
406 {
407     timer->disabled = 1;
408     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
409 
410     timer_del(timer->qtimer);
411 }
412 
413 static void main_cpu_reset(void *opaque)
414 {
415     ResetData *s = (ResetData *)opaque;
416     CPUSPARCState *env = &s->cpu->env;
417     static unsigned int nr_resets;
418 
419     cpu_reset(CPU(s->cpu));
420 
421     cpu_timer_reset(env->tick);
422     cpu_timer_reset(env->stick);
423     cpu_timer_reset(env->hstick);
424 
425     env->gregs[1] = 0; // Memory start
426     env->gregs[2] = ram_size; // Memory size
427     env->gregs[3] = 0; // Machine description XXX
428     if (nr_resets++ == 0) {
429         /* Power on reset */
430         env->pc = s->prom_addr + 0x20ULL;
431     } else {
432         env->pc = s->prom_addr + 0x40ULL;
433     }
434     env->npc = env->pc + 4;
435 }
436 
437 static void tick_irq(void *opaque)
438 {
439     SPARCCPU *cpu = opaque;
440     CPUSPARCState *env = &cpu->env;
441 
442     CPUTimer* timer = env->tick;
443 
444     if (timer->disabled) {
445         CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
446         return;
447     } else {
448         CPUIRQ_DPRINTF("tick: fire\n");
449     }
450 
451     env->softint |= SOFTINT_TIMER;
452     cpu_kick_irq(cpu);
453 }
454 
455 static void stick_irq(void *opaque)
456 {
457     SPARCCPU *cpu = opaque;
458     CPUSPARCState *env = &cpu->env;
459 
460     CPUTimer* timer = env->stick;
461 
462     if (timer->disabled) {
463         CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
464         return;
465     } else {
466         CPUIRQ_DPRINTF("stick: fire\n");
467     }
468 
469     env->softint |= SOFTINT_STIMER;
470     cpu_kick_irq(cpu);
471 }
472 
473 static void hstick_irq(void *opaque)
474 {
475     SPARCCPU *cpu = opaque;
476     CPUSPARCState *env = &cpu->env;
477 
478     CPUTimer* timer = env->hstick;
479 
480     if (timer->disabled) {
481         CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
482         return;
483     } else {
484         CPUIRQ_DPRINTF("hstick: fire\n");
485     }
486 
487     env->softint |= SOFTINT_STIMER;
488     cpu_kick_irq(cpu);
489 }
490 
491 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
492 {
493     return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
494 }
495 
496 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
497 {
498     return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
499 }
500 
501 void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
502 {
503     uint64_t real_count = count & ~timer->npt_mask;
504     uint64_t npt_bit = count & timer->npt_mask;
505 
506     int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
507                     cpu_to_timer_ticks(real_count, timer->frequency);
508 
509     TIMER_DPRINTF("%s set_count count=0x%016lx (npt %s) p=%p\n",
510                   timer->name, real_count,
511                   timer->npt ? "disabled" : "enabled", timer);
512 
513     timer->npt = npt_bit ? 1 : 0;
514     timer->clock_offset = vm_clock_offset;
515 }
516 
517 uint64_t cpu_tick_get_count(CPUTimer *timer)
518 {
519     uint64_t real_count = timer_to_cpu_ticks(
520                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset,
521                     timer->frequency);
522 
523     TIMER_DPRINTF("%s get_count count=0x%016lx (npt %s) p=%p\n",
524            timer->name, real_count,
525            timer->npt ? "disabled" : "enabled", timer);
526 
527     if (timer->npt) {
528         real_count |= timer->npt_mask;
529     }
530 
531     return real_count;
532 }
533 
534 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
535 {
536     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
537 
538     uint64_t real_limit = limit & ~timer->disabled_mask;
539     timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
540 
541     int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
542                     timer->clock_offset;
543 
544     if (expires < now) {
545         expires = now + 1;
546     }
547 
548     TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
549                   "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
550                   timer->name, real_limit,
551                   timer->disabled?"disabled":"enabled",
552                   timer, limit,
553                   timer_to_cpu_ticks(now - timer->clock_offset,
554                                      timer->frequency),
555                   timer_to_cpu_ticks(expires - now, timer->frequency));
556 
557     if (!real_limit) {
558         TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
559                 timer->name);
560         timer_del(timer->qtimer);
561     } else if (timer->disabled) {
562         timer_del(timer->qtimer);
563     } else {
564         timer_mod(timer->qtimer, expires);
565     }
566 }
567 
568 static void isa_irq_handler(void *opaque, int n, int level)
569 {
570     static const int isa_irq_to_ivec[16] = {
571         [1] = 0x29, /* keyboard */
572         [4] = 0x2b, /* serial */
573         [6] = 0x27, /* floppy */
574         [7] = 0x22, /* parallel */
575         [12] = 0x2a, /* mouse */
576     };
577     qemu_irq *irqs = opaque;
578     int ivec;
579 
580     assert(n < 16);
581     ivec = isa_irq_to_ivec[n];
582     EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec);
583     if (ivec) {
584         qemu_set_irq(irqs[ivec], level);
585     }
586 }
587 
588 /* EBUS (Eight bit bus) bridge */
589 static ISABus *
590 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs)
591 {
592     qemu_irq *isa_irq;
593     PCIDevice *pci_dev;
594     ISABus *isa_bus;
595 
596     pci_dev = pci_create_simple(bus, devfn, "ebus");
597     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci_dev), "isa.0"));
598     isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16);
599     isa_bus_irqs(isa_bus, isa_irq);
600     return isa_bus;
601 }
602 
603 static void pci_ebus_realize(PCIDevice *pci_dev, Error **errp)
604 {
605     EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
606 
607     isa_bus_new(DEVICE(pci_dev), get_system_memory(),
608                 pci_address_space_io(pci_dev));
609 
610     pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
611     pci_dev->config[0x05] = 0x00;
612     pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
613     pci_dev->config[0x07] = 0x03; // status = medium devsel
614     pci_dev->config[0x09] = 0x00; // programming i/f
615     pci_dev->config[0x0D] = 0x0a; // latency_timer
616 
617     memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(),
618                              0, 0x1000000);
619     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
620     memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(),
621                              0, 0x4000);
622     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1);
623 }
624 
625 static void ebus_class_init(ObjectClass *klass, void *data)
626 {
627     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
628 
629     k->realize = pci_ebus_realize;
630     k->vendor_id = PCI_VENDOR_ID_SUN;
631     k->device_id = PCI_DEVICE_ID_SUN_EBUS;
632     k->revision = 0x01;
633     k->class_id = PCI_CLASS_BRIDGE_OTHER;
634 }
635 
636 static const TypeInfo ebus_info = {
637     .name          = "ebus",
638     .parent        = TYPE_PCI_DEVICE,
639     .instance_size = sizeof(EbusState),
640     .class_init    = ebus_class_init,
641 };
642 
643 #define TYPE_OPENPROM "openprom"
644 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
645 
646 typedef struct PROMState {
647     SysBusDevice parent_obj;
648 
649     MemoryRegion prom;
650 } PROMState;
651 
652 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
653 {
654     hwaddr *base_addr = (hwaddr *)opaque;
655     return addr + *base_addr - PROM_VADDR;
656 }
657 
658 /* Boot PROM (OpenBIOS) */
659 static void prom_init(hwaddr addr, const char *bios_name)
660 {
661     DeviceState *dev;
662     SysBusDevice *s;
663     char *filename;
664     int ret;
665 
666     dev = qdev_create(NULL, TYPE_OPENPROM);
667     qdev_init_nofail(dev);
668     s = SYS_BUS_DEVICE(dev);
669 
670     sysbus_mmio_map(s, 0, addr);
671 
672     /* load boot prom */
673     if (bios_name == NULL) {
674         bios_name = PROM_FILENAME;
675     }
676     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
677     if (filename) {
678         ret = load_elf(filename, translate_prom_address, &addr,
679                        NULL, NULL, NULL, 1, EM_SPARCV9, 0);
680         if (ret < 0 || ret > PROM_SIZE_MAX) {
681             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
682         }
683         g_free(filename);
684     } else {
685         ret = -1;
686     }
687     if (ret < 0 || ret > PROM_SIZE_MAX) {
688         fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
689         exit(1);
690     }
691 }
692 
693 static int prom_init1(SysBusDevice *dev)
694 {
695     PROMState *s = OPENPROM(dev);
696 
697     memory_region_init_ram(&s->prom, OBJECT(s), "sun4u.prom", PROM_SIZE_MAX,
698                            &error_fatal);
699     vmstate_register_ram_global(&s->prom);
700     memory_region_set_readonly(&s->prom, true);
701     sysbus_init_mmio(dev, &s->prom);
702     return 0;
703 }
704 
705 static Property prom_properties[] = {
706     {/* end of property list */},
707 };
708 
709 static void prom_class_init(ObjectClass *klass, void *data)
710 {
711     DeviceClass *dc = DEVICE_CLASS(klass);
712     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
713 
714     k->init = prom_init1;
715     dc->props = prom_properties;
716 }
717 
718 static const TypeInfo prom_info = {
719     .name          = TYPE_OPENPROM,
720     .parent        = TYPE_SYS_BUS_DEVICE,
721     .instance_size = sizeof(PROMState),
722     .class_init    = prom_class_init,
723 };
724 
725 
726 #define TYPE_SUN4U_MEMORY "memory"
727 #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY)
728 
729 typedef struct RamDevice {
730     SysBusDevice parent_obj;
731 
732     MemoryRegion ram;
733     uint64_t size;
734 } RamDevice;
735 
736 /* System RAM */
737 static int ram_init1(SysBusDevice *dev)
738 {
739     RamDevice *d = SUN4U_RAM(dev);
740 
741     memory_region_init_ram(&d->ram, OBJECT(d), "sun4u.ram", d->size,
742                            &error_fatal);
743     vmstate_register_ram_global(&d->ram);
744     sysbus_init_mmio(dev, &d->ram);
745     return 0;
746 }
747 
748 static void ram_init(hwaddr addr, ram_addr_t RAM_size)
749 {
750     DeviceState *dev;
751     SysBusDevice *s;
752     RamDevice *d;
753 
754     /* allocate RAM */
755     dev = qdev_create(NULL, TYPE_SUN4U_MEMORY);
756     s = SYS_BUS_DEVICE(dev);
757 
758     d = SUN4U_RAM(dev);
759     d->size = RAM_size;
760     qdev_init_nofail(dev);
761 
762     sysbus_mmio_map(s, 0, addr);
763 }
764 
765 static Property ram_properties[] = {
766     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
767     DEFINE_PROP_END_OF_LIST(),
768 };
769 
770 static void ram_class_init(ObjectClass *klass, void *data)
771 {
772     DeviceClass *dc = DEVICE_CLASS(klass);
773     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
774 
775     k->init = ram_init1;
776     dc->props = ram_properties;
777 }
778 
779 static const TypeInfo ram_info = {
780     .name          = TYPE_SUN4U_MEMORY,
781     .parent        = TYPE_SYS_BUS_DEVICE,
782     .instance_size = sizeof(RamDevice),
783     .class_init    = ram_class_init,
784 };
785 
786 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
787 {
788     SPARCCPU *cpu;
789     CPUSPARCState *env;
790     ResetData *reset_info;
791 
792     uint32_t   tick_frequency = 100*1000000;
793     uint32_t  stick_frequency = 100*1000000;
794     uint32_t hstick_frequency = 100*1000000;
795 
796     if (cpu_model == NULL) {
797         cpu_model = hwdef->default_cpu_model;
798     }
799     cpu = cpu_sparc_init(cpu_model);
800     if (cpu == NULL) {
801         fprintf(stderr, "Unable to find Sparc CPU definition\n");
802         exit(1);
803     }
804     env = &cpu->env;
805 
806     env->tick = cpu_timer_create("tick", cpu, tick_irq,
807                                   tick_frequency, TICK_INT_DIS,
808                                   TICK_NPT_MASK);
809 
810     env->stick = cpu_timer_create("stick", cpu, stick_irq,
811                                    stick_frequency, TICK_INT_DIS,
812                                    TICK_NPT_MASK);
813 
814     env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
815                                     hstick_frequency, TICK_INT_DIS,
816                                     TICK_NPT_MASK);
817 
818     reset_info = g_malloc0(sizeof(ResetData));
819     reset_info->cpu = cpu;
820     reset_info->prom_addr = hwdef->prom_addr;
821     qemu_register_reset(main_cpu_reset, reset_info);
822 
823     return cpu;
824 }
825 
826 static void sun4uv_init(MemoryRegion *address_space_mem,
827                         MachineState *machine,
828                         const struct hwdef *hwdef)
829 {
830     SPARCCPU *cpu;
831     Nvram *nvram;
832     unsigned int i;
833     uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
834     PCIBus *pci_bus, *pci_bus2, *pci_bus3;
835     ISABus *isa_bus;
836     SysBusDevice *s;
837     qemu_irq *ivec_irqs, *pbm_irqs;
838     DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
839     DriveInfo *fd[MAX_FD];
840     FWCfgState *fw_cfg;
841 
842     /* init CPUs */
843     cpu = cpu_devinit(machine->cpu_model, hwdef);
844 
845     /* set up devices */
846     ram_init(0, machine->ram_size);
847 
848     prom_init(hwdef->prom_addr, bios_name);
849 
850     ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX);
851     pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2,
852                            &pci_bus3, &pbm_irqs);
853     pci_vga_init(pci_bus);
854 
855     // XXX Should be pci_bus3
856     isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs);
857 
858     i = 0;
859     if (hwdef->console_serial_base) {
860         serial_mm_init(address_space_mem, hwdef->console_serial_base, 0,
861                        NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
862         i++;
863     }
864 
865     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
866     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
867 
868     for(i = 0; i < nb_nics; i++)
869         pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
870 
871     ide_drive_get(hd, ARRAY_SIZE(hd));
872 
873     pci_cmd646_ide_init(pci_bus, hd, 1);
874 
875     isa_create_simple(isa_bus, "i8042");
876     for(i = 0; i < MAX_FD; i++) {
877         fd[i] = drive_get(IF_FLOPPY, 0, i);
878     }
879     fdctrl_init_isa(isa_bus, fd);
880 
881     /* Map NVRAM into I/O (ebus) space */
882     nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59);
883     s = SYS_BUS_DEVICE(nvram);
884     memory_region_add_subregion(get_system_io(), 0x2000,
885                                 sysbus_mmio_get_region(s, 0));
886 
887     initrd_size = 0;
888     initrd_addr = 0;
889     kernel_size = sun4u_load_kernel(machine->kernel_filename,
890                                     machine->initrd_filename,
891                                     ram_size, &initrd_size, &initrd_addr,
892                                     &kernel_addr, &kernel_entry);
893 
894     sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size,
895                            machine->boot_order,
896                            kernel_addr, kernel_size,
897                            machine->kernel_cmdline,
898                            initrd_addr, initrd_size,
899                            /* XXX: need an option to load a NVRAM image */
900                            0,
901                            graphic_width, graphic_height, graphic_depth,
902                            (uint8_t *)&nd_table[0].macaddr);
903 
904     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
905     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
906     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
907     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
908     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
909     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
910     if (machine->kernel_cmdline) {
911         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
912                        strlen(machine->kernel_cmdline) + 1);
913         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
914     } else {
915         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
916     }
917     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
918     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
919     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
920 
921     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
922     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
923     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
924 
925     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
926 }
927 
928 enum {
929     sun4u_id = 0,
930     sun4v_id = 64,
931     niagara_id,
932 };
933 
934 static const struct hwdef hwdefs[] = {
935     /* Sun4u generic PC-like machine */
936     {
937         .default_cpu_model = "TI UltraSparc IIi",
938         .machine_id = sun4u_id,
939         .prom_addr = 0x1fff0000000ULL,
940         .console_serial_base = 0,
941     },
942     /* Sun4v generic PC-like machine */
943     {
944         .default_cpu_model = "Sun UltraSparc T1",
945         .machine_id = sun4v_id,
946         .prom_addr = 0x1fff0000000ULL,
947         .console_serial_base = 0,
948     },
949     /* Sun4v generic Niagara machine */
950     {
951         .default_cpu_model = "Sun UltraSparc T1",
952         .machine_id = niagara_id,
953         .prom_addr = 0xfff0000000ULL,
954         .console_serial_base = 0xfff0c2c000ULL,
955     },
956 };
957 
958 /* Sun4u hardware initialisation */
959 static void sun4u_init(MachineState *machine)
960 {
961     sun4uv_init(get_system_memory(), machine, &hwdefs[0]);
962 }
963 
964 /* Sun4v hardware initialisation */
965 static void sun4v_init(MachineState *machine)
966 {
967     sun4uv_init(get_system_memory(), machine, &hwdefs[1]);
968 }
969 
970 /* Niagara hardware initialisation */
971 static void niagara_init(MachineState *machine)
972 {
973     sun4uv_init(get_system_memory(), machine, &hwdefs[2]);
974 }
975 
976 static void sun4u_class_init(ObjectClass *oc, void *data)
977 {
978     MachineClass *mc = MACHINE_CLASS(oc);
979 
980     mc->desc = "Sun4u platform";
981     mc->init = sun4u_init;
982     mc->max_cpus = 1; /* XXX for now */
983     mc->is_default = 1;
984     mc->default_boot_order = "c";
985 }
986 
987 static const TypeInfo sun4u_type = {
988     .name = MACHINE_TYPE_NAME("sun4u"),
989     .parent = TYPE_MACHINE,
990     .class_init = sun4u_class_init,
991 };
992 
993 static void sun4v_class_init(ObjectClass *oc, void *data)
994 {
995     MachineClass *mc = MACHINE_CLASS(oc);
996 
997     mc->desc = "Sun4v platform";
998     mc->init = sun4v_init;
999     mc->max_cpus = 1; /* XXX for now */
1000     mc->default_boot_order = "c";
1001 }
1002 
1003 static const TypeInfo sun4v_type = {
1004     .name = MACHINE_TYPE_NAME("sun4v"),
1005     .parent = TYPE_MACHINE,
1006     .class_init = sun4v_class_init,
1007 };
1008 
1009 static void niagara_class_init(ObjectClass *oc, void *data)
1010 {
1011     MachineClass *mc = MACHINE_CLASS(oc);
1012 
1013     mc->desc = "Sun4v platform, Niagara";
1014     mc->init = niagara_init;
1015     mc->max_cpus = 1; /* XXX for now */
1016     mc->default_boot_order = "c";
1017 }
1018 
1019 static const TypeInfo niagara_type = {
1020     .name = MACHINE_TYPE_NAME("Niagara"),
1021     .parent = TYPE_MACHINE,
1022     .class_init = niagara_class_init,
1023 };
1024 
1025 static void sun4u_register_types(void)
1026 {
1027     type_register_static(&ebus_info);
1028     type_register_static(&prom_info);
1029     type_register_static(&ram_info);
1030 }
1031 
1032 static void sun4u_machine_init(void)
1033 {
1034     type_register_static(&sun4u_type);
1035     type_register_static(&sun4v_type);
1036     type_register_static(&niagara_type);
1037 }
1038 
1039 type_init(sun4u_register_types)
1040 machine_init(sun4u_machine_init)
1041