xref: /openbmc/qemu/hw/sparc/sun4m.c (revision ca27b5eb)
1 /*
2  * QEMU Sun4m & Sun4d & Sun4c System Emulator
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qapi/error.h"
28 #include "qemu-common.h"
29 #include "cpu.h"
30 #include "hw/sysbus.h"
31 #include "qemu/error-report.h"
32 #include "qemu/timer.h"
33 #include "hw/sparc/sun4m_iommu.h"
34 #include "hw/rtc/m48t59.h"
35 #include "migration/vmstate.h"
36 #include "hw/sparc/sparc32_dma.h"
37 #include "hw/block/fdc.h"
38 #include "sysemu/reset.h"
39 #include "sysemu/runstate.h"
40 #include "sysemu/sysemu.h"
41 #include "net/net.h"
42 #include "hw/boards.h"
43 #include "hw/scsi/esp.h"
44 #include "hw/nvram/sun_nvram.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/nvram/chrp_nvram.h"
47 #include "hw/nvram/fw_cfg.h"
48 #include "hw/char/escc.h"
49 #include "hw/misc/empty_slot.h"
50 #include "hw/misc/unimp.h"
51 #include "hw/irq.h"
52 #include "hw/loader.h"
53 #include "elf.h"
54 #include "trace.h"
55 
56 /*
57  * Sun4m architecture was used in the following machines:
58  *
59  * SPARCserver 6xxMP/xx
60  * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
61  * SPARCclassic X (4/10)
62  * SPARCstation LX/ZX (4/30)
63  * SPARCstation Voyager
64  * SPARCstation 10/xx, SPARCserver 10/xx
65  * SPARCstation 5, SPARCserver 5
66  * SPARCstation 20/xx, SPARCserver 20
67  * SPARCstation 4
68  *
69  * See for example: http://www.sunhelp.org/faq/sunref1.html
70  */
71 
72 #define KERNEL_LOAD_ADDR     0x00004000
73 #define CMDLINE_ADDR         0x007ff000
74 #define INITRD_LOAD_ADDR     0x00800000
75 #define PROM_SIZE_MAX        (1 * MiB)
76 #define PROM_VADDR           0xffd00000
77 #define PROM_FILENAME        "openbios-sparc32"
78 #define CFG_ADDR             0xd00000510ULL
79 #define FW_CFG_SUN4M_DEPTH   (FW_CFG_ARCH_LOCAL + 0x00)
80 #define FW_CFG_SUN4M_WIDTH   (FW_CFG_ARCH_LOCAL + 0x01)
81 #define FW_CFG_SUN4M_HEIGHT  (FW_CFG_ARCH_LOCAL + 0x02)
82 
83 #define MAX_CPUS 16
84 #define MAX_PILS 16
85 #define MAX_VSIMMS 4
86 
87 #define ESCC_CLOCK 4915200
88 
89 struct sun4m_hwdef {
90     hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
91     hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
92     hwaddr serial_base, fd_base;
93     hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
94     hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
95     hwaddr bpp_base, dbri_base, sx_base;
96     struct {
97         hwaddr reg_base, vram_base;
98     } vsimm[MAX_VSIMMS];
99     hwaddr ecc_base;
100     uint64_t max_mem;
101     uint32_t ecc_version;
102     uint32_t iommu_version;
103     uint16_t machine_id;
104     uint8_t nvram_machine_id;
105 };
106 
107 const char *fw_cfg_arch_key_name(uint16_t key)
108 {
109     static const struct {
110         uint16_t key;
111         const char *name;
112     } fw_cfg_arch_wellknown_keys[] = {
113         {FW_CFG_SUN4M_DEPTH, "depth"},
114         {FW_CFG_SUN4M_WIDTH, "width"},
115         {FW_CFG_SUN4M_HEIGHT, "height"},
116     };
117 
118     for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) {
119         if (fw_cfg_arch_wellknown_keys[i].key == key) {
120             return fw_cfg_arch_wellknown_keys[i].name;
121         }
122     }
123     return NULL;
124 }
125 
126 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
127                             Error **errp)
128 {
129     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
130 }
131 
132 static void nvram_init(Nvram *nvram, uint8_t *macaddr,
133                        const char *cmdline, const char *boot_devices,
134                        ram_addr_t RAM_size, uint32_t kernel_size,
135                        int width, int height, int depth,
136                        int nvram_machine_id, const char *arch)
137 {
138     unsigned int i;
139     int sysp_end;
140     uint8_t image[0x1ff0];
141     NvramClass *k = NVRAM_GET_CLASS(nvram);
142 
143     memset(image, '\0', sizeof(image));
144 
145     /* OpenBIOS nvram variables partition */
146     sysp_end = chrp_nvram_create_system_partition(image, 0);
147 
148     /* Free space partition */
149     chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
150 
151     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
152                     nvram_machine_id);
153 
154     for (i = 0; i < sizeof(image); i++) {
155         (k->write)(nvram, i, image[i]);
156     }
157 }
158 
159 void cpu_check_irqs(CPUSPARCState *env)
160 {
161     CPUState *cs;
162 
163     /* We should be holding the BQL before we mess with IRQs */
164     g_assert(qemu_mutex_iothread_locked());
165 
166     if (env->pil_in && (env->interrupt_index == 0 ||
167                         (env->interrupt_index & ~15) == TT_EXTINT)) {
168         unsigned int i;
169 
170         for (i = 15; i > 0; i--) {
171             if (env->pil_in & (1 << i)) {
172                 int old_interrupt = env->interrupt_index;
173 
174                 env->interrupt_index = TT_EXTINT | i;
175                 if (old_interrupt != env->interrupt_index) {
176                     cs = env_cpu(env);
177                     trace_sun4m_cpu_interrupt(i);
178                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
179                 }
180                 break;
181             }
182         }
183     } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
184         cs = env_cpu(env);
185         trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
186         env->interrupt_index = 0;
187         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
188     }
189 }
190 
191 static void cpu_kick_irq(SPARCCPU *cpu)
192 {
193     CPUSPARCState *env = &cpu->env;
194     CPUState *cs = CPU(cpu);
195 
196     cs->halted = 0;
197     cpu_check_irqs(env);
198     qemu_cpu_kick(cs);
199 }
200 
201 static void cpu_set_irq(void *opaque, int irq, int level)
202 {
203     SPARCCPU *cpu = opaque;
204     CPUSPARCState *env = &cpu->env;
205 
206     if (level) {
207         trace_sun4m_cpu_set_irq_raise(irq);
208         env->pil_in |= 1 << irq;
209         cpu_kick_irq(cpu);
210     } else {
211         trace_sun4m_cpu_set_irq_lower(irq);
212         env->pil_in &= ~(1 << irq);
213         cpu_check_irqs(env);
214     }
215 }
216 
217 static void dummy_cpu_set_irq(void *opaque, int irq, int level)
218 {
219 }
220 
221 static void main_cpu_reset(void *opaque)
222 {
223     SPARCCPU *cpu = opaque;
224     CPUState *cs = CPU(cpu);
225 
226     cpu_reset(cs);
227     cs->halted = 0;
228 }
229 
230 static void secondary_cpu_reset(void *opaque)
231 {
232     SPARCCPU *cpu = opaque;
233     CPUState *cs = CPU(cpu);
234 
235     cpu_reset(cs);
236     cs->halted = 1;
237 }
238 
239 static void cpu_halt_signal(void *opaque, int irq, int level)
240 {
241     if (level && current_cpu) {
242         cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
243     }
244 }
245 
246 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
247 {
248     return addr - 0xf0000000ULL;
249 }
250 
251 static unsigned long sun4m_load_kernel(const char *kernel_filename,
252                                        const char *initrd_filename,
253                                        ram_addr_t RAM_size,
254                                        uint32_t *initrd_size)
255 {
256     int linux_boot;
257     unsigned int i;
258     long kernel_size;
259     uint8_t *ptr;
260 
261     linux_boot = (kernel_filename != NULL);
262 
263     kernel_size = 0;
264     if (linux_boot) {
265         int bswap_needed;
266 
267 #ifdef BSWAP_NEEDED
268         bswap_needed = 1;
269 #else
270         bswap_needed = 0;
271 #endif
272         kernel_size = load_elf(kernel_filename, NULL,
273                                translate_kernel_address, NULL,
274                                NULL, NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
275         if (kernel_size < 0)
276             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
277                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
278                                     TARGET_PAGE_SIZE);
279         if (kernel_size < 0)
280             kernel_size = load_image_targphys(kernel_filename,
281                                               KERNEL_LOAD_ADDR,
282                                               RAM_size - KERNEL_LOAD_ADDR);
283         if (kernel_size < 0) {
284             error_report("could not load kernel '%s'", kernel_filename);
285             exit(1);
286         }
287 
288         /* load initrd */
289         *initrd_size = 0;
290         if (initrd_filename) {
291             *initrd_size = load_image_targphys(initrd_filename,
292                                                INITRD_LOAD_ADDR,
293                                                RAM_size - INITRD_LOAD_ADDR);
294             if ((int)*initrd_size < 0) {
295                 error_report("could not load initial ram disk '%s'",
296                              initrd_filename);
297                 exit(1);
298             }
299         }
300         if (*initrd_size > 0) {
301             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
302                 ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24);
303                 if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */
304                     stl_p(ptr + 16, INITRD_LOAD_ADDR);
305                     stl_p(ptr + 20, *initrd_size);
306                     break;
307                 }
308             }
309         }
310     }
311     return kernel_size;
312 }
313 
314 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
315 {
316     DeviceState *dev;
317     SysBusDevice *s;
318 
319     dev = qdev_create(NULL, TYPE_SUN4M_IOMMU);
320     qdev_prop_set_uint32(dev, "version", version);
321     qdev_init_nofail(dev);
322     s = SYS_BUS_DEVICE(dev);
323     sysbus_connect_irq(s, 0, irq);
324     sysbus_mmio_map(s, 0, addr);
325 
326     return s;
327 }
328 
329 static void *sparc32_dma_init(hwaddr dma_base,
330                               hwaddr esp_base, qemu_irq espdma_irq,
331                               hwaddr le_base, qemu_irq ledma_irq)
332 {
333     DeviceState *dma;
334     ESPDMADeviceState *espdma;
335     LEDMADeviceState *ledma;
336     SysBusESPState *esp;
337     SysBusPCNetState *lance;
338 
339     dma = qdev_create(NULL, TYPE_SPARC32_DMA);
340     qdev_init_nofail(dma);
341     sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
342 
343     espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
344                                    OBJECT(dma), "espdma"));
345     sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
346 
347     esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp"));
348     sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
349     scsi_bus_legacy_handle_cmdline(&esp->esp.bus);
350 
351     ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
352                                  OBJECT(dma), "ledma"));
353     sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
354 
355     lance = SYSBUS_PCNET(object_resolve_path_component(
356                          OBJECT(ledma), "lance"));
357     sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
358 
359     return dma;
360 }
361 
362 static DeviceState *slavio_intctl_init(hwaddr addr,
363                                        hwaddr addrg,
364                                        qemu_irq **parent_irq)
365 {
366     DeviceState *dev;
367     SysBusDevice *s;
368     unsigned int i, j;
369 
370     dev = qdev_create(NULL, "slavio_intctl");
371     qdev_init_nofail(dev);
372 
373     s = SYS_BUS_DEVICE(dev);
374 
375     for (i = 0; i < MAX_CPUS; i++) {
376         for (j = 0; j < MAX_PILS; j++) {
377             sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
378         }
379     }
380     sysbus_mmio_map(s, 0, addrg);
381     for (i = 0; i < MAX_CPUS; i++) {
382         sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
383     }
384 
385     return dev;
386 }
387 
388 #define SYS_TIMER_OFFSET      0x10000ULL
389 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
390 
391 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
392                                   qemu_irq *cpu_irqs, unsigned int num_cpus)
393 {
394     DeviceState *dev;
395     SysBusDevice *s;
396     unsigned int i;
397 
398     dev = qdev_create(NULL, "slavio_timer");
399     qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
400     qdev_init_nofail(dev);
401     s = SYS_BUS_DEVICE(dev);
402     sysbus_connect_irq(s, 0, master_irq);
403     sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
404 
405     for (i = 0; i < MAX_CPUS; i++) {
406         sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
407         sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
408     }
409 }
410 
411 static qemu_irq  slavio_system_powerdown;
412 
413 static void slavio_powerdown_req(Notifier *n, void *opaque)
414 {
415     qemu_irq_raise(slavio_system_powerdown);
416 }
417 
418 static Notifier slavio_system_powerdown_notifier = {
419     .notify = slavio_powerdown_req
420 };
421 
422 #define MISC_LEDS 0x01600000
423 #define MISC_CFG  0x01800000
424 #define MISC_DIAG 0x01a00000
425 #define MISC_MDM  0x01b00000
426 #define MISC_SYS  0x01f00000
427 
428 static void slavio_misc_init(hwaddr base,
429                              hwaddr aux1_base,
430                              hwaddr aux2_base, qemu_irq irq,
431                              qemu_irq fdc_tc)
432 {
433     DeviceState *dev;
434     SysBusDevice *s;
435 
436     dev = qdev_create(NULL, "slavio_misc");
437     qdev_init_nofail(dev);
438     s = SYS_BUS_DEVICE(dev);
439     if (base) {
440         /* 8 bit registers */
441         /* Slavio control */
442         sysbus_mmio_map(s, 0, base + MISC_CFG);
443         /* Diagnostics */
444         sysbus_mmio_map(s, 1, base + MISC_DIAG);
445         /* Modem control */
446         sysbus_mmio_map(s, 2, base + MISC_MDM);
447         /* 16 bit registers */
448         /* ss600mp diag LEDs */
449         sysbus_mmio_map(s, 3, base + MISC_LEDS);
450         /* 32 bit registers */
451         /* System control */
452         sysbus_mmio_map(s, 4, base + MISC_SYS);
453     }
454     if (aux1_base) {
455         /* AUX 1 (Misc System Functions) */
456         sysbus_mmio_map(s, 5, aux1_base);
457     }
458     if (aux2_base) {
459         /* AUX 2 (Software Powerdown Control) */
460         sysbus_mmio_map(s, 6, aux2_base);
461     }
462     sysbus_connect_irq(s, 0, irq);
463     sysbus_connect_irq(s, 1, fdc_tc);
464     slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
465     qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
466 }
467 
468 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
469 {
470     DeviceState *dev;
471     SysBusDevice *s;
472 
473     dev = qdev_create(NULL, "eccmemctl");
474     qdev_prop_set_uint32(dev, "version", version);
475     qdev_init_nofail(dev);
476     s = SYS_BUS_DEVICE(dev);
477     sysbus_connect_irq(s, 0, irq);
478     sysbus_mmio_map(s, 0, base);
479     if (version == 0) { // SS-600MP only
480         sysbus_mmio_map(s, 1, base + 0x1000);
481     }
482 }
483 
484 static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
485 {
486     DeviceState *dev;
487     SysBusDevice *s;
488 
489     dev = qdev_create(NULL, "apc");
490     qdev_init_nofail(dev);
491     s = SYS_BUS_DEVICE(dev);
492     /* Power management (APC) XXX: not a Slavio device */
493     sysbus_mmio_map(s, 0, power_base);
494     sysbus_connect_irq(s, 0, cpu_halt);
495 }
496 
497 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
498                      int height, int depth)
499 {
500     DeviceState *dev;
501     SysBusDevice *s;
502 
503     dev = qdev_create(NULL, "SUNW,tcx");
504     qdev_prop_set_uint32(dev, "vram_size", vram_size);
505     qdev_prop_set_uint16(dev, "width", width);
506     qdev_prop_set_uint16(dev, "height", height);
507     qdev_prop_set_uint16(dev, "depth", depth);
508     qdev_init_nofail(dev);
509     s = SYS_BUS_DEVICE(dev);
510 
511     /* 10/ROM : FCode ROM */
512     sysbus_mmio_map(s, 0, addr);
513     /* 2/STIP : Stipple */
514     sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
515     /* 3/BLIT : Blitter */
516     sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
517     /* 5/RSTIP : Raw Stipple */
518     sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
519     /* 6/RBLIT : Raw Blitter */
520     sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
521     /* 7/TEC : Transform Engine */
522     sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
523     /* 8/CMAP  : DAC */
524     sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
525     /* 9/THC : */
526     if (depth == 8) {
527         sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
528     } else {
529         sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
530     }
531     /* 11/DHC : */
532     sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
533     /* 12/ALT : */
534     sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
535     /* 0/DFB8 : 8-bit plane */
536     sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
537     /* 1/DFB24 : 24bit plane */
538     sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
539     /* 4/RDFB32: Raw framebuffer. Control plane */
540     sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
541     /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
542     if (depth == 8) {
543         sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
544     }
545 
546     sysbus_connect_irq(s, 0, irq);
547 }
548 
549 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
550                      int height, int depth)
551 {
552     DeviceState *dev;
553     SysBusDevice *s;
554 
555     dev = qdev_create(NULL, "cgthree");
556     qdev_prop_set_uint32(dev, "vram-size", vram_size);
557     qdev_prop_set_uint16(dev, "width", width);
558     qdev_prop_set_uint16(dev, "height", height);
559     qdev_prop_set_uint16(dev, "depth", depth);
560     qdev_init_nofail(dev);
561     s = SYS_BUS_DEVICE(dev);
562 
563     /* FCode ROM */
564     sysbus_mmio_map(s, 0, addr);
565     /* DAC */
566     sysbus_mmio_map(s, 1, addr + 0x400000ULL);
567     /* 8-bit plane */
568     sysbus_mmio_map(s, 2, addr + 0x800000ULL);
569 
570     sysbus_connect_irq(s, 0, irq);
571 }
572 
573 /* NCR89C100/MACIO Internal ID register */
574 
575 #define TYPE_MACIO_ID_REGISTER "macio_idreg"
576 
577 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
578 
579 static void idreg_init(hwaddr addr)
580 {
581     DeviceState *dev;
582     SysBusDevice *s;
583 
584     dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER);
585     qdev_init_nofail(dev);
586     s = SYS_BUS_DEVICE(dev);
587 
588     sysbus_mmio_map(s, 0, addr);
589     address_space_write_rom(&address_space_memory, addr,
590                             MEMTXATTRS_UNSPECIFIED,
591                             idreg_data, sizeof(idreg_data));
592 }
593 
594 #define MACIO_ID_REGISTER(obj) \
595     OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
596 
597 typedef struct IDRegState {
598     SysBusDevice parent_obj;
599 
600     MemoryRegion mem;
601 } IDRegState;
602 
603 static void idreg_realize(DeviceState *ds, Error **errp)
604 {
605     IDRegState *s = MACIO_ID_REGISTER(ds);
606     SysBusDevice *dev = SYS_BUS_DEVICE(ds);
607     Error *local_err = NULL;
608 
609     memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg",
610                                      sizeof(idreg_data), &local_err);
611     if (local_err) {
612         error_propagate(errp, local_err);
613         return;
614     }
615 
616     vmstate_register_ram_global(&s->mem);
617     memory_region_set_readonly(&s->mem, true);
618     sysbus_init_mmio(dev, &s->mem);
619 }
620 
621 static void idreg_class_init(ObjectClass *oc, void *data)
622 {
623     DeviceClass *dc = DEVICE_CLASS(oc);
624 
625     dc->realize = idreg_realize;
626 }
627 
628 static const TypeInfo idreg_info = {
629     .name          = TYPE_MACIO_ID_REGISTER,
630     .parent        = TYPE_SYS_BUS_DEVICE,
631     .instance_size = sizeof(IDRegState),
632     .class_init    = idreg_class_init,
633 };
634 
635 #define TYPE_TCX_AFX "tcx_afx"
636 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
637 
638 typedef struct AFXState {
639     SysBusDevice parent_obj;
640 
641     MemoryRegion mem;
642 } AFXState;
643 
644 /* SS-5 TCX AFX register */
645 static void afx_init(hwaddr addr)
646 {
647     DeviceState *dev;
648     SysBusDevice *s;
649 
650     dev = qdev_create(NULL, TYPE_TCX_AFX);
651     qdev_init_nofail(dev);
652     s = SYS_BUS_DEVICE(dev);
653 
654     sysbus_mmio_map(s, 0, addr);
655 }
656 
657 static void afx_realize(DeviceState *ds, Error **errp)
658 {
659     AFXState *s = TCX_AFX(ds);
660     SysBusDevice *dev = SYS_BUS_DEVICE(ds);
661     Error *local_err = NULL;
662 
663     memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4,
664                                      &local_err);
665     if (local_err) {
666         error_propagate(errp, local_err);
667         return;
668     }
669 
670     vmstate_register_ram_global(&s->mem);
671     sysbus_init_mmio(dev, &s->mem);
672 }
673 
674 static void afx_class_init(ObjectClass *oc, void *data)
675 {
676     DeviceClass *dc = DEVICE_CLASS(oc);
677 
678     dc->realize = afx_realize;
679 }
680 
681 static const TypeInfo afx_info = {
682     .name          = TYPE_TCX_AFX,
683     .parent        = TYPE_SYS_BUS_DEVICE,
684     .instance_size = sizeof(AFXState),
685     .class_init    = afx_class_init,
686 };
687 
688 #define TYPE_OPENPROM "openprom"
689 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
690 
691 typedef struct PROMState {
692     SysBusDevice parent_obj;
693 
694     MemoryRegion prom;
695 } PROMState;
696 
697 /* Boot PROM (OpenBIOS) */
698 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
699 {
700     hwaddr *base_addr = (hwaddr *)opaque;
701     return addr + *base_addr - PROM_VADDR;
702 }
703 
704 static void prom_init(hwaddr addr, const char *bios_name)
705 {
706     DeviceState *dev;
707     SysBusDevice *s;
708     char *filename;
709     int ret;
710 
711     dev = qdev_create(NULL, TYPE_OPENPROM);
712     qdev_init_nofail(dev);
713     s = SYS_BUS_DEVICE(dev);
714 
715     sysbus_mmio_map(s, 0, addr);
716 
717     /* load boot prom */
718     if (bios_name == NULL) {
719         bios_name = PROM_FILENAME;
720     }
721     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
722     if (filename) {
723         ret = load_elf(filename, NULL,
724                        translate_prom_address, &addr, NULL,
725                        NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
726         if (ret < 0 || ret > PROM_SIZE_MAX) {
727             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
728         }
729         g_free(filename);
730     } else {
731         ret = -1;
732     }
733     if (ret < 0 || ret > PROM_SIZE_MAX) {
734         error_report("could not load prom '%s'", bios_name);
735         exit(1);
736     }
737 }
738 
739 static void prom_realize(DeviceState *ds, Error **errp)
740 {
741     PROMState *s = OPENPROM(ds);
742     SysBusDevice *dev = SYS_BUS_DEVICE(ds);
743     Error *local_err = NULL;
744 
745     memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom",
746                                      PROM_SIZE_MAX, &local_err);
747     if (local_err) {
748         error_propagate(errp, local_err);
749         return;
750     }
751 
752     vmstate_register_ram_global(&s->prom);
753     memory_region_set_readonly(&s->prom, true);
754     sysbus_init_mmio(dev, &s->prom);
755 }
756 
757 static Property prom_properties[] = {
758     {/* end of property list */},
759 };
760 
761 static void prom_class_init(ObjectClass *klass, void *data)
762 {
763     DeviceClass *dc = DEVICE_CLASS(klass);
764 
765     device_class_set_props(dc, prom_properties);
766     dc->realize = prom_realize;
767 }
768 
769 static const TypeInfo prom_info = {
770     .name          = TYPE_OPENPROM,
771     .parent        = TYPE_SYS_BUS_DEVICE,
772     .instance_size = sizeof(PROMState),
773     .class_init    = prom_class_init,
774 };
775 
776 #define TYPE_SUN4M_MEMORY "memory"
777 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
778 
779 typedef struct RamDevice {
780     SysBusDevice parent_obj;
781     HostMemoryBackend *memdev;
782 } RamDevice;
783 
784 /* System RAM */
785 static void ram_realize(DeviceState *dev, Error **errp)
786 {
787     RamDevice *d = SUN4M_RAM(dev);
788     MemoryRegion *ram = host_memory_backend_get_memory(d->memdev);
789 
790     sysbus_init_mmio(SYS_BUS_DEVICE(dev), ram);
791 }
792 
793 static void ram_initfn(Object *obj)
794 {
795     RamDevice *d = SUN4M_RAM(obj);
796     object_property_add_link(obj, "memdev", TYPE_MEMORY_BACKEND,
797                              (Object **)&d->memdev,
798                              object_property_allow_set_link,
799                              OBJ_PROP_LINK_STRONG);
800     object_property_set_description(obj, "memdev", "Set RAM backend"
801                                     "Valid value is ID of a hostmem backend");
802 }
803 
804 static void ram_class_init(ObjectClass *klass, void *data)
805 {
806     DeviceClass *dc = DEVICE_CLASS(klass);
807 
808     dc->realize = ram_realize;
809 }
810 
811 static const TypeInfo ram_info = {
812     .name          = TYPE_SUN4M_MEMORY,
813     .parent        = TYPE_SYS_BUS_DEVICE,
814     .instance_size = sizeof(RamDevice),
815     .instance_init = ram_initfn,
816     .class_init    = ram_class_init,
817 };
818 
819 static void cpu_devinit(const char *cpu_type, unsigned int id,
820                         uint64_t prom_addr, qemu_irq **cpu_irqs)
821 {
822     CPUState *cs;
823     SPARCCPU *cpu;
824     CPUSPARCState *env;
825 
826     cpu = SPARC_CPU(cpu_create(cpu_type));
827     env = &cpu->env;
828 
829     cpu_sparc_set_id(env, id);
830     if (id == 0) {
831         qemu_register_reset(main_cpu_reset, cpu);
832     } else {
833         qemu_register_reset(secondary_cpu_reset, cpu);
834         cs = CPU(cpu);
835         cs->halted = 1;
836     }
837     *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
838     env->prom_addr = prom_addr;
839 }
840 
841 static void dummy_fdc_tc(void *opaque, int irq, int level)
842 {
843 }
844 
845 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
846                           MachineState *machine)
847 {
848     DeviceState *slavio_intctl;
849     unsigned int i;
850     void *nvram;
851     qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
852     qemu_irq fdc_tc;
853     unsigned long kernel_size;
854     uint32_t initrd_size;
855     DriveInfo *fd[MAX_FD];
856     FWCfgState *fw_cfg;
857     DeviceState *dev;
858     SysBusDevice *s;
859     unsigned int smp_cpus = machine->smp.cpus;
860     unsigned int max_cpus = machine->smp.max_cpus;
861     Object *ram_memdev = object_resolve_path_type(machine->ram_memdev_id,
862                                                   TYPE_MEMORY_BACKEND, NULL);
863 
864     if (machine->ram_size > hwdef->max_mem) {
865         error_report("Too much memory for this machine: %" PRId64 ","
866                      " maximum %" PRId64,
867                      machine->ram_size / MiB, hwdef->max_mem / MiB);
868         exit(1);
869     }
870 
871     /* init CPUs */
872     for(i = 0; i < smp_cpus; i++) {
873         cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
874     }
875 
876     for (i = smp_cpus; i < MAX_CPUS; i++)
877         cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
878 
879     /* Create and map RAM frontend */
880     dev = qdev_create(NULL, "memory");
881     object_property_set_link(OBJECT(dev), ram_memdev, "memdev", &error_fatal);
882     qdev_init_nofail(dev);
883     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0);
884 
885     /* models without ECC don't trap when missing ram is accessed */
886     if (!hwdef->ecc_base) {
887         empty_slot_init("ecc", machine->ram_size,
888                         hwdef->max_mem - machine->ram_size);
889     }
890 
891     prom_init(hwdef->slavio_base, bios_name);
892 
893     slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
894                                        hwdef->intctl_base + 0x10000ULL,
895                                        cpu_irqs);
896 
897     for (i = 0; i < 32; i++) {
898         slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
899     }
900     for (i = 0; i < MAX_CPUS; i++) {
901         slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
902     }
903 
904     if (hwdef->idreg_base) {
905         idreg_init(hwdef->idreg_base);
906     }
907 
908     if (hwdef->afx_base) {
909         afx_init(hwdef->afx_base);
910     }
911 
912     iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
913 
914     if (hwdef->iommu_pad_base) {
915         /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
916            Software shouldn't use aliased addresses, neither should it crash
917            when does. Using empty_slot instead of aliasing can help with
918            debugging such accesses */
919         empty_slot_init("iommu.alias",
920                         hwdef->iommu_pad_base, hwdef->iommu_pad_len);
921     }
922 
923     sparc32_dma_init(hwdef->dma_base,
924                      hwdef->esp_base, slavio_irq[18],
925                      hwdef->le_base, slavio_irq[16]);
926 
927     if (graphic_depth != 8 && graphic_depth != 24) {
928         error_report("Unsupported depth: %d", graphic_depth);
929         exit (1);
930     }
931     if (vga_interface_type != VGA_NONE) {
932         if (vga_interface_type == VGA_CG3) {
933             if (graphic_depth != 8) {
934                 error_report("Unsupported depth: %d", graphic_depth);
935                 exit(1);
936             }
937 
938             if (!(graphic_width == 1024 && graphic_height == 768) &&
939                 !(graphic_width == 1152 && graphic_height == 900)) {
940                 error_report("Unsupported resolution: %d x %d", graphic_width,
941                              graphic_height);
942                 exit(1);
943             }
944 
945             /* sbus irq 5 */
946             cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
947                      graphic_width, graphic_height, graphic_depth);
948         } else {
949             /* If no display specified, default to TCX */
950             if (graphic_depth != 8 && graphic_depth != 24) {
951                 error_report("Unsupported depth: %d", graphic_depth);
952                 exit(1);
953             }
954 
955             if (!(graphic_width == 1024 && graphic_height == 768)) {
956                 error_report("Unsupported resolution: %d x %d",
957                              graphic_width, graphic_height);
958                 exit(1);
959             }
960 
961             tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
962                      graphic_width, graphic_height, graphic_depth);
963         }
964     }
965 
966     for (i = 0; i < MAX_VSIMMS; i++) {
967         /* vsimm registers probed by OBP */
968         if (hwdef->vsimm[i].reg_base) {
969             char *name = g_strdup_printf("vsimm[%d]", i);
970             empty_slot_init(name, hwdef->vsimm[i].reg_base, 0x2000);
971             g_free(name);
972         }
973     }
974 
975     if (hwdef->sx_base) {
976         create_unimplemented_device("SUNW,sx", hwdef->sx_base, 0x2000);
977     }
978 
979     nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
980 
981     slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
982 
983     /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
984        Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
985     dev = qdev_create(NULL, TYPE_ESCC);
986     qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics);
987     qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
988     qdev_prop_set_uint32(dev, "it_shift", 1);
989     qdev_prop_set_chr(dev, "chrB", NULL);
990     qdev_prop_set_chr(dev, "chrA", NULL);
991     qdev_prop_set_uint32(dev, "chnBtype", escc_mouse);
992     qdev_prop_set_uint32(dev, "chnAtype", escc_kbd);
993     qdev_init_nofail(dev);
994     s = SYS_BUS_DEVICE(dev);
995     sysbus_connect_irq(s, 0, slavio_irq[14]);
996     sysbus_connect_irq(s, 1, slavio_irq[14]);
997     sysbus_mmio_map(s, 0, hwdef->ms_kb_base);
998 
999     dev = qdev_create(NULL, TYPE_ESCC);
1000     qdev_prop_set_uint32(dev, "disabled", 0);
1001     qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK);
1002     qdev_prop_set_uint32(dev, "it_shift", 1);
1003     qdev_prop_set_chr(dev, "chrB", serial_hd(1));
1004     qdev_prop_set_chr(dev, "chrA", serial_hd(0));
1005     qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
1006     qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
1007     qdev_init_nofail(dev);
1008 
1009     s = SYS_BUS_DEVICE(dev);
1010     sysbus_connect_irq(s, 0, slavio_irq[15]);
1011     sysbus_connect_irq(s, 1,  slavio_irq[15]);
1012     sysbus_mmio_map(s, 0, hwdef->serial_base);
1013 
1014     if (hwdef->apc_base) {
1015         apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
1016     }
1017 
1018     if (hwdef->fd_base) {
1019         /* there is zero or one floppy drive */
1020         memset(fd, 0, sizeof(fd));
1021         fd[0] = drive_get(IF_FLOPPY, 0, 0);
1022         sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
1023                           &fdc_tc);
1024     } else {
1025         fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
1026     }
1027 
1028     slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
1029                      slavio_irq[30], fdc_tc);
1030 
1031     if (hwdef->cs_base) {
1032         sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
1033                              slavio_irq[5]);
1034     }
1035 
1036     if (hwdef->dbri_base) {
1037         /* ISDN chip with attached CS4215 audio codec */
1038         /* prom space */
1039         create_unimplemented_device("SUNW,DBRI.prom",
1040                                     hwdef->dbri_base + 0x1000, 0x30);
1041         /* reg space */
1042         create_unimplemented_device("SUNW,DBRI",
1043                                     hwdef->dbri_base + 0x10000, 0x100);
1044     }
1045 
1046     if (hwdef->bpp_base) {
1047         /* parallel port */
1048         create_unimplemented_device("SUNW,bpp", hwdef->bpp_base, 0x20);
1049     }
1050 
1051     initrd_size = 0;
1052     kernel_size = sun4m_load_kernel(machine->kernel_filename,
1053                                     machine->initrd_filename,
1054                                     machine->ram_size, &initrd_size);
1055 
1056     nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
1057                machine->boot_order, machine->ram_size, kernel_size,
1058                graphic_width, graphic_height, graphic_depth,
1059                hwdef->nvram_machine_id, "Sun4m");
1060 
1061     if (hwdef->ecc_base)
1062         ecc_init(hwdef->ecc_base, slavio_irq[28],
1063                  hwdef->ecc_version);
1064 
1065     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1066     fw_cfg = FW_CFG(dev);
1067     qdev_prop_set_uint32(dev, "data_width", 1);
1068     qdev_prop_set_bit(dev, "dma_enabled", false);
1069     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1070                               OBJECT(fw_cfg));
1071     qdev_init_nofail(dev);
1072     s = SYS_BUS_DEVICE(dev);
1073     sysbus_mmio_map(s, 0, CFG_ADDR);
1074     sysbus_mmio_map(s, 1, CFG_ADDR + 2);
1075 
1076     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
1077     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
1078     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size);
1079     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
1080     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
1081     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
1082     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
1083     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
1084     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1085     if (machine->kernel_cmdline) {
1086         fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
1087         pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
1088                          machine->kernel_cmdline);
1089         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
1090         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1091                        strlen(machine->kernel_cmdline) + 1);
1092     } else {
1093         fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
1094         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
1095     }
1096     fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
1097     fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1098     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
1099     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1100 }
1101 
1102 enum {
1103     ss5_id = 32,
1104     vger_id,
1105     lx_id,
1106     ss4_id,
1107     scls_id,
1108     sbook_id,
1109     ss10_id = 64,
1110     ss20_id,
1111     ss600mp_id,
1112 };
1113 
1114 static const struct sun4m_hwdef sun4m_hwdefs[] = {
1115     /* SS-5 */
1116     {
1117         .iommu_base   = 0x10000000,
1118         .iommu_pad_base = 0x10004000,
1119         .iommu_pad_len  = 0x0fffb000,
1120         .tcx_base     = 0x50000000,
1121         .cs_base      = 0x6c000000,
1122         .slavio_base  = 0x70000000,
1123         .ms_kb_base   = 0x71000000,
1124         .serial_base  = 0x71100000,
1125         .nvram_base   = 0x71200000,
1126         .fd_base      = 0x71400000,
1127         .counter_base = 0x71d00000,
1128         .intctl_base  = 0x71e00000,
1129         .idreg_base   = 0x78000000,
1130         .dma_base     = 0x78400000,
1131         .esp_base     = 0x78800000,
1132         .le_base      = 0x78c00000,
1133         .apc_base     = 0x6a000000,
1134         .afx_base     = 0x6e000000,
1135         .aux1_base    = 0x71900000,
1136         .aux2_base    = 0x71910000,
1137         .nvram_machine_id = 0x80,
1138         .machine_id = ss5_id,
1139         .iommu_version = 0x05000000,
1140         .max_mem = 0x10000000,
1141     },
1142     /* SS-10 */
1143     {
1144         .iommu_base   = 0xfe0000000ULL,
1145         .tcx_base     = 0xe20000000ULL,
1146         .slavio_base  = 0xff0000000ULL,
1147         .ms_kb_base   = 0xff1000000ULL,
1148         .serial_base  = 0xff1100000ULL,
1149         .nvram_base   = 0xff1200000ULL,
1150         .fd_base      = 0xff1700000ULL,
1151         .counter_base = 0xff1300000ULL,
1152         .intctl_base  = 0xff1400000ULL,
1153         .idreg_base   = 0xef0000000ULL,
1154         .dma_base     = 0xef0400000ULL,
1155         .esp_base     = 0xef0800000ULL,
1156         .le_base      = 0xef0c00000ULL,
1157         .apc_base     = 0xefa000000ULL, // XXX should not exist
1158         .aux1_base    = 0xff1800000ULL,
1159         .aux2_base    = 0xff1a01000ULL,
1160         .ecc_base     = 0xf00000000ULL,
1161         .ecc_version  = 0x10000000, // version 0, implementation 1
1162         .nvram_machine_id = 0x72,
1163         .machine_id = ss10_id,
1164         .iommu_version = 0x03000000,
1165         .max_mem = 0xf00000000ULL,
1166     },
1167     /* SS-600MP */
1168     {
1169         .iommu_base   = 0xfe0000000ULL,
1170         .tcx_base     = 0xe20000000ULL,
1171         .slavio_base  = 0xff0000000ULL,
1172         .ms_kb_base   = 0xff1000000ULL,
1173         .serial_base  = 0xff1100000ULL,
1174         .nvram_base   = 0xff1200000ULL,
1175         .counter_base = 0xff1300000ULL,
1176         .intctl_base  = 0xff1400000ULL,
1177         .dma_base     = 0xef0081000ULL,
1178         .esp_base     = 0xef0080000ULL,
1179         .le_base      = 0xef0060000ULL,
1180         .apc_base     = 0xefa000000ULL, // XXX should not exist
1181         .aux1_base    = 0xff1800000ULL,
1182         .aux2_base    = 0xff1a01000ULL, // XXX should not exist
1183         .ecc_base     = 0xf00000000ULL,
1184         .ecc_version  = 0x00000000, // version 0, implementation 0
1185         .nvram_machine_id = 0x71,
1186         .machine_id = ss600mp_id,
1187         .iommu_version = 0x01000000,
1188         .max_mem = 0xf00000000ULL,
1189     },
1190     /* SS-20 */
1191     {
1192         .iommu_base   = 0xfe0000000ULL,
1193         .tcx_base     = 0xe20000000ULL,
1194         .slavio_base  = 0xff0000000ULL,
1195         .ms_kb_base   = 0xff1000000ULL,
1196         .serial_base  = 0xff1100000ULL,
1197         .nvram_base   = 0xff1200000ULL,
1198         .fd_base      = 0xff1700000ULL,
1199         .counter_base = 0xff1300000ULL,
1200         .intctl_base  = 0xff1400000ULL,
1201         .idreg_base   = 0xef0000000ULL,
1202         .dma_base     = 0xef0400000ULL,
1203         .esp_base     = 0xef0800000ULL,
1204         .le_base      = 0xef0c00000ULL,
1205         .bpp_base     = 0xef4800000ULL,
1206         .apc_base     = 0xefa000000ULL, // XXX should not exist
1207         .aux1_base    = 0xff1800000ULL,
1208         .aux2_base    = 0xff1a01000ULL,
1209         .dbri_base    = 0xee0000000ULL,
1210         .sx_base      = 0xf80000000ULL,
1211         .vsimm        = {
1212             {
1213                 .reg_base  = 0x9c000000ULL,
1214                 .vram_base = 0xfc000000ULL
1215             }, {
1216                 .reg_base  = 0x90000000ULL,
1217                 .vram_base = 0xf0000000ULL
1218             }, {
1219                 .reg_base  = 0x94000000ULL
1220             }, {
1221                 .reg_base  = 0x98000000ULL
1222             }
1223         },
1224         .ecc_base     = 0xf00000000ULL,
1225         .ecc_version  = 0x20000000, // version 0, implementation 2
1226         .nvram_machine_id = 0x72,
1227         .machine_id = ss20_id,
1228         .iommu_version = 0x13000000,
1229         .max_mem = 0xf00000000ULL,
1230     },
1231     /* Voyager */
1232     {
1233         .iommu_base   = 0x10000000,
1234         .tcx_base     = 0x50000000,
1235         .slavio_base  = 0x70000000,
1236         .ms_kb_base   = 0x71000000,
1237         .serial_base  = 0x71100000,
1238         .nvram_base   = 0x71200000,
1239         .fd_base      = 0x71400000,
1240         .counter_base = 0x71d00000,
1241         .intctl_base  = 0x71e00000,
1242         .idreg_base   = 0x78000000,
1243         .dma_base     = 0x78400000,
1244         .esp_base     = 0x78800000,
1245         .le_base      = 0x78c00000,
1246         .apc_base     = 0x71300000, // pmc
1247         .aux1_base    = 0x71900000,
1248         .aux2_base    = 0x71910000,
1249         .nvram_machine_id = 0x80,
1250         .machine_id = vger_id,
1251         .iommu_version = 0x05000000,
1252         .max_mem = 0x10000000,
1253     },
1254     /* LX */
1255     {
1256         .iommu_base   = 0x10000000,
1257         .iommu_pad_base = 0x10004000,
1258         .iommu_pad_len  = 0x0fffb000,
1259         .tcx_base     = 0x50000000,
1260         .slavio_base  = 0x70000000,
1261         .ms_kb_base   = 0x71000000,
1262         .serial_base  = 0x71100000,
1263         .nvram_base   = 0x71200000,
1264         .fd_base      = 0x71400000,
1265         .counter_base = 0x71d00000,
1266         .intctl_base  = 0x71e00000,
1267         .idreg_base   = 0x78000000,
1268         .dma_base     = 0x78400000,
1269         .esp_base     = 0x78800000,
1270         .le_base      = 0x78c00000,
1271         .aux1_base    = 0x71900000,
1272         .aux2_base    = 0x71910000,
1273         .nvram_machine_id = 0x80,
1274         .machine_id = lx_id,
1275         .iommu_version = 0x04000000,
1276         .max_mem = 0x10000000,
1277     },
1278     /* SS-4 */
1279     {
1280         .iommu_base   = 0x10000000,
1281         .tcx_base     = 0x50000000,
1282         .cs_base      = 0x6c000000,
1283         .slavio_base  = 0x70000000,
1284         .ms_kb_base   = 0x71000000,
1285         .serial_base  = 0x71100000,
1286         .nvram_base   = 0x71200000,
1287         .fd_base      = 0x71400000,
1288         .counter_base = 0x71d00000,
1289         .intctl_base  = 0x71e00000,
1290         .idreg_base   = 0x78000000,
1291         .dma_base     = 0x78400000,
1292         .esp_base     = 0x78800000,
1293         .le_base      = 0x78c00000,
1294         .apc_base     = 0x6a000000,
1295         .aux1_base    = 0x71900000,
1296         .aux2_base    = 0x71910000,
1297         .nvram_machine_id = 0x80,
1298         .machine_id = ss4_id,
1299         .iommu_version = 0x05000000,
1300         .max_mem = 0x10000000,
1301     },
1302     /* SPARCClassic */
1303     {
1304         .iommu_base   = 0x10000000,
1305         .tcx_base     = 0x50000000,
1306         .slavio_base  = 0x70000000,
1307         .ms_kb_base   = 0x71000000,
1308         .serial_base  = 0x71100000,
1309         .nvram_base   = 0x71200000,
1310         .fd_base      = 0x71400000,
1311         .counter_base = 0x71d00000,
1312         .intctl_base  = 0x71e00000,
1313         .idreg_base   = 0x78000000,
1314         .dma_base     = 0x78400000,
1315         .esp_base     = 0x78800000,
1316         .le_base      = 0x78c00000,
1317         .apc_base     = 0x6a000000,
1318         .aux1_base    = 0x71900000,
1319         .aux2_base    = 0x71910000,
1320         .nvram_machine_id = 0x80,
1321         .machine_id = scls_id,
1322         .iommu_version = 0x05000000,
1323         .max_mem = 0x10000000,
1324     },
1325     /* SPARCbook */
1326     {
1327         .iommu_base   = 0x10000000,
1328         .tcx_base     = 0x50000000, // XXX
1329         .slavio_base  = 0x70000000,
1330         .ms_kb_base   = 0x71000000,
1331         .serial_base  = 0x71100000,
1332         .nvram_base   = 0x71200000,
1333         .fd_base      = 0x71400000,
1334         .counter_base = 0x71d00000,
1335         .intctl_base  = 0x71e00000,
1336         .idreg_base   = 0x78000000,
1337         .dma_base     = 0x78400000,
1338         .esp_base     = 0x78800000,
1339         .le_base      = 0x78c00000,
1340         .apc_base     = 0x6a000000,
1341         .aux1_base    = 0x71900000,
1342         .aux2_base    = 0x71910000,
1343         .nvram_machine_id = 0x80,
1344         .machine_id = sbook_id,
1345         .iommu_version = 0x05000000,
1346         .max_mem = 0x10000000,
1347     },
1348 };
1349 
1350 /* SPARCstation 5 hardware initialisation */
1351 static void ss5_init(MachineState *machine)
1352 {
1353     sun4m_hw_init(&sun4m_hwdefs[0], machine);
1354 }
1355 
1356 /* SPARCstation 10 hardware initialisation */
1357 static void ss10_init(MachineState *machine)
1358 {
1359     sun4m_hw_init(&sun4m_hwdefs[1], machine);
1360 }
1361 
1362 /* SPARCserver 600MP hardware initialisation */
1363 static void ss600mp_init(MachineState *machine)
1364 {
1365     sun4m_hw_init(&sun4m_hwdefs[2], machine);
1366 }
1367 
1368 /* SPARCstation 20 hardware initialisation */
1369 static void ss20_init(MachineState *machine)
1370 {
1371     sun4m_hw_init(&sun4m_hwdefs[3], machine);
1372 }
1373 
1374 /* SPARCstation Voyager hardware initialisation */
1375 static void vger_init(MachineState *machine)
1376 {
1377     sun4m_hw_init(&sun4m_hwdefs[4], machine);
1378 }
1379 
1380 /* SPARCstation LX hardware initialisation */
1381 static void ss_lx_init(MachineState *machine)
1382 {
1383     sun4m_hw_init(&sun4m_hwdefs[5], machine);
1384 }
1385 
1386 /* SPARCstation 4 hardware initialisation */
1387 static void ss4_init(MachineState *machine)
1388 {
1389     sun4m_hw_init(&sun4m_hwdefs[6], machine);
1390 }
1391 
1392 /* SPARCClassic hardware initialisation */
1393 static void scls_init(MachineState *machine)
1394 {
1395     sun4m_hw_init(&sun4m_hwdefs[7], machine);
1396 }
1397 
1398 /* SPARCbook hardware initialisation */
1399 static void sbook_init(MachineState *machine)
1400 {
1401     sun4m_hw_init(&sun4m_hwdefs[8], machine);
1402 }
1403 
1404 static void ss5_class_init(ObjectClass *oc, void *data)
1405 {
1406     MachineClass *mc = MACHINE_CLASS(oc);
1407 
1408     mc->desc = "Sun4m platform, SPARCstation 5";
1409     mc->init = ss5_init;
1410     mc->block_default_type = IF_SCSI;
1411     mc->is_default = true;
1412     mc->default_boot_order = "c";
1413     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1414     mc->default_display = "tcx";
1415     mc->default_ram_id = "sun4m.ram";
1416 }
1417 
1418 static const TypeInfo ss5_type = {
1419     .name = MACHINE_TYPE_NAME("SS-5"),
1420     .parent = TYPE_MACHINE,
1421     .class_init = ss5_class_init,
1422 };
1423 
1424 static void ss10_class_init(ObjectClass *oc, void *data)
1425 {
1426     MachineClass *mc = MACHINE_CLASS(oc);
1427 
1428     mc->desc = "Sun4m platform, SPARCstation 10";
1429     mc->init = ss10_init;
1430     mc->block_default_type = IF_SCSI;
1431     mc->max_cpus = 4;
1432     mc->default_boot_order = "c";
1433     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1434     mc->default_display = "tcx";
1435     mc->default_ram_id = "sun4m.ram";
1436 }
1437 
1438 static const TypeInfo ss10_type = {
1439     .name = MACHINE_TYPE_NAME("SS-10"),
1440     .parent = TYPE_MACHINE,
1441     .class_init = ss10_class_init,
1442 };
1443 
1444 static void ss600mp_class_init(ObjectClass *oc, void *data)
1445 {
1446     MachineClass *mc = MACHINE_CLASS(oc);
1447 
1448     mc->desc = "Sun4m platform, SPARCserver 600MP";
1449     mc->init = ss600mp_init;
1450     mc->block_default_type = IF_SCSI;
1451     mc->max_cpus = 4;
1452     mc->default_boot_order = "c";
1453     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1454     mc->default_display = "tcx";
1455     mc->default_ram_id = "sun4m.ram";
1456 }
1457 
1458 static const TypeInfo ss600mp_type = {
1459     .name = MACHINE_TYPE_NAME("SS-600MP"),
1460     .parent = TYPE_MACHINE,
1461     .class_init = ss600mp_class_init,
1462 };
1463 
1464 static void ss20_class_init(ObjectClass *oc, void *data)
1465 {
1466     MachineClass *mc = MACHINE_CLASS(oc);
1467 
1468     mc->desc = "Sun4m platform, SPARCstation 20";
1469     mc->init = ss20_init;
1470     mc->block_default_type = IF_SCSI;
1471     mc->max_cpus = 4;
1472     mc->default_boot_order = "c";
1473     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1474     mc->default_display = "tcx";
1475     mc->default_ram_id = "sun4m.ram";
1476 }
1477 
1478 static const TypeInfo ss20_type = {
1479     .name = MACHINE_TYPE_NAME("SS-20"),
1480     .parent = TYPE_MACHINE,
1481     .class_init = ss20_class_init,
1482 };
1483 
1484 static void voyager_class_init(ObjectClass *oc, void *data)
1485 {
1486     MachineClass *mc = MACHINE_CLASS(oc);
1487 
1488     mc->desc = "Sun4m platform, SPARCstation Voyager";
1489     mc->init = vger_init;
1490     mc->block_default_type = IF_SCSI;
1491     mc->default_boot_order = "c";
1492     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1493     mc->default_display = "tcx";
1494     mc->default_ram_id = "sun4m.ram";
1495 }
1496 
1497 static const TypeInfo voyager_type = {
1498     .name = MACHINE_TYPE_NAME("Voyager"),
1499     .parent = TYPE_MACHINE,
1500     .class_init = voyager_class_init,
1501 };
1502 
1503 static void ss_lx_class_init(ObjectClass *oc, void *data)
1504 {
1505     MachineClass *mc = MACHINE_CLASS(oc);
1506 
1507     mc->desc = "Sun4m platform, SPARCstation LX";
1508     mc->init = ss_lx_init;
1509     mc->block_default_type = IF_SCSI;
1510     mc->default_boot_order = "c";
1511     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1512     mc->default_display = "tcx";
1513     mc->default_ram_id = "sun4m.ram";
1514 }
1515 
1516 static const TypeInfo ss_lx_type = {
1517     .name = MACHINE_TYPE_NAME("LX"),
1518     .parent = TYPE_MACHINE,
1519     .class_init = ss_lx_class_init,
1520 };
1521 
1522 static void ss4_class_init(ObjectClass *oc, void *data)
1523 {
1524     MachineClass *mc = MACHINE_CLASS(oc);
1525 
1526     mc->desc = "Sun4m platform, SPARCstation 4";
1527     mc->init = ss4_init;
1528     mc->block_default_type = IF_SCSI;
1529     mc->default_boot_order = "c";
1530     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1531     mc->default_display = "tcx";
1532     mc->default_ram_id = "sun4m.ram";
1533 }
1534 
1535 static const TypeInfo ss4_type = {
1536     .name = MACHINE_TYPE_NAME("SS-4"),
1537     .parent = TYPE_MACHINE,
1538     .class_init = ss4_class_init,
1539 };
1540 
1541 static void scls_class_init(ObjectClass *oc, void *data)
1542 {
1543     MachineClass *mc = MACHINE_CLASS(oc);
1544 
1545     mc->desc = "Sun4m platform, SPARCClassic";
1546     mc->init = scls_init;
1547     mc->block_default_type = IF_SCSI;
1548     mc->default_boot_order = "c";
1549     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1550     mc->default_display = "tcx";
1551     mc->default_ram_id = "sun4m.ram";
1552 }
1553 
1554 static const TypeInfo scls_type = {
1555     .name = MACHINE_TYPE_NAME("SPARCClassic"),
1556     .parent = TYPE_MACHINE,
1557     .class_init = scls_class_init,
1558 };
1559 
1560 static void sbook_class_init(ObjectClass *oc, void *data)
1561 {
1562     MachineClass *mc = MACHINE_CLASS(oc);
1563 
1564     mc->desc = "Sun4m platform, SPARCbook";
1565     mc->init = sbook_init;
1566     mc->block_default_type = IF_SCSI;
1567     mc->default_boot_order = "c";
1568     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1569     mc->default_display = "tcx";
1570     mc->default_ram_id = "sun4m.ram";
1571 }
1572 
1573 static const TypeInfo sbook_type = {
1574     .name = MACHINE_TYPE_NAME("SPARCbook"),
1575     .parent = TYPE_MACHINE,
1576     .class_init = sbook_class_init,
1577 };
1578 
1579 static void sun4m_register_types(void)
1580 {
1581     type_register_static(&idreg_info);
1582     type_register_static(&afx_info);
1583     type_register_static(&prom_info);
1584     type_register_static(&ram_info);
1585 
1586     type_register_static(&ss5_type);
1587     type_register_static(&ss10_type);
1588     type_register_static(&ss600mp_type);
1589     type_register_static(&ss20_type);
1590     type_register_static(&voyager_type);
1591     type_register_static(&ss_lx_type);
1592     type_register_static(&ss4_type);
1593     type_register_static(&scls_type);
1594     type_register_static(&sbook_type);
1595 }
1596 
1597 type_init(sun4m_register_types)
1598