xref: /openbmc/qemu/hw/sparc/sun4m.c (revision ca693d1c)
1 /*
2  * QEMU Sun4m & Sun4d & Sun4c System Emulator
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "hw/sysbus.h"
30 #include "qemu/error-report.h"
31 #include "qemu/timer.h"
32 #include "hw/sparc/sun4m_iommu.h"
33 #include "hw/timer/m48t59.h"
34 #include "hw/sparc/sparc32_dma.h"
35 #include "hw/block/fdc.h"
36 #include "sysemu/sysemu.h"
37 #include "net/net.h"
38 #include "hw/boards.h"
39 #include "hw/scsi/esp.h"
40 #include "hw/nvram/sun_nvram.h"
41 #include "hw/nvram/chrp_nvram.h"
42 #include "hw/nvram/fw_cfg.h"
43 #include "hw/char/escc.h"
44 #include "hw/empty_slot.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "trace.h"
48 
49 /*
50  * Sun4m architecture was used in the following machines:
51  *
52  * SPARCserver 6xxMP/xx
53  * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
54  * SPARCclassic X (4/10)
55  * SPARCstation LX/ZX (4/30)
56  * SPARCstation Voyager
57  * SPARCstation 10/xx, SPARCserver 10/xx
58  * SPARCstation 5, SPARCserver 5
59  * SPARCstation 20/xx, SPARCserver 20
60  * SPARCstation 4
61  *
62  * See for example: http://www.sunhelp.org/faq/sunref1.html
63  */
64 
65 #define KERNEL_LOAD_ADDR     0x00004000
66 #define CMDLINE_ADDR         0x007ff000
67 #define INITRD_LOAD_ADDR     0x00800000
68 #define PROM_SIZE_MAX        (1 * MiB)
69 #define PROM_VADDR           0xffd00000
70 #define PROM_FILENAME        "openbios-sparc32"
71 #define CFG_ADDR             0xd00000510ULL
72 #define FW_CFG_SUN4M_DEPTH   (FW_CFG_ARCH_LOCAL + 0x00)
73 #define FW_CFG_SUN4M_WIDTH   (FW_CFG_ARCH_LOCAL + 0x01)
74 #define FW_CFG_SUN4M_HEIGHT  (FW_CFG_ARCH_LOCAL + 0x02)
75 
76 #define MAX_CPUS 16
77 #define MAX_PILS 16
78 #define MAX_VSIMMS 4
79 
80 #define ESCC_CLOCK 4915200
81 
82 struct sun4m_hwdef {
83     hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
84     hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
85     hwaddr serial_base, fd_base;
86     hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
87     hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
88     hwaddr bpp_base, dbri_base, sx_base;
89     struct {
90         hwaddr reg_base, vram_base;
91     } vsimm[MAX_VSIMMS];
92     hwaddr ecc_base;
93     uint64_t max_mem;
94     uint32_t ecc_version;
95     uint32_t iommu_version;
96     uint16_t machine_id;
97     uint8_t nvram_machine_id;
98 };
99 
100 const char *fw_cfg_arch_key_name(uint16_t key)
101 {
102     static const struct {
103         uint16_t key;
104         const char *name;
105     } fw_cfg_arch_wellknown_keys[] = {
106         {FW_CFG_SUN4M_DEPTH, "depth"},
107         {FW_CFG_SUN4M_WIDTH, "width"},
108         {FW_CFG_SUN4M_HEIGHT, "height"},
109     };
110 
111     for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
112         if (fw_cfg_arch_wellknown_keys[i].key == key) {
113             return fw_cfg_arch_wellknown_keys[i].name;
114         }
115     }
116     return NULL;
117 }
118 
119 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
120                             Error **errp)
121 {
122     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
123 }
124 
125 static void nvram_init(Nvram *nvram, uint8_t *macaddr,
126                        const char *cmdline, const char *boot_devices,
127                        ram_addr_t RAM_size, uint32_t kernel_size,
128                        int width, int height, int depth,
129                        int nvram_machine_id, const char *arch)
130 {
131     unsigned int i;
132     int sysp_end;
133     uint8_t image[0x1ff0];
134     NvramClass *k = NVRAM_GET_CLASS(nvram);
135 
136     memset(image, '\0', sizeof(image));
137 
138     /* OpenBIOS nvram variables partition */
139     sysp_end = chrp_nvram_create_system_partition(image, 0);
140 
141     /* Free space partition */
142     chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
143 
144     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
145                     nvram_machine_id);
146 
147     for (i = 0; i < sizeof(image); i++) {
148         (k->write)(nvram, i, image[i]);
149     }
150 }
151 
152 void cpu_check_irqs(CPUSPARCState *env)
153 {
154     CPUState *cs;
155 
156     /* We should be holding the BQL before we mess with IRQs */
157     g_assert(qemu_mutex_iothread_locked());
158 
159     if (env->pil_in && (env->interrupt_index == 0 ||
160                         (env->interrupt_index & ~15) == TT_EXTINT)) {
161         unsigned int i;
162 
163         for (i = 15; i > 0; i--) {
164             if (env->pil_in & (1 << i)) {
165                 int old_interrupt = env->interrupt_index;
166 
167                 env->interrupt_index = TT_EXTINT | i;
168                 if (old_interrupt != env->interrupt_index) {
169                     cs = CPU(sparc_env_get_cpu(env));
170                     trace_sun4m_cpu_interrupt(i);
171                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
172                 }
173                 break;
174             }
175         }
176     } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
177         cs = CPU(sparc_env_get_cpu(env));
178         trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
179         env->interrupt_index = 0;
180         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
181     }
182 }
183 
184 static void cpu_kick_irq(SPARCCPU *cpu)
185 {
186     CPUSPARCState *env = &cpu->env;
187     CPUState *cs = CPU(cpu);
188 
189     cs->halted = 0;
190     cpu_check_irqs(env);
191     qemu_cpu_kick(cs);
192 }
193 
194 static void cpu_set_irq(void *opaque, int irq, int level)
195 {
196     SPARCCPU *cpu = opaque;
197     CPUSPARCState *env = &cpu->env;
198 
199     if (level) {
200         trace_sun4m_cpu_set_irq_raise(irq);
201         env->pil_in |= 1 << irq;
202         cpu_kick_irq(cpu);
203     } else {
204         trace_sun4m_cpu_set_irq_lower(irq);
205         env->pil_in &= ~(1 << irq);
206         cpu_check_irqs(env);
207     }
208 }
209 
210 static void dummy_cpu_set_irq(void *opaque, int irq, int level)
211 {
212 }
213 
214 static void main_cpu_reset(void *opaque)
215 {
216     SPARCCPU *cpu = opaque;
217     CPUState *cs = CPU(cpu);
218 
219     cpu_reset(cs);
220     cs->halted = 0;
221 }
222 
223 static void secondary_cpu_reset(void *opaque)
224 {
225     SPARCCPU *cpu = opaque;
226     CPUState *cs = CPU(cpu);
227 
228     cpu_reset(cs);
229     cs->halted = 1;
230 }
231 
232 static void cpu_halt_signal(void *opaque, int irq, int level)
233 {
234     if (level && current_cpu) {
235         cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
236     }
237 }
238 
239 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
240 {
241     return addr - 0xf0000000ULL;
242 }
243 
244 static unsigned long sun4m_load_kernel(const char *kernel_filename,
245                                        const char *initrd_filename,
246                                        ram_addr_t RAM_size,
247                                        uint32_t *initrd_size)
248 {
249     int linux_boot;
250     unsigned int i;
251     long kernel_size;
252     uint8_t *ptr;
253 
254     linux_boot = (kernel_filename != NULL);
255 
256     kernel_size = 0;
257     if (linux_boot) {
258         int bswap_needed;
259 
260 #ifdef BSWAP_NEEDED
261         bswap_needed = 1;
262 #else
263         bswap_needed = 0;
264 #endif
265         kernel_size = load_elf(kernel_filename, NULL,
266                                translate_kernel_address, NULL,
267                                NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
268         if (kernel_size < 0)
269             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
270                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
271                                     TARGET_PAGE_SIZE);
272         if (kernel_size < 0)
273             kernel_size = load_image_targphys(kernel_filename,
274                                               KERNEL_LOAD_ADDR,
275                                               RAM_size - KERNEL_LOAD_ADDR);
276         if (kernel_size < 0) {
277             error_report("could not load kernel '%s'", kernel_filename);
278             exit(1);
279         }
280 
281         /* load initrd */
282         *initrd_size = 0;
283         if (initrd_filename) {
284             *initrd_size = load_image_targphys(initrd_filename,
285                                                INITRD_LOAD_ADDR,
286                                                RAM_size - INITRD_LOAD_ADDR);
287             if ((int)*initrd_size < 0) {
288                 error_report("could not load initial ram disk '%s'",
289                              initrd_filename);
290                 exit(1);
291             }
292         }
293         if (*initrd_size > 0) {
294             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
295                 ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
296                 if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
297                     stl_p(ptr + 16, INITRD_LOAD_ADDR);
298                     stl_p(ptr + 20, *initrd_size);
299                     break;
300                 }
301             }
302         }
303     }
304     return kernel_size;
305 }
306 
307 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
308 {
309     DeviceState *dev;
310     SysBusDevice *s;
311 
312     dev = qdev_create(NULL, TYPE_SUN4M_IOMMU);
313     qdev_prop_set_uint32(dev, "version", version);
314     qdev_init_nofail(dev);
315     s = SYS_BUS_DEVICE(dev);
316     sysbus_connect_irq(s, 0, irq);
317     sysbus_mmio_map(s, 0, addr);
318 
319     return s;
320 }
321 
322 static void *sparc32_dma_init(hwaddr dma_base,
323                               hwaddr esp_base, qemu_irq espdma_irq,
324                               hwaddr le_base, qemu_irq ledma_irq)
325 {
326     DeviceState *dma;
327     ESPDMADeviceState *espdma;
328     LEDMADeviceState *ledma;
329     SysBusESPState *esp;
330     SysBusPCNetState *lance;
331 
332     dma = qdev_create(NULL, TYPE_SPARC32_DMA);
333     qdev_init_nofail(dma);
334     sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
335 
336     espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
337                                    OBJECT(dma), "espdma"));
338     sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
339 
340     esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp"));
341     sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
342     scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
343 
344     ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
345                                  OBJECT(dma), "ledma"));
346     sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
347 
348     lance = SYSBUS_PCNET(object_resolve_path_component(
349                          OBJECT(ledma), "lance"));
350     sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
351 
352     return dma;
353 }
354 
355 static DeviceState *slavio_intctl_init(hwaddr addr,
356                                        hwaddr addrg,
357                                        qemu_irq **parent_irq)
358 {
359     DeviceState *dev;
360     SysBusDevice *s;
361     unsigned int i, j;
362 
363     dev = qdev_create(NULL, "slavio_intctl");
364     qdev_init_nofail(dev);
365 
366     s = SYS_BUS_DEVICE(dev);
367 
368     for (i = 0; i < MAX_CPUS; i++) {
369         for (j = 0; j < MAX_PILS; j++) {
370             sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
371         }
372     }
373     sysbus_mmio_map(s, 0, addrg);
374     for (i = 0; i < MAX_CPUS; i++) {
375         sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
376     }
377 
378     return dev;
379 }
380 
381 #define SYS_TIMER_OFFSET      0x10000ULL
382 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
383 
384 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
385                                   qemu_irq *cpu_irqs, unsigned int num_cpus)
386 {
387     DeviceState *dev;
388     SysBusDevice *s;
389     unsigned int i;
390 
391     dev = qdev_create(NULL, "slavio_timer");
392     qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
393     qdev_init_nofail(dev);
394     s = SYS_BUS_DEVICE(dev);
395     sysbus_connect_irq(s, 0, master_irq);
396     sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
397 
398     for (i = 0; i < MAX_CPUS; i++) {
399         sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
400         sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
401     }
402 }
403 
404 static qemu_irq  slavio_system_powerdown;
405 
406 static void slavio_powerdown_req(Notifier *n, void *opaque)
407 {
408     qemu_irq_raise(slavio_system_powerdown);
409 }
410 
411 static Notifier slavio_system_powerdown_notifier = {
412     .notify = slavio_powerdown_req
413 };
414 
415 #define MISC_LEDS 0x01600000
416 #define MISC_CFG  0x01800000
417 #define MISC_DIAG 0x01a00000
418 #define MISC_MDM  0x01b00000
419 #define MISC_SYS  0x01f00000
420 
421 static void slavio_misc_init(hwaddr base,
422                              hwaddr aux1_base,
423                              hwaddr aux2_base, qemu_irq irq,
424                              qemu_irq fdc_tc)
425 {
426     DeviceState *dev;
427     SysBusDevice *s;
428 
429     dev = qdev_create(NULL, "slavio_misc");
430     qdev_init_nofail(dev);
431     s = SYS_BUS_DEVICE(dev);
432     if (base) {
433         /* 8 bit registers */
434         /* Slavio control */
435         sysbus_mmio_map(s, 0, base + MISC_CFG);
436         /* Diagnostics */
437         sysbus_mmio_map(s, 1, base + MISC_DIAG);
438         /* Modem control */
439         sysbus_mmio_map(s, 2, base + MISC_MDM);
440         /* 16 bit registers */
441         /* ss600mp diag LEDs */
442         sysbus_mmio_map(s, 3, base + MISC_LEDS);
443         /* 32 bit registers */
444         /* System control */
445         sysbus_mmio_map(s, 4, base + MISC_SYS);
446     }
447     if (aux1_base) {
448         /* AUX 1 (Misc System Functions) */
449         sysbus_mmio_map(s, 5, aux1_base);
450     }
451     if (aux2_base) {
452         /* AUX 2 (Software Powerdown Control) */
453         sysbus_mmio_map(s, 6, aux2_base);
454     }
455     sysbus_connect_irq(s, 0, irq);
456     sysbus_connect_irq(s, 1, fdc_tc);
457     slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
458     qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
459 }
460 
461 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
462 {
463     DeviceState *dev;
464     SysBusDevice *s;
465 
466     dev = qdev_create(NULL, "eccmemctl");
467     qdev_prop_set_uint32(dev, "version", version);
468     qdev_init_nofail(dev);
469     s = SYS_BUS_DEVICE(dev);
470     sysbus_connect_irq(s, 0, irq);
471     sysbus_mmio_map(s, 0, base);
472     if (version == 0) { // SS-600MP only
473         sysbus_mmio_map(s, 1, base + 0x1000);
474     }
475 }
476 
477 static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
478 {
479     DeviceState *dev;
480     SysBusDevice *s;
481 
482     dev = qdev_create(NULL, "apc");
483     qdev_init_nofail(dev);
484     s = SYS_BUS_DEVICE(dev);
485     /* Power management (APC) XXX: not a Slavio device */
486     sysbus_mmio_map(s, 0, power_base);
487     sysbus_connect_irq(s, 0, cpu_halt);
488 }
489 
490 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
491                      int height, int depth)
492 {
493     DeviceState *dev;
494     SysBusDevice *s;
495 
496     dev = qdev_create(NULL, "SUNW,tcx");
497     qdev_prop_set_uint32(dev, "vram_size", vram_size);
498     qdev_prop_set_uint16(dev, "width", width);
499     qdev_prop_set_uint16(dev, "height", height);
500     qdev_prop_set_uint16(dev, "depth", depth);
501     qdev_init_nofail(dev);
502     s = SYS_BUS_DEVICE(dev);
503 
504     /* 10/ROM : FCode ROM */
505     sysbus_mmio_map(s, 0, addr);
506     /* 2/STIP : Stipple */
507     sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
508     /* 3/BLIT : Blitter */
509     sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
510     /* 5/RSTIP : Raw Stipple */
511     sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
512     /* 6/RBLIT : Raw Blitter */
513     sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
514     /* 7/TEC : Transform Engine */
515     sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
516     /* 8/CMAP  : DAC */
517     sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
518     /* 9/THC : */
519     if (depth == 8) {
520         sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
521     } else {
522         sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
523     }
524     /* 11/DHC : */
525     sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
526     /* 12/ALT : */
527     sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
528     /* 0/DFB8 : 8-bit plane */
529     sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
530     /* 1/DFB24 : 24bit plane */
531     sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
532     /* 4/RDFB32: Raw framebuffer. Control plane */
533     sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
534     /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
535     if (depth == 8) {
536         sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
537     }
538 
539     sysbus_connect_irq(s, 0, irq);
540 }
541 
542 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
543                      int height, int depth)
544 {
545     DeviceState *dev;
546     SysBusDevice *s;
547 
548     dev = qdev_create(NULL, "cgthree");
549     qdev_prop_set_uint32(dev, "vram-size", vram_size);
550     qdev_prop_set_uint16(dev, "width", width);
551     qdev_prop_set_uint16(dev, "height", height);
552     qdev_prop_set_uint16(dev, "depth", depth);
553     qdev_init_nofail(dev);
554     s = SYS_BUS_DEVICE(dev);
555 
556     /* FCode ROM */
557     sysbus_mmio_map(s, 0, addr);
558     /* DAC */
559     sysbus_mmio_map(s, 1, addr + 0x400000ULL);
560     /* 8-bit plane */
561     sysbus_mmio_map(s, 2, addr + 0x800000ULL);
562 
563     sysbus_connect_irq(s, 0, irq);
564 }
565 
566 /* NCR89C100/MACIO Internal ID register */
567 
568 #define TYPE_MACIO_ID_REGISTER "macio_idreg"
569 
570 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
571 
572 static void idreg_init(hwaddr addr)
573 {
574     DeviceState *dev;
575     SysBusDevice *s;
576 
577     dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER);
578     qdev_init_nofail(dev);
579     s = SYS_BUS_DEVICE(dev);
580 
581     sysbus_mmio_map(s, 0, addr);
582     address_space_write_rom(&address_space_memory, addr,
583                             MEMTXATTRS_UNSPECIFIED,
584                             idreg_data, sizeof(idreg_data));
585 }
586 
587 #define MACIO_ID_REGISTER(obj) \
588     OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
589 
590 typedef struct IDRegState {
591     SysBusDevice parent_obj;
592 
593     MemoryRegion mem;
594 } IDRegState;
595 
596 static void idreg_realize(DeviceState *ds, Error **errp)
597 {
598     IDRegState *s = MACIO_ID_REGISTER(ds);
599     SysBusDevice *dev = SYS_BUS_DEVICE(ds);
600     Error *local_err = NULL;
601 
602     memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
603                                      sizeof(idreg_data), &local_err);
604     if (local_err) {
605         error_propagate(errp, local_err);
606         return;
607     }
608 
609     vmstate_register_ram_global(&s->mem);
610     memory_region_set_readonly(&s->mem, true);
611     sysbus_init_mmio(dev, &s->mem);
612 }
613 
614 static void idreg_class_init(ObjectClass *oc, void *data)
615 {
616     DeviceClass *dc = DEVICE_CLASS(oc);
617 
618     dc->realize = idreg_realize;
619 }
620 
621 static const TypeInfo idreg_info = {
622     .name          = TYPE_MACIO_ID_REGISTER,
623     .parent        = TYPE_SYS_BUS_DEVICE,
624     .instance_size = sizeof(IDRegState),
625     .class_init    = idreg_class_init,
626 };
627 
628 #define TYPE_TCX_AFX "tcx_afx"
629 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
630 
631 typedef struct AFXState {
632     SysBusDevice parent_obj;
633 
634     MemoryRegion mem;
635 } AFXState;
636 
637 /* SS-5 TCX AFX register */
638 static void afx_init(hwaddr addr)
639 {
640     DeviceState *dev;
641     SysBusDevice *s;
642 
643     dev = qdev_create(NULL, TYPE_TCX_AFX);
644     qdev_init_nofail(dev);
645     s = SYS_BUS_DEVICE(dev);
646 
647     sysbus_mmio_map(s, 0, addr);
648 }
649 
650 static void afx_realize(DeviceState *ds, Error **errp)
651 {
652     AFXState *s = TCX_AFX(ds);
653     SysBusDevice *dev = SYS_BUS_DEVICE(ds);
654     Error *local_err = NULL;
655 
656     memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4,
657                                      &local_err);
658     if (local_err) {
659         error_propagate(errp, local_err);
660         return;
661     }
662 
663     vmstate_register_ram_global(&s->mem);
664     sysbus_init_mmio(dev, &s->mem);
665 }
666 
667 static void afx_class_init(ObjectClass *oc, void *data)
668 {
669     DeviceClass *dc = DEVICE_CLASS(oc);
670 
671     dc->realize = afx_realize;
672 }
673 
674 static const TypeInfo afx_info = {
675     .name          = TYPE_TCX_AFX,
676     .parent        = TYPE_SYS_BUS_DEVICE,
677     .instance_size = sizeof(AFXState),
678     .class_init    = afx_class_init,
679 };
680 
681 #define TYPE_OPENPROM "openprom"
682 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
683 
684 typedef struct PROMState {
685     SysBusDevice parent_obj;
686 
687     MemoryRegion prom;
688 } PROMState;
689 
690 /* Boot PROM (OpenBIOS) */
691 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
692 {
693     hwaddr *base_addr = (hwaddr *)opaque;
694     return addr + *base_addr - PROM_VADDR;
695 }
696 
697 static void prom_init(hwaddr addr, const char *bios_name)
698 {
699     DeviceState *dev;
700     SysBusDevice *s;
701     char *filename;
702     int ret;
703 
704     dev = qdev_create(NULL, TYPE_OPENPROM);
705     qdev_init_nofail(dev);
706     s = SYS_BUS_DEVICE(dev);
707 
708     sysbus_mmio_map(s, 0, addr);
709 
710     /* load boot prom */
711     if (bios_name == NULL) {
712         bios_name = PROM_FILENAME;
713     }
714     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
715     if (filename) {
716         ret = load_elf(filename, NULL,
717                        translate_prom_address, &addr, NULL,
718                        NULL, NULL, 1, EM_SPARC, 0, 0);
719         if (ret < 0 || ret > PROM_SIZE_MAX) {
720             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
721         }
722         g_free(filename);
723     } else {
724         ret = -1;
725     }
726     if (ret < 0 || ret > PROM_SIZE_MAX) {
727         error_report("could not load prom '%s'", bios_name);
728         exit(1);
729     }
730 }
731 
732 static void prom_realize(DeviceState *ds, Error **errp)
733 {
734     PROMState *s = OPENPROM(ds);
735     SysBusDevice *dev = SYS_BUS_DEVICE(ds);
736     Error *local_err = NULL;
737 
738     memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
739                                      PROM_SIZE_MAX, &local_err);
740     if (local_err) {
741         error_propagate(errp, local_err);
742         return;
743     }
744 
745     vmstate_register_ram_global(&s->prom);
746     memory_region_set_readonly(&s->prom, true);
747     sysbus_init_mmio(dev, &s->prom);
748 }
749 
750 static Property prom_properties[] = {
751     {/* end of property list */},
752 };
753 
754 static void prom_class_init(ObjectClass *klass, void *data)
755 {
756     DeviceClass *dc = DEVICE_CLASS(klass);
757 
758     dc->props = prom_properties;
759     dc->realize = prom_realize;
760 }
761 
762 static const TypeInfo prom_info = {
763     .name          = TYPE_OPENPROM,
764     .parent        = TYPE_SYS_BUS_DEVICE,
765     .instance_size = sizeof(PROMState),
766     .class_init    = prom_class_init,
767 };
768 
769 #define TYPE_SUN4M_MEMORY "memory"
770 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
771 
772 typedef struct RamDevice {
773     SysBusDevice parent_obj;
774 
775     MemoryRegion ram;
776     uint64_t size;
777 } RamDevice;
778 
779 /* System RAM */
780 static void ram_realize(DeviceState *dev, Error **errp)
781 {
782     RamDevice *d = SUN4M_RAM(dev);
783     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
784 
785     memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram",
786                                          d->size);
787     sysbus_init_mmio(sbd, &d->ram);
788 }
789 
790 static void ram_init(hwaddr addr, ram_addr_t RAM_size,
791                      uint64_t max_mem)
792 {
793     DeviceState *dev;
794     SysBusDevice *s;
795     RamDevice *d;
796 
797     /* allocate RAM */
798     if ((uint64_t)RAM_size > max_mem) {
799         error_report("Too much memory for this machine: %" PRId64 ","
800                      " maximum %" PRId64,
801                      RAM_size / MiB, max_mem / MiB);
802         exit(1);
803     }
804     dev = qdev_create(NULL, "memory");
805     s = SYS_BUS_DEVICE(dev);
806 
807     d = SUN4M_RAM(dev);
808     d->size = RAM_size;
809     qdev_init_nofail(dev);
810 
811     sysbus_mmio_map(s, 0, addr);
812 }
813 
814 static Property ram_properties[] = {
815     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
816     DEFINE_PROP_END_OF_LIST(),
817 };
818 
819 static void ram_class_init(ObjectClass *klass, void *data)
820 {
821     DeviceClass *dc = DEVICE_CLASS(klass);
822 
823     dc->realize = ram_realize;
824     dc->props = ram_properties;
825 }
826 
827 static const TypeInfo ram_info = {
828     .name          = TYPE_SUN4M_MEMORY,
829     .parent        = TYPE_SYS_BUS_DEVICE,
830     .instance_size = sizeof(RamDevice),
831     .class_init    = ram_class_init,
832 };
833 
834 static void cpu_devinit(const char *cpu_type, unsigned int id,
835                         uint64_t prom_addr, qemu_irq **cpu_irqs)
836 {
837     CPUState *cs;
838     SPARCCPU *cpu;
839     CPUSPARCState *env;
840 
841     cpu = SPARC_CPU(cpu_create(cpu_type));
842     env = &cpu->env;
843 
844     cpu_sparc_set_id(env, id);
845     if (id == 0) {
846         qemu_register_reset(main_cpu_reset, cpu);
847     } else {
848         qemu_register_reset(secondary_cpu_reset, cpu);
849         cs = CPU(cpu);
850         cs->halted = 1;
851     }
852     *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
853     env->prom_addr = prom_addr;
854 }
855 
856 static void dummy_fdc_tc(void *opaque, int irq, int level)
857 {
858 }
859 
860 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
861                           MachineState *machine)
862 {
863     DeviceState *slavio_intctl;
864     unsigned int i;
865     void *nvram;
866     qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
867     qemu_irq fdc_tc;
868     unsigned long kernel_size;
869     uint32_t initrd_size;
870     DriveInfo *fd[MAX_FD];
871     FWCfgState *fw_cfg;
872     DeviceState *dev;
873     SysBusDevice *s;
874 
875     /* init CPUs */
876     for(i = 0; i < smp_cpus; i++) {
877         cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
878     }
879 
880     for (i = smp_cpus; i < MAX_CPUS; i++)
881         cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
882 
883 
884     /* set up devices */
885     ram_init(0, machine->ram_size, hwdef->max_mem);
886     /* models without ECC don't trap when missing ram is accessed */
887     if (!hwdef->ecc_base) {
888         empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size);
889     }
890 
891     prom_init(hwdef->slavio_base, bios_name);
892 
893     slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
894                                        hwdef->intctl_base + 0x10000ULL,
895                                        cpu_irqs);
896 
897     for (i = 0; i < 32; i++) {
898         slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
899     }
900     for (i = 0; i < MAX_CPUS; i++) {
901         slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
902     }
903 
904     if (hwdef->idreg_base) {
905         idreg_init(hwdef->idreg_base);
906     }
907 
908     if (hwdef->afx_base) {
909         afx_init(hwdef->afx_base);
910     }
911 
912     iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
913 
914     if (hwdef->iommu_pad_base) {
915         /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
916            Software shouldn't use aliased addresses, neither should it crash
917            when does. Using empty_slot instead of aliasing can help with
918            debugging such accesses */
919         empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
920     }
921 
922     sparc32_dma_init(hwdef->dma_base,
923                      hwdef->esp_base, slavio_irq[18],
924                      hwdef->le_base, slavio_irq[16]);
925 
926     if (graphic_depth != 8 && graphic_depth != 24) {
927         error_report("Unsupported depth: %d", graphic_depth);
928         exit (1);
929     }
930     if (vga_interface_type != VGA_NONE) {
931         if (vga_interface_type == VGA_CG3) {
932             if (graphic_depth != 8) {
933                 error_report("Unsupported depth: %d", graphic_depth);
934                 exit(1);
935             }
936 
937             if (!(graphic_width == 1024 && graphic_height == 768) &&
938                 !(graphic_width == 1152 && graphic_height == 900)) {
939                 error_report("Unsupported resolution: %d x %d", graphic_width,
940                              graphic_height);
941                 exit(1);
942             }
943 
944             /* sbus irq 5 */
945             cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
946                      graphic_width, graphic_height, graphic_depth);
947         } else {
948             /* If no display specified, default to TCX */
949             if (graphic_depth != 8 && graphic_depth != 24) {
950                 error_report("Unsupported depth: %d", graphic_depth);
951                 exit(1);
952             }
953 
954             if (!(graphic_width == 1024 && graphic_height == 768)) {
955                 error_report("Unsupported resolution: %d x %d",
956                              graphic_width, graphic_height);
957                 exit(1);
958             }
959 
960             tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
961                      graphic_width, graphic_height, graphic_depth);
962         }
963     }
964 
965     for (i = 0; i < MAX_VSIMMS; i++) {
966         /* vsimm registers probed by OBP */
967         if (hwdef->vsimm[i].reg_base) {
968             empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
969         }
970     }
971 
972     if (hwdef->sx_base) {
973         empty_slot_init(hwdef->sx_base, 0x2000);
974     }
975 
976     nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
977 
978     slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
979 
980     /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
981        Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
982     dev = qdev_create(NULL, TYPE_ESCC);
983     qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
984     qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
985     qdev_prop_set_uint32(dev, "it_shift", 1);
986     qdev_prop_set_chr(dev, "chrB", NULL);
987     qdev_prop_set_chr(dev, "chrA", NULL);
988     qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
989     qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
990     qdev_init_nofail(dev);
991     s = SYS_BUS_DEVICE(dev);
992     sysbus_connect_irq(s, 0, slavio_irq[14]);
993     sysbus_connect_irq(s, 1, slavio_irq[14]);
994     sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
995 
996     dev = qdev_create(NULL, TYPE_ESCC);
997     qdev_prop_set_uint32(dev, "disabled", 0);
998     qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
999     qdev_prop_set_uint32(dev, "it_shift", 1);
1000     qdev_prop_set_chr(dev, "chrB", serial_hd(1));
1001     qdev_prop_set_chr(dev, "chrA", serial_hd(0));
1002     qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
1003     qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
1004     qdev_init_nofail(dev);
1005 
1006     s = SYS_BUS_DEVICE(dev);
1007     sysbus_connect_irq(s, 0, slavio_irq[15]);
1008     sysbus_connect_irq(s, 1,  slavio_irq[15]);
1009     sysbus_mmio_map(s, 0, hwdef->serial_base);
1010 
1011     if (hwdef->apc_base) {
1012         apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
1013     }
1014 
1015     if (hwdef->fd_base) {
1016         /* there is zero or one floppy drive */
1017         memset(fd, 0, sizeof(fd));
1018         fd[0] = drive_get(IF_FLOPPY, 0, 0);
1019         sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
1020                           &fdc_tc);
1021     } else {
1022         fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
1023     }
1024 
1025     slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
1026                      slavio_irq[30], fdc_tc);
1027 
1028     if (hwdef->cs_base) {
1029         sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
1030                              slavio_irq[5]);
1031     }
1032 
1033     if (hwdef->dbri_base) {
1034         /* ISDN chip with attached CS4215 audio codec */
1035         /* prom space */
1036         empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
1037         /* reg space */
1038         empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
1039     }
1040 
1041     if (hwdef->bpp_base) {
1042         /* parallel port */
1043         empty_slot_init(hwdef->bpp_base, 0x20);
1044     }
1045 
1046     initrd_size = 0;
1047     kernel_size = sun4m_load_kernel(machine->kernel_filename,
1048                                     machine->initrd_filename,
1049                                     machine->ram_size, &initrd_size);
1050 
1051     nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
1052                machine->boot_order, machine->ram_size, kernel_size,
1053                graphic_width, graphic_height, graphic_depth,
1054                hwdef->nvram_machine_id, "Sun4m");
1055 
1056     if (hwdef->ecc_base)
1057         ecc_init(hwdef->ecc_base, slavio_irq[28],
1058                  hwdef->ecc_version);
1059 
1060     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1061     fw_cfg = FW_CFG(dev);
1062     qdev_prop_set_uint32(dev, "data_width", 1);
1063     qdev_prop_set_bit(dev, "dma_enabled", false);
1064     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1065                               OBJECT(fw_cfg), NULL);
1066     qdev_init_nofail(dev);
1067     s = SYS_BUS_DEVICE(dev);
1068     sysbus_mmio_map(s, 0, CFG_ADDR);
1069     sysbus_mmio_map(s, 1, CFG_ADDR + 2);
1070 
1071     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1072     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
1073     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1074     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
1075     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
1076     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
1077     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
1078     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
1079     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1080     if (machine->kernel_cmdline) {
1081         fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
1082         pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
1083                          machine->kernel_cmdline);
1084         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
1085         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1086                        strlen(machine->kernel_cmdline) + 1);
1087     } else {
1088         fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
1089         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
1090     }
1091     fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
1092     fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1093     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
1094     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1095 }
1096 
1097 enum {
1098     ss5_id = 32,
1099     vger_id,
1100     lx_id,
1101     ss4_id,
1102     scls_id,
1103     sbook_id,
1104     ss10_id = 64,
1105     ss20_id,
1106     ss600mp_id,
1107 };
1108 
1109 static const struct sun4m_hwdef sun4m_hwdefs[] = {
1110     /* SS-5 */
1111     {
1112         .iommu_base   = 0x10000000,
1113         .iommu_pad_base = 0x10004000,
1114         .iommu_pad_len  = 0x0fffb000,
1115         .tcx_base     = 0x50000000,
1116         .cs_base      = 0x6c000000,
1117         .slavio_base  = 0x70000000,
1118         .ms_kb_base   = 0x71000000,
1119         .serial_base  = 0x71100000,
1120         .nvram_base   = 0x71200000,
1121         .fd_base      = 0x71400000,
1122         .counter_base = 0x71d00000,
1123         .intctl_base  = 0x71e00000,
1124         .idreg_base   = 0x78000000,
1125         .dma_base     = 0x78400000,
1126         .esp_base     = 0x78800000,
1127         .le_base      = 0x78c00000,
1128         .apc_base     = 0x6a000000,
1129         .afx_base     = 0x6e000000,
1130         .aux1_base    = 0x71900000,
1131         .aux2_base    = 0x71910000,
1132         .nvram_machine_id = 0x80,
1133         .machine_id = ss5_id,
1134         .iommu_version = 0x05000000,
1135         .max_mem = 0x10000000,
1136     },
1137     /* SS-10 */
1138     {
1139         .iommu_base   = 0xfe0000000ULL,
1140         .tcx_base     = 0xe20000000ULL,
1141         .slavio_base  = 0xff0000000ULL,
1142         .ms_kb_base   = 0xff1000000ULL,
1143         .serial_base  = 0xff1100000ULL,
1144         .nvram_base   = 0xff1200000ULL,
1145         .fd_base      = 0xff1700000ULL,
1146         .counter_base = 0xff1300000ULL,
1147         .intctl_base  = 0xff1400000ULL,
1148         .idreg_base   = 0xef0000000ULL,
1149         .dma_base     = 0xef0400000ULL,
1150         .esp_base     = 0xef0800000ULL,
1151         .le_base      = 0xef0c00000ULL,
1152         .apc_base     = 0xefa000000ULL, // XXX should not exist
1153         .aux1_base    = 0xff1800000ULL,
1154         .aux2_base    = 0xff1a01000ULL,
1155         .ecc_base     = 0xf00000000ULL,
1156         .ecc_version  = 0x10000000, // version 0, implementation 1
1157         .nvram_machine_id = 0x72,
1158         .machine_id = ss10_id,
1159         .iommu_version = 0x03000000,
1160         .max_mem = 0xf00000000ULL,
1161     },
1162     /* SS-600MP */
1163     {
1164         .iommu_base   = 0xfe0000000ULL,
1165         .tcx_base     = 0xe20000000ULL,
1166         .slavio_base  = 0xff0000000ULL,
1167         .ms_kb_base   = 0xff1000000ULL,
1168         .serial_base  = 0xff1100000ULL,
1169         .nvram_base   = 0xff1200000ULL,
1170         .counter_base = 0xff1300000ULL,
1171         .intctl_base  = 0xff1400000ULL,
1172         .dma_base     = 0xef0081000ULL,
1173         .esp_base     = 0xef0080000ULL,
1174         .le_base      = 0xef0060000ULL,
1175         .apc_base     = 0xefa000000ULL, // XXX should not exist
1176         .aux1_base    = 0xff1800000ULL,
1177         .aux2_base    = 0xff1a01000ULL, // XXX should not exist
1178         .ecc_base     = 0xf00000000ULL,
1179         .ecc_version  = 0x00000000, // version 0, implementation 0
1180         .nvram_machine_id = 0x71,
1181         .machine_id = ss600mp_id,
1182         .iommu_version = 0x01000000,
1183         .max_mem = 0xf00000000ULL,
1184     },
1185     /* SS-20 */
1186     {
1187         .iommu_base   = 0xfe0000000ULL,
1188         .tcx_base     = 0xe20000000ULL,
1189         .slavio_base  = 0xff0000000ULL,
1190         .ms_kb_base   = 0xff1000000ULL,
1191         .serial_base  = 0xff1100000ULL,
1192         .nvram_base   = 0xff1200000ULL,
1193         .fd_base      = 0xff1700000ULL,
1194         .counter_base = 0xff1300000ULL,
1195         .intctl_base  = 0xff1400000ULL,
1196         .idreg_base   = 0xef0000000ULL,
1197         .dma_base     = 0xef0400000ULL,
1198         .esp_base     = 0xef0800000ULL,
1199         .le_base      = 0xef0c00000ULL,
1200         .bpp_base     = 0xef4800000ULL,
1201         .apc_base     = 0xefa000000ULL, // XXX should not exist
1202         .aux1_base    = 0xff1800000ULL,
1203         .aux2_base    = 0xff1a01000ULL,
1204         .dbri_base    = 0xee0000000ULL,
1205         .sx_base      = 0xf80000000ULL,
1206         .vsimm        = {
1207             {
1208                 .reg_base  = 0x9c000000ULL,
1209                 .vram_base = 0xfc000000ULL
1210             }, {
1211                 .reg_base  = 0x90000000ULL,
1212                 .vram_base = 0xf0000000ULL
1213             }, {
1214                 .reg_base  = 0x94000000ULL
1215             }, {
1216                 .reg_base  = 0x98000000ULL
1217             }
1218         },
1219         .ecc_base     = 0xf00000000ULL,
1220         .ecc_version  = 0x20000000, // version 0, implementation 2
1221         .nvram_machine_id = 0x72,
1222         .machine_id = ss20_id,
1223         .iommu_version = 0x13000000,
1224         .max_mem = 0xf00000000ULL,
1225     },
1226     /* Voyager */
1227     {
1228         .iommu_base   = 0x10000000,
1229         .tcx_base     = 0x50000000,
1230         .slavio_base  = 0x70000000,
1231         .ms_kb_base   = 0x71000000,
1232         .serial_base  = 0x71100000,
1233         .nvram_base   = 0x71200000,
1234         .fd_base      = 0x71400000,
1235         .counter_base = 0x71d00000,
1236         .intctl_base  = 0x71e00000,
1237         .idreg_base   = 0x78000000,
1238         .dma_base     = 0x78400000,
1239         .esp_base     = 0x78800000,
1240         .le_base      = 0x78c00000,
1241         .apc_base     = 0x71300000, // pmc
1242         .aux1_base    = 0x71900000,
1243         .aux2_base    = 0x71910000,
1244         .nvram_machine_id = 0x80,
1245         .machine_id = vger_id,
1246         .iommu_version = 0x05000000,
1247         .max_mem = 0x10000000,
1248     },
1249     /* LX */
1250     {
1251         .iommu_base   = 0x10000000,
1252         .iommu_pad_base = 0x10004000,
1253         .iommu_pad_len  = 0x0fffb000,
1254         .tcx_base     = 0x50000000,
1255         .slavio_base  = 0x70000000,
1256         .ms_kb_base   = 0x71000000,
1257         .serial_base  = 0x71100000,
1258         .nvram_base   = 0x71200000,
1259         .fd_base      = 0x71400000,
1260         .counter_base = 0x71d00000,
1261         .intctl_base  = 0x71e00000,
1262         .idreg_base   = 0x78000000,
1263         .dma_base     = 0x78400000,
1264         .esp_base     = 0x78800000,
1265         .le_base      = 0x78c00000,
1266         .aux1_base    = 0x71900000,
1267         .aux2_base    = 0x71910000,
1268         .nvram_machine_id = 0x80,
1269         .machine_id = lx_id,
1270         .iommu_version = 0x04000000,
1271         .max_mem = 0x10000000,
1272     },
1273     /* SS-4 */
1274     {
1275         .iommu_base   = 0x10000000,
1276         .tcx_base     = 0x50000000,
1277         .cs_base      = 0x6c000000,
1278         .slavio_base  = 0x70000000,
1279         .ms_kb_base   = 0x71000000,
1280         .serial_base  = 0x71100000,
1281         .nvram_base   = 0x71200000,
1282         .fd_base      = 0x71400000,
1283         .counter_base = 0x71d00000,
1284         .intctl_base  = 0x71e00000,
1285         .idreg_base   = 0x78000000,
1286         .dma_base     = 0x78400000,
1287         .esp_base     = 0x78800000,
1288         .le_base      = 0x78c00000,
1289         .apc_base     = 0x6a000000,
1290         .aux1_base    = 0x71900000,
1291         .aux2_base    = 0x71910000,
1292         .nvram_machine_id = 0x80,
1293         .machine_id = ss4_id,
1294         .iommu_version = 0x05000000,
1295         .max_mem = 0x10000000,
1296     },
1297     /* SPARCClassic */
1298     {
1299         .iommu_base   = 0x10000000,
1300         .tcx_base     = 0x50000000,
1301         .slavio_base  = 0x70000000,
1302         .ms_kb_base   = 0x71000000,
1303         .serial_base  = 0x71100000,
1304         .nvram_base   = 0x71200000,
1305         .fd_base      = 0x71400000,
1306         .counter_base = 0x71d00000,
1307         .intctl_base  = 0x71e00000,
1308         .idreg_base   = 0x78000000,
1309         .dma_base     = 0x78400000,
1310         .esp_base     = 0x78800000,
1311         .le_base      = 0x78c00000,
1312         .apc_base     = 0x6a000000,
1313         .aux1_base    = 0x71900000,
1314         .aux2_base    = 0x71910000,
1315         .nvram_machine_id = 0x80,
1316         .machine_id = scls_id,
1317         .iommu_version = 0x05000000,
1318         .max_mem = 0x10000000,
1319     },
1320     /* SPARCbook */
1321     {
1322         .iommu_base   = 0x10000000,
1323         .tcx_base     = 0x50000000, // XXX
1324         .slavio_base  = 0x70000000,
1325         .ms_kb_base   = 0x71000000,
1326         .serial_base  = 0x71100000,
1327         .nvram_base   = 0x71200000,
1328         .fd_base      = 0x71400000,
1329         .counter_base = 0x71d00000,
1330         .intctl_base  = 0x71e00000,
1331         .idreg_base   = 0x78000000,
1332         .dma_base     = 0x78400000,
1333         .esp_base     = 0x78800000,
1334         .le_base      = 0x78c00000,
1335         .apc_base     = 0x6a000000,
1336         .aux1_base    = 0x71900000,
1337         .aux2_base    = 0x71910000,
1338         .nvram_machine_id = 0x80,
1339         .machine_id = sbook_id,
1340         .iommu_version = 0x05000000,
1341         .max_mem = 0x10000000,
1342     },
1343 };
1344 
1345 /* SPARCstation 5 hardware initialisation */
1346 static void ss5_init(MachineState *machine)
1347 {
1348     sun4m_hw_init(&sun4m_hwdefs[0], machine);
1349 }
1350 
1351 /* SPARCstation 10 hardware initialisation */
1352 static void ss10_init(MachineState *machine)
1353 {
1354     sun4m_hw_init(&sun4m_hwdefs[1], machine);
1355 }
1356 
1357 /* SPARCserver 600MP hardware initialisation */
1358 static void ss600mp_init(MachineState *machine)
1359 {
1360     sun4m_hw_init(&sun4m_hwdefs[2], machine);
1361 }
1362 
1363 /* SPARCstation 20 hardware initialisation */
1364 static void ss20_init(MachineState *machine)
1365 {
1366     sun4m_hw_init(&sun4m_hwdefs[3], machine);
1367 }
1368 
1369 /* SPARCstation Voyager hardware initialisation */
1370 static void vger_init(MachineState *machine)
1371 {
1372     sun4m_hw_init(&sun4m_hwdefs[4], machine);
1373 }
1374 
1375 /* SPARCstation LX hardware initialisation */
1376 static void ss_lx_init(MachineState *machine)
1377 {
1378     sun4m_hw_init(&sun4m_hwdefs[5], machine);
1379 }
1380 
1381 /* SPARCstation 4 hardware initialisation */
1382 static void ss4_init(MachineState *machine)
1383 {
1384     sun4m_hw_init(&sun4m_hwdefs[6], machine);
1385 }
1386 
1387 /* SPARCClassic hardware initialisation */
1388 static void scls_init(MachineState *machine)
1389 {
1390     sun4m_hw_init(&sun4m_hwdefs[7], machine);
1391 }
1392 
1393 /* SPARCbook hardware initialisation */
1394 static void sbook_init(MachineState *machine)
1395 {
1396     sun4m_hw_init(&sun4m_hwdefs[8], machine);
1397 }
1398 
1399 static void ss5_class_init(ObjectClass *oc, void *data)
1400 {
1401     MachineClass *mc = MACHINE_CLASS(oc);
1402 
1403     mc->desc = "Sun4m platform, SPARCstation 5";
1404     mc->init = ss5_init;
1405     mc->block_default_type = IF_SCSI;
1406     mc->is_default = 1;
1407     mc->default_boot_order = "c";
1408     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1409 }
1410 
1411 static const TypeInfo ss5_type = {
1412     .name = MACHINE_TYPE_NAME("SS-5"),
1413     .parent = TYPE_MACHINE,
1414     .class_init = ss5_class_init,
1415 };
1416 
1417 static void ss10_class_init(ObjectClass *oc, void *data)
1418 {
1419     MachineClass *mc = MACHINE_CLASS(oc);
1420 
1421     mc->desc = "Sun4m platform, SPARCstation 10";
1422     mc->init = ss10_init;
1423     mc->block_default_type = IF_SCSI;
1424     mc->max_cpus = 4;
1425     mc->default_boot_order = "c";
1426     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1427 }
1428 
1429 static const TypeInfo ss10_type = {
1430     .name = MACHINE_TYPE_NAME("SS-10"),
1431     .parent = TYPE_MACHINE,
1432     .class_init = ss10_class_init,
1433 };
1434 
1435 static void ss600mp_class_init(ObjectClass *oc, void *data)
1436 {
1437     MachineClass *mc = MACHINE_CLASS(oc);
1438 
1439     mc->desc = "Sun4m platform, SPARCserver 600MP";
1440     mc->init = ss600mp_init;
1441     mc->block_default_type = IF_SCSI;
1442     mc->max_cpus = 4;
1443     mc->default_boot_order = "c";
1444     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1445 }
1446 
1447 static const TypeInfo ss600mp_type = {
1448     .name = MACHINE_TYPE_NAME("SS-600MP"),
1449     .parent = TYPE_MACHINE,
1450     .class_init = ss600mp_class_init,
1451 };
1452 
1453 static void ss20_class_init(ObjectClass *oc, void *data)
1454 {
1455     MachineClass *mc = MACHINE_CLASS(oc);
1456 
1457     mc->desc = "Sun4m platform, SPARCstation 20";
1458     mc->init = ss20_init;
1459     mc->block_default_type = IF_SCSI;
1460     mc->max_cpus = 4;
1461     mc->default_boot_order = "c";
1462     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1463 }
1464 
1465 static const TypeInfo ss20_type = {
1466     .name = MACHINE_TYPE_NAME("SS-20"),
1467     .parent = TYPE_MACHINE,
1468     .class_init = ss20_class_init,
1469 };
1470 
1471 static void voyager_class_init(ObjectClass *oc, void *data)
1472 {
1473     MachineClass *mc = MACHINE_CLASS(oc);
1474 
1475     mc->desc = "Sun4m platform, SPARCstation Voyager";
1476     mc->init = vger_init;
1477     mc->block_default_type = IF_SCSI;
1478     mc->default_boot_order = "c";
1479     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1480 }
1481 
1482 static const TypeInfo voyager_type = {
1483     .name = MACHINE_TYPE_NAME("Voyager"),
1484     .parent = TYPE_MACHINE,
1485     .class_init = voyager_class_init,
1486 };
1487 
1488 static void ss_lx_class_init(ObjectClass *oc, void *data)
1489 {
1490     MachineClass *mc = MACHINE_CLASS(oc);
1491 
1492     mc->desc = "Sun4m platform, SPARCstation LX";
1493     mc->init = ss_lx_init;
1494     mc->block_default_type = IF_SCSI;
1495     mc->default_boot_order = "c";
1496     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1497 }
1498 
1499 static const TypeInfo ss_lx_type = {
1500     .name = MACHINE_TYPE_NAME("LX"),
1501     .parent = TYPE_MACHINE,
1502     .class_init = ss_lx_class_init,
1503 };
1504 
1505 static void ss4_class_init(ObjectClass *oc, void *data)
1506 {
1507     MachineClass *mc = MACHINE_CLASS(oc);
1508 
1509     mc->desc = "Sun4m platform, SPARCstation 4";
1510     mc->init = ss4_init;
1511     mc->block_default_type = IF_SCSI;
1512     mc->default_boot_order = "c";
1513     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1514 }
1515 
1516 static const TypeInfo ss4_type = {
1517     .name = MACHINE_TYPE_NAME("SS-4"),
1518     .parent = TYPE_MACHINE,
1519     .class_init = ss4_class_init,
1520 };
1521 
1522 static void scls_class_init(ObjectClass *oc, void *data)
1523 {
1524     MachineClass *mc = MACHINE_CLASS(oc);
1525 
1526     mc->desc = "Sun4m platform, SPARCClassic";
1527     mc->init = scls_init;
1528     mc->block_default_type = IF_SCSI;
1529     mc->default_boot_order = "c";
1530     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1531 }
1532 
1533 static const TypeInfo scls_type = {
1534     .name = MACHINE_TYPE_NAME("SPARCClassic"),
1535     .parent = TYPE_MACHINE,
1536     .class_init = scls_class_init,
1537 };
1538 
1539 static void sbook_class_init(ObjectClass *oc, void *data)
1540 {
1541     MachineClass *mc = MACHINE_CLASS(oc);
1542 
1543     mc->desc = "Sun4m platform, SPARCbook";
1544     mc->init = sbook_init;
1545     mc->block_default_type = IF_SCSI;
1546     mc->default_boot_order = "c";
1547     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1548 }
1549 
1550 static const TypeInfo sbook_type = {
1551     .name = MACHINE_TYPE_NAME("SPARCbook"),
1552     .parent = TYPE_MACHINE,
1553     .class_init = sbook_class_init,
1554 };
1555 
1556 static void sun4m_register_types(void)
1557 {
1558     type_register_static(&idreg_info);
1559     type_register_static(&afx_info);
1560     type_register_static(&prom_info);
1561     type_register_static(&ram_info);
1562 
1563     type_register_static(&ss5_type);
1564     type_register_static(&ss10_type);
1565     type_register_static(&ss600mp_type);
1566     type_register_static(&ss20_type);
1567     type_register_static(&voyager_type);
1568     type_register_static(&ss_lx_type);
1569     type_register_static(&ss4_type);
1570     type_register_static(&scls_type);
1571     type_register_static(&sbook_type);
1572 }
1573 
1574 type_init(sun4m_register_types)
1575