1 /* 2 * QEMU Sun4m & Sun4d & Sun4c System Emulator 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qemu-common.h" 27 #include "cpu.h" 28 #include "hw/sysbus.h" 29 #include "qemu/error-report.h" 30 #include "qemu/timer.h" 31 #include "hw/sparc/sun4m_iommu.h" 32 #include "hw/timer/m48t59.h" 33 #include "hw/sparc/sparc32_dma.h" 34 #include "hw/block/fdc.h" 35 #include "sysemu/sysemu.h" 36 #include "net/net.h" 37 #include "hw/boards.h" 38 #include "hw/scsi/esp.h" 39 #include "hw/isa/isa.h" 40 #include "hw/nvram/sun_nvram.h" 41 #include "hw/nvram/chrp_nvram.h" 42 #include "hw/nvram/fw_cfg.h" 43 #include "hw/char/escc.h" 44 #include "hw/empty_slot.h" 45 #include "hw/loader.h" 46 #include "elf.h" 47 #include "trace.h" 48 #include "qemu/cutils.h" 49 50 /* 51 * Sun4m architecture was used in the following machines: 52 * 53 * SPARCserver 6xxMP/xx 54 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), 55 * SPARCclassic X (4/10) 56 * SPARCstation LX/ZX (4/30) 57 * SPARCstation Voyager 58 * SPARCstation 10/xx, SPARCserver 10/xx 59 * SPARCstation 5, SPARCserver 5 60 * SPARCstation 20/xx, SPARCserver 20 61 * SPARCstation 4 62 * 63 * See for example: http://www.sunhelp.org/faq/sunref1.html 64 */ 65 66 #define KERNEL_LOAD_ADDR 0x00004000 67 #define CMDLINE_ADDR 0x007ff000 68 #define INITRD_LOAD_ADDR 0x00800000 69 #define PROM_SIZE_MAX (1024 * 1024) 70 #define PROM_VADDR 0xffd00000 71 #define PROM_FILENAME "openbios-sparc32" 72 #define CFG_ADDR 0xd00000510ULL 73 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00) 74 #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01) 75 #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02) 76 77 #define MAX_CPUS 16 78 #define MAX_PILS 16 79 #define MAX_VSIMMS 4 80 81 #define ESCC_CLOCK 4915200 82 83 struct sun4m_hwdef { 84 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base; 85 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base; 86 hwaddr serial_base, fd_base; 87 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base; 88 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base; 89 hwaddr bpp_base, dbri_base, sx_base; 90 struct { 91 hwaddr reg_base, vram_base; 92 } vsimm[MAX_VSIMMS]; 93 hwaddr ecc_base; 94 uint64_t max_mem; 95 uint32_t ecc_version; 96 uint32_t iommu_version; 97 uint16_t machine_id; 98 uint8_t nvram_machine_id; 99 }; 100 101 static void fw_cfg_boot_set(void *opaque, const char *boot_device, 102 Error **errp) 103 { 104 fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); 105 } 106 107 static void nvram_init(Nvram *nvram, uint8_t *macaddr, 108 const char *cmdline, const char *boot_devices, 109 ram_addr_t RAM_size, uint32_t kernel_size, 110 int width, int height, int depth, 111 int nvram_machine_id, const char *arch) 112 { 113 unsigned int i; 114 int sysp_end; 115 uint8_t image[0x1ff0]; 116 NvramClass *k = NVRAM_GET_CLASS(nvram); 117 118 memset(image, '\0', sizeof(image)); 119 120 /* OpenBIOS nvram variables partition */ 121 sysp_end = chrp_nvram_create_system_partition(image, 0); 122 123 /* Free space partition */ 124 chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end); 125 126 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 127 nvram_machine_id); 128 129 for (i = 0; i < sizeof(image); i++) { 130 (k->write)(nvram, i, image[i]); 131 } 132 } 133 134 void cpu_check_irqs(CPUSPARCState *env) 135 { 136 CPUState *cs; 137 138 /* We should be holding the BQL before we mess with IRQs */ 139 g_assert(qemu_mutex_iothread_locked()); 140 141 if (env->pil_in && (env->interrupt_index == 0 || 142 (env->interrupt_index & ~15) == TT_EXTINT)) { 143 unsigned int i; 144 145 for (i = 15; i > 0; i--) { 146 if (env->pil_in & (1 << i)) { 147 int old_interrupt = env->interrupt_index; 148 149 env->interrupt_index = TT_EXTINT | i; 150 if (old_interrupt != env->interrupt_index) { 151 cs = CPU(sparc_env_get_cpu(env)); 152 trace_sun4m_cpu_interrupt(i); 153 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 154 } 155 break; 156 } 157 } 158 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { 159 cs = CPU(sparc_env_get_cpu(env)); 160 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15); 161 env->interrupt_index = 0; 162 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 163 } 164 } 165 166 static void cpu_kick_irq(SPARCCPU *cpu) 167 { 168 CPUSPARCState *env = &cpu->env; 169 CPUState *cs = CPU(cpu); 170 171 cs->halted = 0; 172 cpu_check_irqs(env); 173 qemu_cpu_kick(cs); 174 } 175 176 static void cpu_set_irq(void *opaque, int irq, int level) 177 { 178 SPARCCPU *cpu = opaque; 179 CPUSPARCState *env = &cpu->env; 180 181 if (level) { 182 trace_sun4m_cpu_set_irq_raise(irq); 183 env->pil_in |= 1 << irq; 184 cpu_kick_irq(cpu); 185 } else { 186 trace_sun4m_cpu_set_irq_lower(irq); 187 env->pil_in &= ~(1 << irq); 188 cpu_check_irqs(env); 189 } 190 } 191 192 static void dummy_cpu_set_irq(void *opaque, int irq, int level) 193 { 194 } 195 196 static void main_cpu_reset(void *opaque) 197 { 198 SPARCCPU *cpu = opaque; 199 CPUState *cs = CPU(cpu); 200 201 cpu_reset(cs); 202 cs->halted = 0; 203 } 204 205 static void secondary_cpu_reset(void *opaque) 206 { 207 SPARCCPU *cpu = opaque; 208 CPUState *cs = CPU(cpu); 209 210 cpu_reset(cs); 211 cs->halted = 1; 212 } 213 214 static void cpu_halt_signal(void *opaque, int irq, int level) 215 { 216 if (level && current_cpu) { 217 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT); 218 } 219 } 220 221 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 222 { 223 return addr - 0xf0000000ULL; 224 } 225 226 static unsigned long sun4m_load_kernel(const char *kernel_filename, 227 const char *initrd_filename, 228 ram_addr_t RAM_size) 229 { 230 int linux_boot; 231 unsigned int i; 232 long initrd_size, kernel_size; 233 uint8_t *ptr; 234 235 linux_boot = (kernel_filename != NULL); 236 237 kernel_size = 0; 238 if (linux_boot) { 239 int bswap_needed; 240 241 #ifdef BSWAP_NEEDED 242 bswap_needed = 1; 243 #else 244 bswap_needed = 0; 245 #endif 246 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, 247 NULL, NULL, NULL, 1, EM_SPARC, 0, 0); 248 if (kernel_size < 0) 249 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, 250 RAM_size - KERNEL_LOAD_ADDR, bswap_needed, 251 TARGET_PAGE_SIZE); 252 if (kernel_size < 0) 253 kernel_size = load_image_targphys(kernel_filename, 254 KERNEL_LOAD_ADDR, 255 RAM_size - KERNEL_LOAD_ADDR); 256 if (kernel_size < 0) { 257 error_report("could not load kernel '%s'", kernel_filename); 258 exit(1); 259 } 260 261 /* load initrd */ 262 initrd_size = 0; 263 if (initrd_filename) { 264 initrd_size = load_image_targphys(initrd_filename, 265 INITRD_LOAD_ADDR, 266 RAM_size - INITRD_LOAD_ADDR); 267 if (initrd_size < 0) { 268 error_report("could not load initial ram disk '%s'", 269 initrd_filename); 270 exit(1); 271 } 272 } 273 if (initrd_size > 0) { 274 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { 275 ptr = rom_ptr(KERNEL_LOAD_ADDR + i); 276 if (ldl_p(ptr) == 0x48647253) { // HdrS 277 stl_p(ptr + 16, INITRD_LOAD_ADDR); 278 stl_p(ptr + 20, initrd_size); 279 break; 280 } 281 } 282 } 283 } 284 return kernel_size; 285 } 286 287 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq) 288 { 289 DeviceState *dev; 290 SysBusDevice *s; 291 292 dev = qdev_create(NULL, TYPE_SUN4M_IOMMU); 293 qdev_prop_set_uint32(dev, "version", version); 294 qdev_init_nofail(dev); 295 s = SYS_BUS_DEVICE(dev); 296 sysbus_connect_irq(s, 0, irq); 297 sysbus_mmio_map(s, 0, addr); 298 299 return s; 300 } 301 302 static void *sparc32_dma_init(hwaddr dma_base, 303 hwaddr esp_base, qemu_irq espdma_irq, 304 hwaddr le_base, qemu_irq ledma_irq) 305 { 306 DeviceState *dma; 307 ESPDMADeviceState *espdma; 308 LEDMADeviceState *ledma; 309 SysBusESPState *esp; 310 SysBusPCNetState *lance; 311 312 dma = qdev_create(NULL, TYPE_SPARC32_DMA); 313 qdev_init_nofail(dma); 314 sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base); 315 316 espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component( 317 OBJECT(dma), "espdma")); 318 sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq); 319 320 esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp")); 321 sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base); 322 scsi_bus_legacy_handle_cmdline(&esp->esp.bus); 323 324 ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component( 325 OBJECT(dma), "ledma")); 326 sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq); 327 328 lance = SYSBUS_PCNET(object_resolve_path_component( 329 OBJECT(ledma), "lance")); 330 sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base); 331 332 return dma; 333 } 334 335 static DeviceState *slavio_intctl_init(hwaddr addr, 336 hwaddr addrg, 337 qemu_irq **parent_irq) 338 { 339 DeviceState *dev; 340 SysBusDevice *s; 341 unsigned int i, j; 342 343 dev = qdev_create(NULL, "slavio_intctl"); 344 qdev_init_nofail(dev); 345 346 s = SYS_BUS_DEVICE(dev); 347 348 for (i = 0; i < MAX_CPUS; i++) { 349 for (j = 0; j < MAX_PILS; j++) { 350 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]); 351 } 352 } 353 sysbus_mmio_map(s, 0, addrg); 354 for (i = 0; i < MAX_CPUS; i++) { 355 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE); 356 } 357 358 return dev; 359 } 360 361 #define SYS_TIMER_OFFSET 0x10000ULL 362 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu) 363 364 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq, 365 qemu_irq *cpu_irqs, unsigned int num_cpus) 366 { 367 DeviceState *dev; 368 SysBusDevice *s; 369 unsigned int i; 370 371 dev = qdev_create(NULL, "slavio_timer"); 372 qdev_prop_set_uint32(dev, "num_cpus", num_cpus); 373 qdev_init_nofail(dev); 374 s = SYS_BUS_DEVICE(dev); 375 sysbus_connect_irq(s, 0, master_irq); 376 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET); 377 378 for (i = 0; i < MAX_CPUS; i++) { 379 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i)); 380 sysbus_connect_irq(s, i + 1, cpu_irqs[i]); 381 } 382 } 383 384 static qemu_irq slavio_system_powerdown; 385 386 static void slavio_powerdown_req(Notifier *n, void *opaque) 387 { 388 qemu_irq_raise(slavio_system_powerdown); 389 } 390 391 static Notifier slavio_system_powerdown_notifier = { 392 .notify = slavio_powerdown_req 393 }; 394 395 #define MISC_LEDS 0x01600000 396 #define MISC_CFG 0x01800000 397 #define MISC_DIAG 0x01a00000 398 #define MISC_MDM 0x01b00000 399 #define MISC_SYS 0x01f00000 400 401 static void slavio_misc_init(hwaddr base, 402 hwaddr aux1_base, 403 hwaddr aux2_base, qemu_irq irq, 404 qemu_irq fdc_tc) 405 { 406 DeviceState *dev; 407 SysBusDevice *s; 408 409 dev = qdev_create(NULL, "slavio_misc"); 410 qdev_init_nofail(dev); 411 s = SYS_BUS_DEVICE(dev); 412 if (base) { 413 /* 8 bit registers */ 414 /* Slavio control */ 415 sysbus_mmio_map(s, 0, base + MISC_CFG); 416 /* Diagnostics */ 417 sysbus_mmio_map(s, 1, base + MISC_DIAG); 418 /* Modem control */ 419 sysbus_mmio_map(s, 2, base + MISC_MDM); 420 /* 16 bit registers */ 421 /* ss600mp diag LEDs */ 422 sysbus_mmio_map(s, 3, base + MISC_LEDS); 423 /* 32 bit registers */ 424 /* System control */ 425 sysbus_mmio_map(s, 4, base + MISC_SYS); 426 } 427 if (aux1_base) { 428 /* AUX 1 (Misc System Functions) */ 429 sysbus_mmio_map(s, 5, aux1_base); 430 } 431 if (aux2_base) { 432 /* AUX 2 (Software Powerdown Control) */ 433 sysbus_mmio_map(s, 6, aux2_base); 434 } 435 sysbus_connect_irq(s, 0, irq); 436 sysbus_connect_irq(s, 1, fdc_tc); 437 slavio_system_powerdown = qdev_get_gpio_in(dev, 0); 438 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier); 439 } 440 441 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version) 442 { 443 DeviceState *dev; 444 SysBusDevice *s; 445 446 dev = qdev_create(NULL, "eccmemctl"); 447 qdev_prop_set_uint32(dev, "version", version); 448 qdev_init_nofail(dev); 449 s = SYS_BUS_DEVICE(dev); 450 sysbus_connect_irq(s, 0, irq); 451 sysbus_mmio_map(s, 0, base); 452 if (version == 0) { // SS-600MP only 453 sysbus_mmio_map(s, 1, base + 0x1000); 454 } 455 } 456 457 static void apc_init(hwaddr power_base, qemu_irq cpu_halt) 458 { 459 DeviceState *dev; 460 SysBusDevice *s; 461 462 dev = qdev_create(NULL, "apc"); 463 qdev_init_nofail(dev); 464 s = SYS_BUS_DEVICE(dev); 465 /* Power management (APC) XXX: not a Slavio device */ 466 sysbus_mmio_map(s, 0, power_base); 467 sysbus_connect_irq(s, 0, cpu_halt); 468 } 469 470 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 471 int height, int depth) 472 { 473 DeviceState *dev; 474 SysBusDevice *s; 475 476 dev = qdev_create(NULL, "SUNW,tcx"); 477 qdev_prop_set_uint32(dev, "vram_size", vram_size); 478 qdev_prop_set_uint16(dev, "width", width); 479 qdev_prop_set_uint16(dev, "height", height); 480 qdev_prop_set_uint16(dev, "depth", depth); 481 qdev_init_nofail(dev); 482 s = SYS_BUS_DEVICE(dev); 483 484 /* 10/ROM : FCode ROM */ 485 sysbus_mmio_map(s, 0, addr); 486 /* 2/STIP : Stipple */ 487 sysbus_mmio_map(s, 1, addr + 0x04000000ULL); 488 /* 3/BLIT : Blitter */ 489 sysbus_mmio_map(s, 2, addr + 0x06000000ULL); 490 /* 5/RSTIP : Raw Stipple */ 491 sysbus_mmio_map(s, 3, addr + 0x0c000000ULL); 492 /* 6/RBLIT : Raw Blitter */ 493 sysbus_mmio_map(s, 4, addr + 0x0e000000ULL); 494 /* 7/TEC : Transform Engine */ 495 sysbus_mmio_map(s, 5, addr + 0x00700000ULL); 496 /* 8/CMAP : DAC */ 497 sysbus_mmio_map(s, 6, addr + 0x00200000ULL); 498 /* 9/THC : */ 499 if (depth == 8) { 500 sysbus_mmio_map(s, 7, addr + 0x00300000ULL); 501 } else { 502 sysbus_mmio_map(s, 7, addr + 0x00301000ULL); 503 } 504 /* 11/DHC : */ 505 sysbus_mmio_map(s, 8, addr + 0x00240000ULL); 506 /* 12/ALT : */ 507 sysbus_mmio_map(s, 9, addr + 0x00280000ULL); 508 /* 0/DFB8 : 8-bit plane */ 509 sysbus_mmio_map(s, 10, addr + 0x00800000ULL); 510 /* 1/DFB24 : 24bit plane */ 511 sysbus_mmio_map(s, 11, addr + 0x02000000ULL); 512 /* 4/RDFB32: Raw framebuffer. Control plane */ 513 sysbus_mmio_map(s, 12, addr + 0x0a000000ULL); 514 /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */ 515 if (depth == 8) { 516 sysbus_mmio_map(s, 13, addr + 0x00301000ULL); 517 } 518 519 sysbus_connect_irq(s, 0, irq); 520 } 521 522 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 523 int height, int depth) 524 { 525 DeviceState *dev; 526 SysBusDevice *s; 527 528 dev = qdev_create(NULL, "cgthree"); 529 qdev_prop_set_uint32(dev, "vram-size", vram_size); 530 qdev_prop_set_uint16(dev, "width", width); 531 qdev_prop_set_uint16(dev, "height", height); 532 qdev_prop_set_uint16(dev, "depth", depth); 533 qdev_init_nofail(dev); 534 s = SYS_BUS_DEVICE(dev); 535 536 /* FCode ROM */ 537 sysbus_mmio_map(s, 0, addr); 538 /* DAC */ 539 sysbus_mmio_map(s, 1, addr + 0x400000ULL); 540 /* 8-bit plane */ 541 sysbus_mmio_map(s, 2, addr + 0x800000ULL); 542 543 sysbus_connect_irq(s, 0, irq); 544 } 545 546 /* NCR89C100/MACIO Internal ID register */ 547 548 #define TYPE_MACIO_ID_REGISTER "macio_idreg" 549 550 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 }; 551 552 static void idreg_init(hwaddr addr) 553 { 554 DeviceState *dev; 555 SysBusDevice *s; 556 557 dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER); 558 qdev_init_nofail(dev); 559 s = SYS_BUS_DEVICE(dev); 560 561 sysbus_mmio_map(s, 0, addr); 562 cpu_physical_memory_write_rom(&address_space_memory, 563 addr, idreg_data, sizeof(idreg_data)); 564 } 565 566 #define MACIO_ID_REGISTER(obj) \ 567 OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER) 568 569 typedef struct IDRegState { 570 SysBusDevice parent_obj; 571 572 MemoryRegion mem; 573 } IDRegState; 574 575 static void idreg_init1(Object *obj) 576 { 577 IDRegState *s = MACIO_ID_REGISTER(obj); 578 SysBusDevice *dev = SYS_BUS_DEVICE(obj); 579 580 memory_region_init_ram_nomigrate(&s->mem, obj, 581 "sun4m.idreg", sizeof(idreg_data), &error_fatal); 582 vmstate_register_ram_global(&s->mem); 583 memory_region_set_readonly(&s->mem, true); 584 sysbus_init_mmio(dev, &s->mem); 585 } 586 587 static const TypeInfo idreg_info = { 588 .name = TYPE_MACIO_ID_REGISTER, 589 .parent = TYPE_SYS_BUS_DEVICE, 590 .instance_size = sizeof(IDRegState), 591 .instance_init = idreg_init1, 592 }; 593 594 #define TYPE_TCX_AFX "tcx_afx" 595 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX) 596 597 typedef struct AFXState { 598 SysBusDevice parent_obj; 599 600 MemoryRegion mem; 601 } AFXState; 602 603 /* SS-5 TCX AFX register */ 604 static void afx_init(hwaddr addr) 605 { 606 DeviceState *dev; 607 SysBusDevice *s; 608 609 dev = qdev_create(NULL, TYPE_TCX_AFX); 610 qdev_init_nofail(dev); 611 s = SYS_BUS_DEVICE(dev); 612 613 sysbus_mmio_map(s, 0, addr); 614 } 615 616 static void afx_init1(Object *obj) 617 { 618 AFXState *s = TCX_AFX(obj); 619 SysBusDevice *dev = SYS_BUS_DEVICE(obj); 620 621 memory_region_init_ram_nomigrate(&s->mem, obj, "sun4m.afx", 4, &error_fatal); 622 vmstate_register_ram_global(&s->mem); 623 sysbus_init_mmio(dev, &s->mem); 624 } 625 626 static const TypeInfo afx_info = { 627 .name = TYPE_TCX_AFX, 628 .parent = TYPE_SYS_BUS_DEVICE, 629 .instance_size = sizeof(AFXState), 630 .instance_init = afx_init1, 631 }; 632 633 #define TYPE_OPENPROM "openprom" 634 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM) 635 636 typedef struct PROMState { 637 SysBusDevice parent_obj; 638 639 MemoryRegion prom; 640 } PROMState; 641 642 /* Boot PROM (OpenBIOS) */ 643 static uint64_t translate_prom_address(void *opaque, uint64_t addr) 644 { 645 hwaddr *base_addr = (hwaddr *)opaque; 646 return addr + *base_addr - PROM_VADDR; 647 } 648 649 static void prom_init(hwaddr addr, const char *bios_name) 650 { 651 DeviceState *dev; 652 SysBusDevice *s; 653 char *filename; 654 int ret; 655 656 dev = qdev_create(NULL, TYPE_OPENPROM); 657 qdev_init_nofail(dev); 658 s = SYS_BUS_DEVICE(dev); 659 660 sysbus_mmio_map(s, 0, addr); 661 662 /* load boot prom */ 663 if (bios_name == NULL) { 664 bios_name = PROM_FILENAME; 665 } 666 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 667 if (filename) { 668 ret = load_elf(filename, translate_prom_address, &addr, NULL, 669 NULL, NULL, 1, EM_SPARC, 0, 0); 670 if (ret < 0 || ret > PROM_SIZE_MAX) { 671 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX); 672 } 673 g_free(filename); 674 } else { 675 ret = -1; 676 } 677 if (ret < 0 || ret > PROM_SIZE_MAX) { 678 error_report("could not load prom '%s'", bios_name); 679 exit(1); 680 } 681 } 682 683 static void prom_init1(Object *obj) 684 { 685 PROMState *s = OPENPROM(obj); 686 SysBusDevice *dev = SYS_BUS_DEVICE(obj); 687 688 memory_region_init_ram_nomigrate(&s->prom, obj, "sun4m.prom", PROM_SIZE_MAX, 689 &error_fatal); 690 vmstate_register_ram_global(&s->prom); 691 memory_region_set_readonly(&s->prom, true); 692 sysbus_init_mmio(dev, &s->prom); 693 } 694 695 static Property prom_properties[] = { 696 {/* end of property list */}, 697 }; 698 699 static void prom_class_init(ObjectClass *klass, void *data) 700 { 701 DeviceClass *dc = DEVICE_CLASS(klass); 702 703 dc->props = prom_properties; 704 } 705 706 static const TypeInfo prom_info = { 707 .name = TYPE_OPENPROM, 708 .parent = TYPE_SYS_BUS_DEVICE, 709 .instance_size = sizeof(PROMState), 710 .class_init = prom_class_init, 711 .instance_init = prom_init1, 712 }; 713 714 #define TYPE_SUN4M_MEMORY "memory" 715 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY) 716 717 typedef struct RamDevice { 718 SysBusDevice parent_obj; 719 720 MemoryRegion ram; 721 uint64_t size; 722 } RamDevice; 723 724 /* System RAM */ 725 static void ram_realize(DeviceState *dev, Error **errp) 726 { 727 RamDevice *d = SUN4M_RAM(dev); 728 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 729 730 memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram", 731 d->size); 732 sysbus_init_mmio(sbd, &d->ram); 733 } 734 735 static void ram_init(hwaddr addr, ram_addr_t RAM_size, 736 uint64_t max_mem) 737 { 738 DeviceState *dev; 739 SysBusDevice *s; 740 RamDevice *d; 741 742 /* allocate RAM */ 743 if ((uint64_t)RAM_size > max_mem) { 744 error_report("Too much memory for this machine: %d, maximum %d", 745 (unsigned int)(RAM_size / (1024 * 1024)), 746 (unsigned int)(max_mem / (1024 * 1024))); 747 exit(1); 748 } 749 dev = qdev_create(NULL, "memory"); 750 s = SYS_BUS_DEVICE(dev); 751 752 d = SUN4M_RAM(dev); 753 d->size = RAM_size; 754 qdev_init_nofail(dev); 755 756 sysbus_mmio_map(s, 0, addr); 757 } 758 759 static Property ram_properties[] = { 760 DEFINE_PROP_UINT64("size", RamDevice, size, 0), 761 DEFINE_PROP_END_OF_LIST(), 762 }; 763 764 static void ram_class_init(ObjectClass *klass, void *data) 765 { 766 DeviceClass *dc = DEVICE_CLASS(klass); 767 768 dc->realize = ram_realize; 769 dc->props = ram_properties; 770 } 771 772 static const TypeInfo ram_info = { 773 .name = TYPE_SUN4M_MEMORY, 774 .parent = TYPE_SYS_BUS_DEVICE, 775 .instance_size = sizeof(RamDevice), 776 .class_init = ram_class_init, 777 }; 778 779 static void cpu_devinit(const char *cpu_type, unsigned int id, 780 uint64_t prom_addr, qemu_irq **cpu_irqs) 781 { 782 CPUState *cs; 783 SPARCCPU *cpu; 784 CPUSPARCState *env; 785 786 cpu = SPARC_CPU(cpu_create(cpu_type)); 787 env = &cpu->env; 788 789 cpu_sparc_set_id(env, id); 790 if (id == 0) { 791 qemu_register_reset(main_cpu_reset, cpu); 792 } else { 793 qemu_register_reset(secondary_cpu_reset, cpu); 794 cs = CPU(cpu); 795 cs->halted = 1; 796 } 797 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS); 798 env->prom_addr = prom_addr; 799 } 800 801 static void dummy_fdc_tc(void *opaque, int irq, int level) 802 { 803 } 804 805 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, 806 MachineState *machine) 807 { 808 DeviceState *slavio_intctl; 809 unsigned int i; 810 void *nvram; 811 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS]; 812 qemu_irq fdc_tc; 813 unsigned long kernel_size; 814 DriveInfo *fd[MAX_FD]; 815 FWCfgState *fw_cfg; 816 unsigned int num_vsimms; 817 DeviceState *dev; 818 SysBusDevice *s; 819 820 /* init CPUs */ 821 for(i = 0; i < smp_cpus; i++) { 822 cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]); 823 } 824 825 for (i = smp_cpus; i < MAX_CPUS; i++) 826 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); 827 828 829 /* set up devices */ 830 ram_init(0, machine->ram_size, hwdef->max_mem); 831 /* models without ECC don't trap when missing ram is accessed */ 832 if (!hwdef->ecc_base) { 833 empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size); 834 } 835 836 prom_init(hwdef->slavio_base, bios_name); 837 838 slavio_intctl = slavio_intctl_init(hwdef->intctl_base, 839 hwdef->intctl_base + 0x10000ULL, 840 cpu_irqs); 841 842 for (i = 0; i < 32; i++) { 843 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i); 844 } 845 for (i = 0; i < MAX_CPUS; i++) { 846 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i); 847 } 848 849 if (hwdef->idreg_base) { 850 idreg_init(hwdef->idreg_base); 851 } 852 853 if (hwdef->afx_base) { 854 afx_init(hwdef->afx_base); 855 } 856 857 iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]); 858 859 if (hwdef->iommu_pad_base) { 860 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased. 861 Software shouldn't use aliased addresses, neither should it crash 862 when does. Using empty_slot instead of aliasing can help with 863 debugging such accesses */ 864 empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len); 865 } 866 867 sparc32_dma_init(hwdef->dma_base, 868 hwdef->esp_base, slavio_irq[18], 869 hwdef->le_base, slavio_irq[16]); 870 871 if (graphic_depth != 8 && graphic_depth != 24) { 872 error_report("Unsupported depth: %d", graphic_depth); 873 exit (1); 874 } 875 num_vsimms = 0; 876 if (num_vsimms == 0) { 877 if (vga_interface_type == VGA_CG3) { 878 if (graphic_depth != 8) { 879 error_report("Unsupported depth: %d", graphic_depth); 880 exit(1); 881 } 882 883 if (!(graphic_width == 1024 && graphic_height == 768) && 884 !(graphic_width == 1152 && graphic_height == 900)) { 885 error_report("Unsupported resolution: %d x %d", graphic_width, 886 graphic_height); 887 exit(1); 888 } 889 890 /* sbus irq 5 */ 891 cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 892 graphic_width, graphic_height, graphic_depth); 893 } else { 894 /* If no display specified, default to TCX */ 895 if (graphic_depth != 8 && graphic_depth != 24) { 896 error_report("Unsupported depth: %d", graphic_depth); 897 exit(1); 898 } 899 900 if (!(graphic_width == 1024 && graphic_height == 768)) { 901 error_report("Unsupported resolution: %d x %d", 902 graphic_width, graphic_height); 903 exit(1); 904 } 905 906 tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 907 graphic_width, graphic_height, graphic_depth); 908 } 909 } 910 911 for (i = num_vsimms; i < MAX_VSIMMS; i++) { 912 /* vsimm registers probed by OBP */ 913 if (hwdef->vsimm[i].reg_base) { 914 empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000); 915 } 916 } 917 918 if (hwdef->sx_base) { 919 empty_slot_init(hwdef->sx_base, 0x2000); 920 } 921 922 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8); 923 924 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus); 925 926 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device 927 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */ 928 dev = qdev_create(NULL, TYPE_ESCC); 929 qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics); 930 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK); 931 qdev_prop_set_uint32(dev, "it_shift", 1); 932 qdev_prop_set_chr(dev, "chrB", NULL); 933 qdev_prop_set_chr(dev, "chrA", NULL); 934 qdev_prop_set_uint32(dev, "chnBtype", escc_mouse); 935 qdev_prop_set_uint32(dev, "chnAtype", escc_kbd); 936 qdev_init_nofail(dev); 937 s = SYS_BUS_DEVICE(dev); 938 sysbus_connect_irq(s, 0, slavio_irq[14]); 939 sysbus_connect_irq(s, 1, slavio_irq[14]); 940 sysbus_mmio_map(s, 0, hwdef->ms_kb_base); 941 942 dev = qdev_create(NULL, TYPE_ESCC); 943 qdev_prop_set_uint32(dev, "disabled", 0); 944 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK); 945 qdev_prop_set_uint32(dev, "it_shift", 1); 946 qdev_prop_set_chr(dev, "chrB", serial_hd(1)); 947 qdev_prop_set_chr(dev, "chrA", serial_hd(0)); 948 qdev_prop_set_uint32(dev, "chnBtype", escc_serial); 949 qdev_prop_set_uint32(dev, "chnAtype", escc_serial); 950 qdev_init_nofail(dev); 951 952 s = SYS_BUS_DEVICE(dev); 953 sysbus_connect_irq(s, 0, slavio_irq[15]); 954 sysbus_connect_irq(s, 1, slavio_irq[15]); 955 sysbus_mmio_map(s, 0, hwdef->serial_base); 956 957 if (hwdef->apc_base) { 958 apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0)); 959 } 960 961 if (hwdef->fd_base) { 962 /* there is zero or one floppy drive */ 963 memset(fd, 0, sizeof(fd)); 964 fd[0] = drive_get(IF_FLOPPY, 0, 0); 965 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd, 966 &fdc_tc); 967 } else { 968 fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0); 969 } 970 971 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base, 972 slavio_irq[30], fdc_tc); 973 974 if (hwdef->cs_base) { 975 sysbus_create_simple("SUNW,CS4231", hwdef->cs_base, 976 slavio_irq[5]); 977 } 978 979 if (hwdef->dbri_base) { 980 /* ISDN chip with attached CS4215 audio codec */ 981 /* prom space */ 982 empty_slot_init(hwdef->dbri_base+0x1000, 0x30); 983 /* reg space */ 984 empty_slot_init(hwdef->dbri_base+0x10000, 0x100); 985 } 986 987 if (hwdef->bpp_base) { 988 /* parallel port */ 989 empty_slot_init(hwdef->bpp_base, 0x20); 990 } 991 992 kernel_size = sun4m_load_kernel(machine->kernel_filename, 993 machine->initrd_filename, 994 machine->ram_size); 995 996 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline, 997 machine->boot_order, machine->ram_size, kernel_size, 998 graphic_width, graphic_height, graphic_depth, 999 hwdef->nvram_machine_id, "Sun4m"); 1000 1001 if (hwdef->ecc_base) 1002 ecc_init(hwdef->ecc_base, slavio_irq[28], 1003 hwdef->ecc_version); 1004 1005 fw_cfg = fw_cfg_init_mem(CFG_ADDR, CFG_ADDR + 2); 1006 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 1007 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); 1008 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 1009 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); 1010 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); 1011 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width); 1012 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height); 1013 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); 1014 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1015 if (machine->kernel_cmdline) { 1016 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); 1017 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, 1018 machine->kernel_cmdline); 1019 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline); 1020 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 1021 strlen(machine->kernel_cmdline) + 1); 1022 } else { 1023 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); 1024 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); 1025 } 1026 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); 1027 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used 1028 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]); 1029 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); 1030 } 1031 1032 enum { 1033 ss5_id = 32, 1034 vger_id, 1035 lx_id, 1036 ss4_id, 1037 scls_id, 1038 sbook_id, 1039 ss10_id = 64, 1040 ss20_id, 1041 ss600mp_id, 1042 }; 1043 1044 static const struct sun4m_hwdef sun4m_hwdefs[] = { 1045 /* SS-5 */ 1046 { 1047 .iommu_base = 0x10000000, 1048 .iommu_pad_base = 0x10004000, 1049 .iommu_pad_len = 0x0fffb000, 1050 .tcx_base = 0x50000000, 1051 .cs_base = 0x6c000000, 1052 .slavio_base = 0x70000000, 1053 .ms_kb_base = 0x71000000, 1054 .serial_base = 0x71100000, 1055 .nvram_base = 0x71200000, 1056 .fd_base = 0x71400000, 1057 .counter_base = 0x71d00000, 1058 .intctl_base = 0x71e00000, 1059 .idreg_base = 0x78000000, 1060 .dma_base = 0x78400000, 1061 .esp_base = 0x78800000, 1062 .le_base = 0x78c00000, 1063 .apc_base = 0x6a000000, 1064 .afx_base = 0x6e000000, 1065 .aux1_base = 0x71900000, 1066 .aux2_base = 0x71910000, 1067 .nvram_machine_id = 0x80, 1068 .machine_id = ss5_id, 1069 .iommu_version = 0x05000000, 1070 .max_mem = 0x10000000, 1071 }, 1072 /* SS-10 */ 1073 { 1074 .iommu_base = 0xfe0000000ULL, 1075 .tcx_base = 0xe20000000ULL, 1076 .slavio_base = 0xff0000000ULL, 1077 .ms_kb_base = 0xff1000000ULL, 1078 .serial_base = 0xff1100000ULL, 1079 .nvram_base = 0xff1200000ULL, 1080 .fd_base = 0xff1700000ULL, 1081 .counter_base = 0xff1300000ULL, 1082 .intctl_base = 0xff1400000ULL, 1083 .idreg_base = 0xef0000000ULL, 1084 .dma_base = 0xef0400000ULL, 1085 .esp_base = 0xef0800000ULL, 1086 .le_base = 0xef0c00000ULL, 1087 .apc_base = 0xefa000000ULL, // XXX should not exist 1088 .aux1_base = 0xff1800000ULL, 1089 .aux2_base = 0xff1a01000ULL, 1090 .ecc_base = 0xf00000000ULL, 1091 .ecc_version = 0x10000000, // version 0, implementation 1 1092 .nvram_machine_id = 0x72, 1093 .machine_id = ss10_id, 1094 .iommu_version = 0x03000000, 1095 .max_mem = 0xf00000000ULL, 1096 }, 1097 /* SS-600MP */ 1098 { 1099 .iommu_base = 0xfe0000000ULL, 1100 .tcx_base = 0xe20000000ULL, 1101 .slavio_base = 0xff0000000ULL, 1102 .ms_kb_base = 0xff1000000ULL, 1103 .serial_base = 0xff1100000ULL, 1104 .nvram_base = 0xff1200000ULL, 1105 .counter_base = 0xff1300000ULL, 1106 .intctl_base = 0xff1400000ULL, 1107 .dma_base = 0xef0081000ULL, 1108 .esp_base = 0xef0080000ULL, 1109 .le_base = 0xef0060000ULL, 1110 .apc_base = 0xefa000000ULL, // XXX should not exist 1111 .aux1_base = 0xff1800000ULL, 1112 .aux2_base = 0xff1a01000ULL, // XXX should not exist 1113 .ecc_base = 0xf00000000ULL, 1114 .ecc_version = 0x00000000, // version 0, implementation 0 1115 .nvram_machine_id = 0x71, 1116 .machine_id = ss600mp_id, 1117 .iommu_version = 0x01000000, 1118 .max_mem = 0xf00000000ULL, 1119 }, 1120 /* SS-20 */ 1121 { 1122 .iommu_base = 0xfe0000000ULL, 1123 .tcx_base = 0xe20000000ULL, 1124 .slavio_base = 0xff0000000ULL, 1125 .ms_kb_base = 0xff1000000ULL, 1126 .serial_base = 0xff1100000ULL, 1127 .nvram_base = 0xff1200000ULL, 1128 .fd_base = 0xff1700000ULL, 1129 .counter_base = 0xff1300000ULL, 1130 .intctl_base = 0xff1400000ULL, 1131 .idreg_base = 0xef0000000ULL, 1132 .dma_base = 0xef0400000ULL, 1133 .esp_base = 0xef0800000ULL, 1134 .le_base = 0xef0c00000ULL, 1135 .bpp_base = 0xef4800000ULL, 1136 .apc_base = 0xefa000000ULL, // XXX should not exist 1137 .aux1_base = 0xff1800000ULL, 1138 .aux2_base = 0xff1a01000ULL, 1139 .dbri_base = 0xee0000000ULL, 1140 .sx_base = 0xf80000000ULL, 1141 .vsimm = { 1142 { 1143 .reg_base = 0x9c000000ULL, 1144 .vram_base = 0xfc000000ULL 1145 }, { 1146 .reg_base = 0x90000000ULL, 1147 .vram_base = 0xf0000000ULL 1148 }, { 1149 .reg_base = 0x94000000ULL 1150 }, { 1151 .reg_base = 0x98000000ULL 1152 } 1153 }, 1154 .ecc_base = 0xf00000000ULL, 1155 .ecc_version = 0x20000000, // version 0, implementation 2 1156 .nvram_machine_id = 0x72, 1157 .machine_id = ss20_id, 1158 .iommu_version = 0x13000000, 1159 .max_mem = 0xf00000000ULL, 1160 }, 1161 /* Voyager */ 1162 { 1163 .iommu_base = 0x10000000, 1164 .tcx_base = 0x50000000, 1165 .slavio_base = 0x70000000, 1166 .ms_kb_base = 0x71000000, 1167 .serial_base = 0x71100000, 1168 .nvram_base = 0x71200000, 1169 .fd_base = 0x71400000, 1170 .counter_base = 0x71d00000, 1171 .intctl_base = 0x71e00000, 1172 .idreg_base = 0x78000000, 1173 .dma_base = 0x78400000, 1174 .esp_base = 0x78800000, 1175 .le_base = 0x78c00000, 1176 .apc_base = 0x71300000, // pmc 1177 .aux1_base = 0x71900000, 1178 .aux2_base = 0x71910000, 1179 .nvram_machine_id = 0x80, 1180 .machine_id = vger_id, 1181 .iommu_version = 0x05000000, 1182 .max_mem = 0x10000000, 1183 }, 1184 /* LX */ 1185 { 1186 .iommu_base = 0x10000000, 1187 .iommu_pad_base = 0x10004000, 1188 .iommu_pad_len = 0x0fffb000, 1189 .tcx_base = 0x50000000, 1190 .slavio_base = 0x70000000, 1191 .ms_kb_base = 0x71000000, 1192 .serial_base = 0x71100000, 1193 .nvram_base = 0x71200000, 1194 .fd_base = 0x71400000, 1195 .counter_base = 0x71d00000, 1196 .intctl_base = 0x71e00000, 1197 .idreg_base = 0x78000000, 1198 .dma_base = 0x78400000, 1199 .esp_base = 0x78800000, 1200 .le_base = 0x78c00000, 1201 .aux1_base = 0x71900000, 1202 .aux2_base = 0x71910000, 1203 .nvram_machine_id = 0x80, 1204 .machine_id = lx_id, 1205 .iommu_version = 0x04000000, 1206 .max_mem = 0x10000000, 1207 }, 1208 /* SS-4 */ 1209 { 1210 .iommu_base = 0x10000000, 1211 .tcx_base = 0x50000000, 1212 .cs_base = 0x6c000000, 1213 .slavio_base = 0x70000000, 1214 .ms_kb_base = 0x71000000, 1215 .serial_base = 0x71100000, 1216 .nvram_base = 0x71200000, 1217 .fd_base = 0x71400000, 1218 .counter_base = 0x71d00000, 1219 .intctl_base = 0x71e00000, 1220 .idreg_base = 0x78000000, 1221 .dma_base = 0x78400000, 1222 .esp_base = 0x78800000, 1223 .le_base = 0x78c00000, 1224 .apc_base = 0x6a000000, 1225 .aux1_base = 0x71900000, 1226 .aux2_base = 0x71910000, 1227 .nvram_machine_id = 0x80, 1228 .machine_id = ss4_id, 1229 .iommu_version = 0x05000000, 1230 .max_mem = 0x10000000, 1231 }, 1232 /* SPARCClassic */ 1233 { 1234 .iommu_base = 0x10000000, 1235 .tcx_base = 0x50000000, 1236 .slavio_base = 0x70000000, 1237 .ms_kb_base = 0x71000000, 1238 .serial_base = 0x71100000, 1239 .nvram_base = 0x71200000, 1240 .fd_base = 0x71400000, 1241 .counter_base = 0x71d00000, 1242 .intctl_base = 0x71e00000, 1243 .idreg_base = 0x78000000, 1244 .dma_base = 0x78400000, 1245 .esp_base = 0x78800000, 1246 .le_base = 0x78c00000, 1247 .apc_base = 0x6a000000, 1248 .aux1_base = 0x71900000, 1249 .aux2_base = 0x71910000, 1250 .nvram_machine_id = 0x80, 1251 .machine_id = scls_id, 1252 .iommu_version = 0x05000000, 1253 .max_mem = 0x10000000, 1254 }, 1255 /* SPARCbook */ 1256 { 1257 .iommu_base = 0x10000000, 1258 .tcx_base = 0x50000000, // XXX 1259 .slavio_base = 0x70000000, 1260 .ms_kb_base = 0x71000000, 1261 .serial_base = 0x71100000, 1262 .nvram_base = 0x71200000, 1263 .fd_base = 0x71400000, 1264 .counter_base = 0x71d00000, 1265 .intctl_base = 0x71e00000, 1266 .idreg_base = 0x78000000, 1267 .dma_base = 0x78400000, 1268 .esp_base = 0x78800000, 1269 .le_base = 0x78c00000, 1270 .apc_base = 0x6a000000, 1271 .aux1_base = 0x71900000, 1272 .aux2_base = 0x71910000, 1273 .nvram_machine_id = 0x80, 1274 .machine_id = sbook_id, 1275 .iommu_version = 0x05000000, 1276 .max_mem = 0x10000000, 1277 }, 1278 }; 1279 1280 /* SPARCstation 5 hardware initialisation */ 1281 static void ss5_init(MachineState *machine) 1282 { 1283 sun4m_hw_init(&sun4m_hwdefs[0], machine); 1284 } 1285 1286 /* SPARCstation 10 hardware initialisation */ 1287 static void ss10_init(MachineState *machine) 1288 { 1289 sun4m_hw_init(&sun4m_hwdefs[1], machine); 1290 } 1291 1292 /* SPARCserver 600MP hardware initialisation */ 1293 static void ss600mp_init(MachineState *machine) 1294 { 1295 sun4m_hw_init(&sun4m_hwdefs[2], machine); 1296 } 1297 1298 /* SPARCstation 20 hardware initialisation */ 1299 static void ss20_init(MachineState *machine) 1300 { 1301 sun4m_hw_init(&sun4m_hwdefs[3], machine); 1302 } 1303 1304 /* SPARCstation Voyager hardware initialisation */ 1305 static void vger_init(MachineState *machine) 1306 { 1307 sun4m_hw_init(&sun4m_hwdefs[4], machine); 1308 } 1309 1310 /* SPARCstation LX hardware initialisation */ 1311 static void ss_lx_init(MachineState *machine) 1312 { 1313 sun4m_hw_init(&sun4m_hwdefs[5], machine); 1314 } 1315 1316 /* SPARCstation 4 hardware initialisation */ 1317 static void ss4_init(MachineState *machine) 1318 { 1319 sun4m_hw_init(&sun4m_hwdefs[6], machine); 1320 } 1321 1322 /* SPARCClassic hardware initialisation */ 1323 static void scls_init(MachineState *machine) 1324 { 1325 sun4m_hw_init(&sun4m_hwdefs[7], machine); 1326 } 1327 1328 /* SPARCbook hardware initialisation */ 1329 static void sbook_init(MachineState *machine) 1330 { 1331 sun4m_hw_init(&sun4m_hwdefs[8], machine); 1332 } 1333 1334 static void ss5_class_init(ObjectClass *oc, void *data) 1335 { 1336 MachineClass *mc = MACHINE_CLASS(oc); 1337 1338 mc->desc = "Sun4m platform, SPARCstation 5"; 1339 mc->init = ss5_init; 1340 mc->block_default_type = IF_SCSI; 1341 mc->is_default = 1; 1342 mc->default_boot_order = "c"; 1343 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904"); 1344 } 1345 1346 static const TypeInfo ss5_type = { 1347 .name = MACHINE_TYPE_NAME("SS-5"), 1348 .parent = TYPE_MACHINE, 1349 .class_init = ss5_class_init, 1350 }; 1351 1352 static void ss10_class_init(ObjectClass *oc, void *data) 1353 { 1354 MachineClass *mc = MACHINE_CLASS(oc); 1355 1356 mc->desc = "Sun4m platform, SPARCstation 10"; 1357 mc->init = ss10_init; 1358 mc->block_default_type = IF_SCSI; 1359 mc->max_cpus = 4; 1360 mc->default_boot_order = "c"; 1361 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II"); 1362 } 1363 1364 static const TypeInfo ss10_type = { 1365 .name = MACHINE_TYPE_NAME("SS-10"), 1366 .parent = TYPE_MACHINE, 1367 .class_init = ss10_class_init, 1368 }; 1369 1370 static void ss600mp_class_init(ObjectClass *oc, void *data) 1371 { 1372 MachineClass *mc = MACHINE_CLASS(oc); 1373 1374 mc->desc = "Sun4m platform, SPARCserver 600MP"; 1375 mc->init = ss600mp_init; 1376 mc->block_default_type = IF_SCSI; 1377 mc->max_cpus = 4; 1378 mc->default_boot_order = "c"; 1379 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II"); 1380 } 1381 1382 static const TypeInfo ss600mp_type = { 1383 .name = MACHINE_TYPE_NAME("SS-600MP"), 1384 .parent = TYPE_MACHINE, 1385 .class_init = ss600mp_class_init, 1386 }; 1387 1388 static void ss20_class_init(ObjectClass *oc, void *data) 1389 { 1390 MachineClass *mc = MACHINE_CLASS(oc); 1391 1392 mc->desc = "Sun4m platform, SPARCstation 20"; 1393 mc->init = ss20_init; 1394 mc->block_default_type = IF_SCSI; 1395 mc->max_cpus = 4; 1396 mc->default_boot_order = "c"; 1397 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II"); 1398 } 1399 1400 static const TypeInfo ss20_type = { 1401 .name = MACHINE_TYPE_NAME("SS-20"), 1402 .parent = TYPE_MACHINE, 1403 .class_init = ss20_class_init, 1404 }; 1405 1406 static void voyager_class_init(ObjectClass *oc, void *data) 1407 { 1408 MachineClass *mc = MACHINE_CLASS(oc); 1409 1410 mc->desc = "Sun4m platform, SPARCstation Voyager"; 1411 mc->init = vger_init; 1412 mc->block_default_type = IF_SCSI; 1413 mc->default_boot_order = "c"; 1414 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904"); 1415 } 1416 1417 static const TypeInfo voyager_type = { 1418 .name = MACHINE_TYPE_NAME("Voyager"), 1419 .parent = TYPE_MACHINE, 1420 .class_init = voyager_class_init, 1421 }; 1422 1423 static void ss_lx_class_init(ObjectClass *oc, void *data) 1424 { 1425 MachineClass *mc = MACHINE_CLASS(oc); 1426 1427 mc->desc = "Sun4m platform, SPARCstation LX"; 1428 mc->init = ss_lx_init; 1429 mc->block_default_type = IF_SCSI; 1430 mc->default_boot_order = "c"; 1431 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I"); 1432 } 1433 1434 static const TypeInfo ss_lx_type = { 1435 .name = MACHINE_TYPE_NAME("LX"), 1436 .parent = TYPE_MACHINE, 1437 .class_init = ss_lx_class_init, 1438 }; 1439 1440 static void ss4_class_init(ObjectClass *oc, void *data) 1441 { 1442 MachineClass *mc = MACHINE_CLASS(oc); 1443 1444 mc->desc = "Sun4m platform, SPARCstation 4"; 1445 mc->init = ss4_init; 1446 mc->block_default_type = IF_SCSI; 1447 mc->default_boot_order = "c"; 1448 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904"); 1449 } 1450 1451 static const TypeInfo ss4_type = { 1452 .name = MACHINE_TYPE_NAME("SS-4"), 1453 .parent = TYPE_MACHINE, 1454 .class_init = ss4_class_init, 1455 }; 1456 1457 static void scls_class_init(ObjectClass *oc, void *data) 1458 { 1459 MachineClass *mc = MACHINE_CLASS(oc); 1460 1461 mc->desc = "Sun4m platform, SPARCClassic"; 1462 mc->init = scls_init; 1463 mc->block_default_type = IF_SCSI; 1464 mc->default_boot_order = "c"; 1465 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I"); 1466 } 1467 1468 static const TypeInfo scls_type = { 1469 .name = MACHINE_TYPE_NAME("SPARCClassic"), 1470 .parent = TYPE_MACHINE, 1471 .class_init = scls_class_init, 1472 }; 1473 1474 static void sbook_class_init(ObjectClass *oc, void *data) 1475 { 1476 MachineClass *mc = MACHINE_CLASS(oc); 1477 1478 mc->desc = "Sun4m platform, SPARCbook"; 1479 mc->init = sbook_init; 1480 mc->block_default_type = IF_SCSI; 1481 mc->default_boot_order = "c"; 1482 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I"); 1483 } 1484 1485 static const TypeInfo sbook_type = { 1486 .name = MACHINE_TYPE_NAME("SPARCbook"), 1487 .parent = TYPE_MACHINE, 1488 .class_init = sbook_class_init, 1489 }; 1490 1491 static void sun4m_register_types(void) 1492 { 1493 type_register_static(&idreg_info); 1494 type_register_static(&afx_info); 1495 type_register_static(&prom_info); 1496 type_register_static(&ram_info); 1497 1498 type_register_static(&ss5_type); 1499 type_register_static(&ss10_type); 1500 type_register_static(&ss600mp_type); 1501 type_register_static(&ss20_type); 1502 type_register_static(&voyager_type); 1503 type_register_static(&ss_lx_type); 1504 type_register_static(&ss4_type); 1505 type_register_static(&scls_type); 1506 type_register_static(&sbook_type); 1507 } 1508 1509 type_init(sun4m_register_types) 1510