1 /* 2 * QEMU Sun4m & Sun4d & Sun4c System Emulator 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "qemu/units.h" 26 #include "qapi/error.h" 27 #include "qemu-common.h" 28 #include "cpu.h" 29 #include "hw/sysbus.h" 30 #include "qemu/error-report.h" 31 #include "qemu/timer.h" 32 #include "hw/sparc/sun4m_iommu.h" 33 #include "hw/timer/m48t59.h" 34 #include "hw/sparc/sparc32_dma.h" 35 #include "hw/block/fdc.h" 36 #include "sysemu/sysemu.h" 37 #include "net/net.h" 38 #include "hw/boards.h" 39 #include "hw/scsi/esp.h" 40 #include "hw/isa/isa.h" 41 #include "hw/nvram/sun_nvram.h" 42 #include "hw/nvram/chrp_nvram.h" 43 #include "hw/nvram/fw_cfg.h" 44 #include "hw/char/escc.h" 45 #include "hw/empty_slot.h" 46 #include "hw/loader.h" 47 #include "elf.h" 48 #include "trace.h" 49 50 /* 51 * Sun4m architecture was used in the following machines: 52 * 53 * SPARCserver 6xxMP/xx 54 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), 55 * SPARCclassic X (4/10) 56 * SPARCstation LX/ZX (4/30) 57 * SPARCstation Voyager 58 * SPARCstation 10/xx, SPARCserver 10/xx 59 * SPARCstation 5, SPARCserver 5 60 * SPARCstation 20/xx, SPARCserver 20 61 * SPARCstation 4 62 * 63 * See for example: http://www.sunhelp.org/faq/sunref1.html 64 */ 65 66 #define KERNEL_LOAD_ADDR 0x00004000 67 #define CMDLINE_ADDR 0x007ff000 68 #define INITRD_LOAD_ADDR 0x00800000 69 #define PROM_SIZE_MAX (1 * MiB) 70 #define PROM_VADDR 0xffd00000 71 #define PROM_FILENAME "openbios-sparc32" 72 #define CFG_ADDR 0xd00000510ULL 73 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00) 74 #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01) 75 #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02) 76 77 #define MAX_CPUS 16 78 #define MAX_PILS 16 79 #define MAX_VSIMMS 4 80 81 #define ESCC_CLOCK 4915200 82 83 struct sun4m_hwdef { 84 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base; 85 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base; 86 hwaddr serial_base, fd_base; 87 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base; 88 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base; 89 hwaddr bpp_base, dbri_base, sx_base; 90 struct { 91 hwaddr reg_base, vram_base; 92 } vsimm[MAX_VSIMMS]; 93 hwaddr ecc_base; 94 uint64_t max_mem; 95 uint32_t ecc_version; 96 uint32_t iommu_version; 97 uint16_t machine_id; 98 uint8_t nvram_machine_id; 99 }; 100 101 static void fw_cfg_boot_set(void *opaque, const char *boot_device, 102 Error **errp) 103 { 104 fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); 105 } 106 107 static void nvram_init(Nvram *nvram, uint8_t *macaddr, 108 const char *cmdline, const char *boot_devices, 109 ram_addr_t RAM_size, uint32_t kernel_size, 110 int width, int height, int depth, 111 int nvram_machine_id, const char *arch) 112 { 113 unsigned int i; 114 int sysp_end; 115 uint8_t image[0x1ff0]; 116 NvramClass *k = NVRAM_GET_CLASS(nvram); 117 118 memset(image, '\0', sizeof(image)); 119 120 /* OpenBIOS nvram variables partition */ 121 sysp_end = chrp_nvram_create_system_partition(image, 0); 122 123 /* Free space partition */ 124 chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end); 125 126 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 127 nvram_machine_id); 128 129 for (i = 0; i < sizeof(image); i++) { 130 (k->write)(nvram, i, image[i]); 131 } 132 } 133 134 void cpu_check_irqs(CPUSPARCState *env) 135 { 136 CPUState *cs; 137 138 /* We should be holding the BQL before we mess with IRQs */ 139 g_assert(qemu_mutex_iothread_locked()); 140 141 if (env->pil_in && (env->interrupt_index == 0 || 142 (env->interrupt_index & ~15) == TT_EXTINT)) { 143 unsigned int i; 144 145 for (i = 15; i > 0; i--) { 146 if (env->pil_in & (1 << i)) { 147 int old_interrupt = env->interrupt_index; 148 149 env->interrupt_index = TT_EXTINT | i; 150 if (old_interrupt != env->interrupt_index) { 151 cs = CPU(sparc_env_get_cpu(env)); 152 trace_sun4m_cpu_interrupt(i); 153 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 154 } 155 break; 156 } 157 } 158 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { 159 cs = CPU(sparc_env_get_cpu(env)); 160 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15); 161 env->interrupt_index = 0; 162 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 163 } 164 } 165 166 static void cpu_kick_irq(SPARCCPU *cpu) 167 { 168 CPUSPARCState *env = &cpu->env; 169 CPUState *cs = CPU(cpu); 170 171 cs->halted = 0; 172 cpu_check_irqs(env); 173 qemu_cpu_kick(cs); 174 } 175 176 static void cpu_set_irq(void *opaque, int irq, int level) 177 { 178 SPARCCPU *cpu = opaque; 179 CPUSPARCState *env = &cpu->env; 180 181 if (level) { 182 trace_sun4m_cpu_set_irq_raise(irq); 183 env->pil_in |= 1 << irq; 184 cpu_kick_irq(cpu); 185 } else { 186 trace_sun4m_cpu_set_irq_lower(irq); 187 env->pil_in &= ~(1 << irq); 188 cpu_check_irqs(env); 189 } 190 } 191 192 static void dummy_cpu_set_irq(void *opaque, int irq, int level) 193 { 194 } 195 196 static void main_cpu_reset(void *opaque) 197 { 198 SPARCCPU *cpu = opaque; 199 CPUState *cs = CPU(cpu); 200 201 cpu_reset(cs); 202 cs->halted = 0; 203 } 204 205 static void secondary_cpu_reset(void *opaque) 206 { 207 SPARCCPU *cpu = opaque; 208 CPUState *cs = CPU(cpu); 209 210 cpu_reset(cs); 211 cs->halted = 1; 212 } 213 214 static void cpu_halt_signal(void *opaque, int irq, int level) 215 { 216 if (level && current_cpu) { 217 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT); 218 } 219 } 220 221 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 222 { 223 return addr - 0xf0000000ULL; 224 } 225 226 static unsigned long sun4m_load_kernel(const char *kernel_filename, 227 const char *initrd_filename, 228 ram_addr_t RAM_size) 229 { 230 int linux_boot; 231 unsigned int i; 232 long initrd_size, kernel_size; 233 uint8_t *ptr; 234 235 linux_boot = (kernel_filename != NULL); 236 237 kernel_size = 0; 238 if (linux_boot) { 239 int bswap_needed; 240 241 #ifdef BSWAP_NEEDED 242 bswap_needed = 1; 243 #else 244 bswap_needed = 0; 245 #endif 246 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, 247 NULL, NULL, NULL, 1, EM_SPARC, 0, 0); 248 if (kernel_size < 0) 249 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, 250 RAM_size - KERNEL_LOAD_ADDR, bswap_needed, 251 TARGET_PAGE_SIZE); 252 if (kernel_size < 0) 253 kernel_size = load_image_targphys(kernel_filename, 254 KERNEL_LOAD_ADDR, 255 RAM_size - KERNEL_LOAD_ADDR); 256 if (kernel_size < 0) { 257 error_report("could not load kernel '%s'", kernel_filename); 258 exit(1); 259 } 260 261 /* load initrd */ 262 initrd_size = 0; 263 if (initrd_filename) { 264 initrd_size = load_image_targphys(initrd_filename, 265 INITRD_LOAD_ADDR, 266 RAM_size - INITRD_LOAD_ADDR); 267 if (initrd_size < 0) { 268 error_report("could not load initial ram disk '%s'", 269 initrd_filename); 270 exit(1); 271 } 272 } 273 if (initrd_size > 0) { 274 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { 275 ptr = rom_ptr(KERNEL_LOAD_ADDR + i); 276 if (ldl_p(ptr) == 0x48647253) { // HdrS 277 stl_p(ptr + 16, INITRD_LOAD_ADDR); 278 stl_p(ptr + 20, initrd_size); 279 break; 280 } 281 } 282 } 283 } 284 return kernel_size; 285 } 286 287 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq) 288 { 289 DeviceState *dev; 290 SysBusDevice *s; 291 292 dev = qdev_create(NULL, TYPE_SUN4M_IOMMU); 293 qdev_prop_set_uint32(dev, "version", version); 294 qdev_init_nofail(dev); 295 s = SYS_BUS_DEVICE(dev); 296 sysbus_connect_irq(s, 0, irq); 297 sysbus_mmio_map(s, 0, addr); 298 299 return s; 300 } 301 302 static void *sparc32_dma_init(hwaddr dma_base, 303 hwaddr esp_base, qemu_irq espdma_irq, 304 hwaddr le_base, qemu_irq ledma_irq) 305 { 306 DeviceState *dma; 307 ESPDMADeviceState *espdma; 308 LEDMADeviceState *ledma; 309 SysBusESPState *esp; 310 SysBusPCNetState *lance; 311 312 dma = qdev_create(NULL, TYPE_SPARC32_DMA); 313 qdev_init_nofail(dma); 314 sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base); 315 316 espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component( 317 OBJECT(dma), "espdma")); 318 sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq); 319 320 esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp")); 321 sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base); 322 scsi_bus_legacy_handle_cmdline(&esp->esp.bus); 323 324 ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component( 325 OBJECT(dma), "ledma")); 326 sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq); 327 328 lance = SYSBUS_PCNET(object_resolve_path_component( 329 OBJECT(ledma), "lance")); 330 sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base); 331 332 return dma; 333 } 334 335 static DeviceState *slavio_intctl_init(hwaddr addr, 336 hwaddr addrg, 337 qemu_irq **parent_irq) 338 { 339 DeviceState *dev; 340 SysBusDevice *s; 341 unsigned int i, j; 342 343 dev = qdev_create(NULL, "slavio_intctl"); 344 qdev_init_nofail(dev); 345 346 s = SYS_BUS_DEVICE(dev); 347 348 for (i = 0; i < MAX_CPUS; i++) { 349 for (j = 0; j < MAX_PILS; j++) { 350 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]); 351 } 352 } 353 sysbus_mmio_map(s, 0, addrg); 354 for (i = 0; i < MAX_CPUS; i++) { 355 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE); 356 } 357 358 return dev; 359 } 360 361 #define SYS_TIMER_OFFSET 0x10000ULL 362 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu) 363 364 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq, 365 qemu_irq *cpu_irqs, unsigned int num_cpus) 366 { 367 DeviceState *dev; 368 SysBusDevice *s; 369 unsigned int i; 370 371 dev = qdev_create(NULL, "slavio_timer"); 372 qdev_prop_set_uint32(dev, "num_cpus", num_cpus); 373 qdev_init_nofail(dev); 374 s = SYS_BUS_DEVICE(dev); 375 sysbus_connect_irq(s, 0, master_irq); 376 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET); 377 378 for (i = 0; i < MAX_CPUS; i++) { 379 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i)); 380 sysbus_connect_irq(s, i + 1, cpu_irqs[i]); 381 } 382 } 383 384 static qemu_irq slavio_system_powerdown; 385 386 static void slavio_powerdown_req(Notifier *n, void *opaque) 387 { 388 qemu_irq_raise(slavio_system_powerdown); 389 } 390 391 static Notifier slavio_system_powerdown_notifier = { 392 .notify = slavio_powerdown_req 393 }; 394 395 #define MISC_LEDS 0x01600000 396 #define MISC_CFG 0x01800000 397 #define MISC_DIAG 0x01a00000 398 #define MISC_MDM 0x01b00000 399 #define MISC_SYS 0x01f00000 400 401 static void slavio_misc_init(hwaddr base, 402 hwaddr aux1_base, 403 hwaddr aux2_base, qemu_irq irq, 404 qemu_irq fdc_tc) 405 { 406 DeviceState *dev; 407 SysBusDevice *s; 408 409 dev = qdev_create(NULL, "slavio_misc"); 410 qdev_init_nofail(dev); 411 s = SYS_BUS_DEVICE(dev); 412 if (base) { 413 /* 8 bit registers */ 414 /* Slavio control */ 415 sysbus_mmio_map(s, 0, base + MISC_CFG); 416 /* Diagnostics */ 417 sysbus_mmio_map(s, 1, base + MISC_DIAG); 418 /* Modem control */ 419 sysbus_mmio_map(s, 2, base + MISC_MDM); 420 /* 16 bit registers */ 421 /* ss600mp diag LEDs */ 422 sysbus_mmio_map(s, 3, base + MISC_LEDS); 423 /* 32 bit registers */ 424 /* System control */ 425 sysbus_mmio_map(s, 4, base + MISC_SYS); 426 } 427 if (aux1_base) { 428 /* AUX 1 (Misc System Functions) */ 429 sysbus_mmio_map(s, 5, aux1_base); 430 } 431 if (aux2_base) { 432 /* AUX 2 (Software Powerdown Control) */ 433 sysbus_mmio_map(s, 6, aux2_base); 434 } 435 sysbus_connect_irq(s, 0, irq); 436 sysbus_connect_irq(s, 1, fdc_tc); 437 slavio_system_powerdown = qdev_get_gpio_in(dev, 0); 438 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier); 439 } 440 441 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version) 442 { 443 DeviceState *dev; 444 SysBusDevice *s; 445 446 dev = qdev_create(NULL, "eccmemctl"); 447 qdev_prop_set_uint32(dev, "version", version); 448 qdev_init_nofail(dev); 449 s = SYS_BUS_DEVICE(dev); 450 sysbus_connect_irq(s, 0, irq); 451 sysbus_mmio_map(s, 0, base); 452 if (version == 0) { // SS-600MP only 453 sysbus_mmio_map(s, 1, base + 0x1000); 454 } 455 } 456 457 static void apc_init(hwaddr power_base, qemu_irq cpu_halt) 458 { 459 DeviceState *dev; 460 SysBusDevice *s; 461 462 dev = qdev_create(NULL, "apc"); 463 qdev_init_nofail(dev); 464 s = SYS_BUS_DEVICE(dev); 465 /* Power management (APC) XXX: not a Slavio device */ 466 sysbus_mmio_map(s, 0, power_base); 467 sysbus_connect_irq(s, 0, cpu_halt); 468 } 469 470 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 471 int height, int depth) 472 { 473 DeviceState *dev; 474 SysBusDevice *s; 475 476 dev = qdev_create(NULL, "SUNW,tcx"); 477 qdev_prop_set_uint32(dev, "vram_size", vram_size); 478 qdev_prop_set_uint16(dev, "width", width); 479 qdev_prop_set_uint16(dev, "height", height); 480 qdev_prop_set_uint16(dev, "depth", depth); 481 qdev_init_nofail(dev); 482 s = SYS_BUS_DEVICE(dev); 483 484 /* 10/ROM : FCode ROM */ 485 sysbus_mmio_map(s, 0, addr); 486 /* 2/STIP : Stipple */ 487 sysbus_mmio_map(s, 1, addr + 0x04000000ULL); 488 /* 3/BLIT : Blitter */ 489 sysbus_mmio_map(s, 2, addr + 0x06000000ULL); 490 /* 5/RSTIP : Raw Stipple */ 491 sysbus_mmio_map(s, 3, addr + 0x0c000000ULL); 492 /* 6/RBLIT : Raw Blitter */ 493 sysbus_mmio_map(s, 4, addr + 0x0e000000ULL); 494 /* 7/TEC : Transform Engine */ 495 sysbus_mmio_map(s, 5, addr + 0x00700000ULL); 496 /* 8/CMAP : DAC */ 497 sysbus_mmio_map(s, 6, addr + 0x00200000ULL); 498 /* 9/THC : */ 499 if (depth == 8) { 500 sysbus_mmio_map(s, 7, addr + 0x00300000ULL); 501 } else { 502 sysbus_mmio_map(s, 7, addr + 0x00301000ULL); 503 } 504 /* 11/DHC : */ 505 sysbus_mmio_map(s, 8, addr + 0x00240000ULL); 506 /* 12/ALT : */ 507 sysbus_mmio_map(s, 9, addr + 0x00280000ULL); 508 /* 0/DFB8 : 8-bit plane */ 509 sysbus_mmio_map(s, 10, addr + 0x00800000ULL); 510 /* 1/DFB24 : 24bit plane */ 511 sysbus_mmio_map(s, 11, addr + 0x02000000ULL); 512 /* 4/RDFB32: Raw framebuffer. Control plane */ 513 sysbus_mmio_map(s, 12, addr + 0x0a000000ULL); 514 /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */ 515 if (depth == 8) { 516 sysbus_mmio_map(s, 13, addr + 0x00301000ULL); 517 } 518 519 sysbus_connect_irq(s, 0, irq); 520 } 521 522 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 523 int height, int depth) 524 { 525 DeviceState *dev; 526 SysBusDevice *s; 527 528 dev = qdev_create(NULL, "cgthree"); 529 qdev_prop_set_uint32(dev, "vram-size", vram_size); 530 qdev_prop_set_uint16(dev, "width", width); 531 qdev_prop_set_uint16(dev, "height", height); 532 qdev_prop_set_uint16(dev, "depth", depth); 533 qdev_init_nofail(dev); 534 s = SYS_BUS_DEVICE(dev); 535 536 /* FCode ROM */ 537 sysbus_mmio_map(s, 0, addr); 538 /* DAC */ 539 sysbus_mmio_map(s, 1, addr + 0x400000ULL); 540 /* 8-bit plane */ 541 sysbus_mmio_map(s, 2, addr + 0x800000ULL); 542 543 sysbus_connect_irq(s, 0, irq); 544 } 545 546 /* NCR89C100/MACIO Internal ID register */ 547 548 #define TYPE_MACIO_ID_REGISTER "macio_idreg" 549 550 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 }; 551 552 static void idreg_init(hwaddr addr) 553 { 554 DeviceState *dev; 555 SysBusDevice *s; 556 557 dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER); 558 qdev_init_nofail(dev); 559 s = SYS_BUS_DEVICE(dev); 560 561 sysbus_mmio_map(s, 0, addr); 562 cpu_physical_memory_write_rom(&address_space_memory, 563 addr, idreg_data, sizeof(idreg_data)); 564 } 565 566 #define MACIO_ID_REGISTER(obj) \ 567 OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER) 568 569 typedef struct IDRegState { 570 SysBusDevice parent_obj; 571 572 MemoryRegion mem; 573 } IDRegState; 574 575 static void idreg_realize(DeviceState *ds, Error **errp) 576 { 577 IDRegState *s = MACIO_ID_REGISTER(ds); 578 SysBusDevice *dev = SYS_BUS_DEVICE(ds); 579 Error *local_err = NULL; 580 581 memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg", 582 sizeof(idreg_data), &local_err); 583 if (local_err) { 584 error_propagate(errp, local_err); 585 return; 586 } 587 588 vmstate_register_ram_global(&s->mem); 589 memory_region_set_readonly(&s->mem, true); 590 sysbus_init_mmio(dev, &s->mem); 591 } 592 593 static void idreg_class_init(ObjectClass *oc, void *data) 594 { 595 DeviceClass *dc = DEVICE_CLASS(oc); 596 597 dc->realize = idreg_realize; 598 } 599 600 static const TypeInfo idreg_info = { 601 .name = TYPE_MACIO_ID_REGISTER, 602 .parent = TYPE_SYS_BUS_DEVICE, 603 .instance_size = sizeof(IDRegState), 604 .class_init = idreg_class_init, 605 }; 606 607 #define TYPE_TCX_AFX "tcx_afx" 608 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX) 609 610 typedef struct AFXState { 611 SysBusDevice parent_obj; 612 613 MemoryRegion mem; 614 } AFXState; 615 616 /* SS-5 TCX AFX register */ 617 static void afx_init(hwaddr addr) 618 { 619 DeviceState *dev; 620 SysBusDevice *s; 621 622 dev = qdev_create(NULL, TYPE_TCX_AFX); 623 qdev_init_nofail(dev); 624 s = SYS_BUS_DEVICE(dev); 625 626 sysbus_mmio_map(s, 0, addr); 627 } 628 629 static void afx_realize(DeviceState *ds, Error **errp) 630 { 631 AFXState *s = TCX_AFX(ds); 632 SysBusDevice *dev = SYS_BUS_DEVICE(ds); 633 Error *local_err = NULL; 634 635 memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4, 636 &local_err); 637 if (local_err) { 638 error_propagate(errp, local_err); 639 return; 640 } 641 642 vmstate_register_ram_global(&s->mem); 643 sysbus_init_mmio(dev, &s->mem); 644 } 645 646 static void afx_class_init(ObjectClass *oc, void *data) 647 { 648 DeviceClass *dc = DEVICE_CLASS(oc); 649 650 dc->realize = afx_realize; 651 } 652 653 static const TypeInfo afx_info = { 654 .name = TYPE_TCX_AFX, 655 .parent = TYPE_SYS_BUS_DEVICE, 656 .instance_size = sizeof(AFXState), 657 .class_init = afx_class_init, 658 }; 659 660 #define TYPE_OPENPROM "openprom" 661 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM) 662 663 typedef struct PROMState { 664 SysBusDevice parent_obj; 665 666 MemoryRegion prom; 667 } PROMState; 668 669 /* Boot PROM (OpenBIOS) */ 670 static uint64_t translate_prom_address(void *opaque, uint64_t addr) 671 { 672 hwaddr *base_addr = (hwaddr *)opaque; 673 return addr + *base_addr - PROM_VADDR; 674 } 675 676 static void prom_init(hwaddr addr, const char *bios_name) 677 { 678 DeviceState *dev; 679 SysBusDevice *s; 680 char *filename; 681 int ret; 682 683 dev = qdev_create(NULL, TYPE_OPENPROM); 684 qdev_init_nofail(dev); 685 s = SYS_BUS_DEVICE(dev); 686 687 sysbus_mmio_map(s, 0, addr); 688 689 /* load boot prom */ 690 if (bios_name == NULL) { 691 bios_name = PROM_FILENAME; 692 } 693 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 694 if (filename) { 695 ret = load_elf(filename, translate_prom_address, &addr, NULL, 696 NULL, NULL, 1, EM_SPARC, 0, 0); 697 if (ret < 0 || ret > PROM_SIZE_MAX) { 698 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX); 699 } 700 g_free(filename); 701 } else { 702 ret = -1; 703 } 704 if (ret < 0 || ret > PROM_SIZE_MAX) { 705 error_report("could not load prom '%s'", bios_name); 706 exit(1); 707 } 708 } 709 710 static void prom_realize(DeviceState *ds, Error **errp) 711 { 712 PROMState *s = OPENPROM(ds); 713 SysBusDevice *dev = SYS_BUS_DEVICE(ds); 714 Error *local_err = NULL; 715 716 memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom", 717 PROM_SIZE_MAX, &local_err); 718 if (local_err) { 719 error_propagate(errp, local_err); 720 return; 721 } 722 723 vmstate_register_ram_global(&s->prom); 724 memory_region_set_readonly(&s->prom, true); 725 sysbus_init_mmio(dev, &s->prom); 726 } 727 728 static Property prom_properties[] = { 729 {/* end of property list */}, 730 }; 731 732 static void prom_class_init(ObjectClass *klass, void *data) 733 { 734 DeviceClass *dc = DEVICE_CLASS(klass); 735 736 dc->props = prom_properties; 737 dc->realize = prom_realize; 738 } 739 740 static const TypeInfo prom_info = { 741 .name = TYPE_OPENPROM, 742 .parent = TYPE_SYS_BUS_DEVICE, 743 .instance_size = sizeof(PROMState), 744 .class_init = prom_class_init, 745 }; 746 747 #define TYPE_SUN4M_MEMORY "memory" 748 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY) 749 750 typedef struct RamDevice { 751 SysBusDevice parent_obj; 752 753 MemoryRegion ram; 754 uint64_t size; 755 } RamDevice; 756 757 /* System RAM */ 758 static void ram_realize(DeviceState *dev, Error **errp) 759 { 760 RamDevice *d = SUN4M_RAM(dev); 761 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 762 763 memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram", 764 d->size); 765 sysbus_init_mmio(sbd, &d->ram); 766 } 767 768 static void ram_init(hwaddr addr, ram_addr_t RAM_size, 769 uint64_t max_mem) 770 { 771 DeviceState *dev; 772 SysBusDevice *s; 773 RamDevice *d; 774 775 /* allocate RAM */ 776 if ((uint64_t)RAM_size > max_mem) { 777 error_report("Too much memory for this machine: %" PRId64 "," 778 " maximum %" PRId64, 779 RAM_size / MiB, max_mem / MiB); 780 exit(1); 781 } 782 dev = qdev_create(NULL, "memory"); 783 s = SYS_BUS_DEVICE(dev); 784 785 d = SUN4M_RAM(dev); 786 d->size = RAM_size; 787 qdev_init_nofail(dev); 788 789 sysbus_mmio_map(s, 0, addr); 790 } 791 792 static Property ram_properties[] = { 793 DEFINE_PROP_UINT64("size", RamDevice, size, 0), 794 DEFINE_PROP_END_OF_LIST(), 795 }; 796 797 static void ram_class_init(ObjectClass *klass, void *data) 798 { 799 DeviceClass *dc = DEVICE_CLASS(klass); 800 801 dc->realize = ram_realize; 802 dc->props = ram_properties; 803 } 804 805 static const TypeInfo ram_info = { 806 .name = TYPE_SUN4M_MEMORY, 807 .parent = TYPE_SYS_BUS_DEVICE, 808 .instance_size = sizeof(RamDevice), 809 .class_init = ram_class_init, 810 }; 811 812 static void cpu_devinit(const char *cpu_type, unsigned int id, 813 uint64_t prom_addr, qemu_irq **cpu_irqs) 814 { 815 CPUState *cs; 816 SPARCCPU *cpu; 817 CPUSPARCState *env; 818 819 cpu = SPARC_CPU(cpu_create(cpu_type)); 820 env = &cpu->env; 821 822 cpu_sparc_set_id(env, id); 823 if (id == 0) { 824 qemu_register_reset(main_cpu_reset, cpu); 825 } else { 826 qemu_register_reset(secondary_cpu_reset, cpu); 827 cs = CPU(cpu); 828 cs->halted = 1; 829 } 830 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS); 831 env->prom_addr = prom_addr; 832 } 833 834 static void dummy_fdc_tc(void *opaque, int irq, int level) 835 { 836 } 837 838 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, 839 MachineState *machine) 840 { 841 DeviceState *slavio_intctl; 842 unsigned int i; 843 void *nvram; 844 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS]; 845 qemu_irq fdc_tc; 846 unsigned long kernel_size; 847 DriveInfo *fd[MAX_FD]; 848 FWCfgState *fw_cfg; 849 unsigned int num_vsimms; 850 DeviceState *dev; 851 SysBusDevice *s; 852 853 /* init CPUs */ 854 for(i = 0; i < smp_cpus; i++) { 855 cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]); 856 } 857 858 for (i = smp_cpus; i < MAX_CPUS; i++) 859 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); 860 861 862 /* set up devices */ 863 ram_init(0, machine->ram_size, hwdef->max_mem); 864 /* models without ECC don't trap when missing ram is accessed */ 865 if (!hwdef->ecc_base) { 866 empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size); 867 } 868 869 prom_init(hwdef->slavio_base, bios_name); 870 871 slavio_intctl = slavio_intctl_init(hwdef->intctl_base, 872 hwdef->intctl_base + 0x10000ULL, 873 cpu_irqs); 874 875 for (i = 0; i < 32; i++) { 876 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i); 877 } 878 for (i = 0; i < MAX_CPUS; i++) { 879 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i); 880 } 881 882 if (hwdef->idreg_base) { 883 idreg_init(hwdef->idreg_base); 884 } 885 886 if (hwdef->afx_base) { 887 afx_init(hwdef->afx_base); 888 } 889 890 iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]); 891 892 if (hwdef->iommu_pad_base) { 893 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased. 894 Software shouldn't use aliased addresses, neither should it crash 895 when does. Using empty_slot instead of aliasing can help with 896 debugging such accesses */ 897 empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len); 898 } 899 900 sparc32_dma_init(hwdef->dma_base, 901 hwdef->esp_base, slavio_irq[18], 902 hwdef->le_base, slavio_irq[16]); 903 904 if (graphic_depth != 8 && graphic_depth != 24) { 905 error_report("Unsupported depth: %d", graphic_depth); 906 exit (1); 907 } 908 num_vsimms = 0; 909 if (num_vsimms == 0) { 910 if (vga_interface_type == VGA_CG3) { 911 if (graphic_depth != 8) { 912 error_report("Unsupported depth: %d", graphic_depth); 913 exit(1); 914 } 915 916 if (!(graphic_width == 1024 && graphic_height == 768) && 917 !(graphic_width == 1152 && graphic_height == 900)) { 918 error_report("Unsupported resolution: %d x %d", graphic_width, 919 graphic_height); 920 exit(1); 921 } 922 923 /* sbus irq 5 */ 924 cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 925 graphic_width, graphic_height, graphic_depth); 926 } else { 927 /* If no display specified, default to TCX */ 928 if (graphic_depth != 8 && graphic_depth != 24) { 929 error_report("Unsupported depth: %d", graphic_depth); 930 exit(1); 931 } 932 933 if (!(graphic_width == 1024 && graphic_height == 768)) { 934 error_report("Unsupported resolution: %d x %d", 935 graphic_width, graphic_height); 936 exit(1); 937 } 938 939 tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 940 graphic_width, graphic_height, graphic_depth); 941 } 942 } 943 944 for (i = num_vsimms; i < MAX_VSIMMS; i++) { 945 /* vsimm registers probed by OBP */ 946 if (hwdef->vsimm[i].reg_base) { 947 empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000); 948 } 949 } 950 951 if (hwdef->sx_base) { 952 empty_slot_init(hwdef->sx_base, 0x2000); 953 } 954 955 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8); 956 957 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus); 958 959 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device 960 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */ 961 dev = qdev_create(NULL, TYPE_ESCC); 962 qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics); 963 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK); 964 qdev_prop_set_uint32(dev, "it_shift", 1); 965 qdev_prop_set_chr(dev, "chrB", NULL); 966 qdev_prop_set_chr(dev, "chrA", NULL); 967 qdev_prop_set_uint32(dev, "chnBtype", escc_mouse); 968 qdev_prop_set_uint32(dev, "chnAtype", escc_kbd); 969 qdev_init_nofail(dev); 970 s = SYS_BUS_DEVICE(dev); 971 sysbus_connect_irq(s, 0, slavio_irq[14]); 972 sysbus_connect_irq(s, 1, slavio_irq[14]); 973 sysbus_mmio_map(s, 0, hwdef->ms_kb_base); 974 975 dev = qdev_create(NULL, TYPE_ESCC); 976 qdev_prop_set_uint32(dev, "disabled", 0); 977 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK); 978 qdev_prop_set_uint32(dev, "it_shift", 1); 979 qdev_prop_set_chr(dev, "chrB", serial_hd(1)); 980 qdev_prop_set_chr(dev, "chrA", serial_hd(0)); 981 qdev_prop_set_uint32(dev, "chnBtype", escc_serial); 982 qdev_prop_set_uint32(dev, "chnAtype", escc_serial); 983 qdev_init_nofail(dev); 984 985 s = SYS_BUS_DEVICE(dev); 986 sysbus_connect_irq(s, 0, slavio_irq[15]); 987 sysbus_connect_irq(s, 1, slavio_irq[15]); 988 sysbus_mmio_map(s, 0, hwdef->serial_base); 989 990 if (hwdef->apc_base) { 991 apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0)); 992 } 993 994 if (hwdef->fd_base) { 995 /* there is zero or one floppy drive */ 996 memset(fd, 0, sizeof(fd)); 997 fd[0] = drive_get(IF_FLOPPY, 0, 0); 998 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd, 999 &fdc_tc); 1000 } else { 1001 fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0); 1002 } 1003 1004 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base, 1005 slavio_irq[30], fdc_tc); 1006 1007 if (hwdef->cs_base) { 1008 sysbus_create_simple("SUNW,CS4231", hwdef->cs_base, 1009 slavio_irq[5]); 1010 } 1011 1012 if (hwdef->dbri_base) { 1013 /* ISDN chip with attached CS4215 audio codec */ 1014 /* prom space */ 1015 empty_slot_init(hwdef->dbri_base+0x1000, 0x30); 1016 /* reg space */ 1017 empty_slot_init(hwdef->dbri_base+0x10000, 0x100); 1018 } 1019 1020 if (hwdef->bpp_base) { 1021 /* parallel port */ 1022 empty_slot_init(hwdef->bpp_base, 0x20); 1023 } 1024 1025 kernel_size = sun4m_load_kernel(machine->kernel_filename, 1026 machine->initrd_filename, 1027 machine->ram_size); 1028 1029 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline, 1030 machine->boot_order, machine->ram_size, kernel_size, 1031 graphic_width, graphic_height, graphic_depth, 1032 hwdef->nvram_machine_id, "Sun4m"); 1033 1034 if (hwdef->ecc_base) 1035 ecc_init(hwdef->ecc_base, slavio_irq[28], 1036 hwdef->ecc_version); 1037 1038 fw_cfg = fw_cfg_init_mem(CFG_ADDR, CFG_ADDR + 2); 1039 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 1040 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); 1041 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 1042 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); 1043 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); 1044 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width); 1045 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height); 1046 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); 1047 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1048 if (machine->kernel_cmdline) { 1049 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); 1050 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, 1051 machine->kernel_cmdline); 1052 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline); 1053 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 1054 strlen(machine->kernel_cmdline) + 1); 1055 } else { 1056 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); 1057 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); 1058 } 1059 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); 1060 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used 1061 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]); 1062 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); 1063 } 1064 1065 enum { 1066 ss5_id = 32, 1067 vger_id, 1068 lx_id, 1069 ss4_id, 1070 scls_id, 1071 sbook_id, 1072 ss10_id = 64, 1073 ss20_id, 1074 ss600mp_id, 1075 }; 1076 1077 static const struct sun4m_hwdef sun4m_hwdefs[] = { 1078 /* SS-5 */ 1079 { 1080 .iommu_base = 0x10000000, 1081 .iommu_pad_base = 0x10004000, 1082 .iommu_pad_len = 0x0fffb000, 1083 .tcx_base = 0x50000000, 1084 .cs_base = 0x6c000000, 1085 .slavio_base = 0x70000000, 1086 .ms_kb_base = 0x71000000, 1087 .serial_base = 0x71100000, 1088 .nvram_base = 0x71200000, 1089 .fd_base = 0x71400000, 1090 .counter_base = 0x71d00000, 1091 .intctl_base = 0x71e00000, 1092 .idreg_base = 0x78000000, 1093 .dma_base = 0x78400000, 1094 .esp_base = 0x78800000, 1095 .le_base = 0x78c00000, 1096 .apc_base = 0x6a000000, 1097 .afx_base = 0x6e000000, 1098 .aux1_base = 0x71900000, 1099 .aux2_base = 0x71910000, 1100 .nvram_machine_id = 0x80, 1101 .machine_id = ss5_id, 1102 .iommu_version = 0x05000000, 1103 .max_mem = 0x10000000, 1104 }, 1105 /* SS-10 */ 1106 { 1107 .iommu_base = 0xfe0000000ULL, 1108 .tcx_base = 0xe20000000ULL, 1109 .slavio_base = 0xff0000000ULL, 1110 .ms_kb_base = 0xff1000000ULL, 1111 .serial_base = 0xff1100000ULL, 1112 .nvram_base = 0xff1200000ULL, 1113 .fd_base = 0xff1700000ULL, 1114 .counter_base = 0xff1300000ULL, 1115 .intctl_base = 0xff1400000ULL, 1116 .idreg_base = 0xef0000000ULL, 1117 .dma_base = 0xef0400000ULL, 1118 .esp_base = 0xef0800000ULL, 1119 .le_base = 0xef0c00000ULL, 1120 .apc_base = 0xefa000000ULL, // XXX should not exist 1121 .aux1_base = 0xff1800000ULL, 1122 .aux2_base = 0xff1a01000ULL, 1123 .ecc_base = 0xf00000000ULL, 1124 .ecc_version = 0x10000000, // version 0, implementation 1 1125 .nvram_machine_id = 0x72, 1126 .machine_id = ss10_id, 1127 .iommu_version = 0x03000000, 1128 .max_mem = 0xf00000000ULL, 1129 }, 1130 /* SS-600MP */ 1131 { 1132 .iommu_base = 0xfe0000000ULL, 1133 .tcx_base = 0xe20000000ULL, 1134 .slavio_base = 0xff0000000ULL, 1135 .ms_kb_base = 0xff1000000ULL, 1136 .serial_base = 0xff1100000ULL, 1137 .nvram_base = 0xff1200000ULL, 1138 .counter_base = 0xff1300000ULL, 1139 .intctl_base = 0xff1400000ULL, 1140 .dma_base = 0xef0081000ULL, 1141 .esp_base = 0xef0080000ULL, 1142 .le_base = 0xef0060000ULL, 1143 .apc_base = 0xefa000000ULL, // XXX should not exist 1144 .aux1_base = 0xff1800000ULL, 1145 .aux2_base = 0xff1a01000ULL, // XXX should not exist 1146 .ecc_base = 0xf00000000ULL, 1147 .ecc_version = 0x00000000, // version 0, implementation 0 1148 .nvram_machine_id = 0x71, 1149 .machine_id = ss600mp_id, 1150 .iommu_version = 0x01000000, 1151 .max_mem = 0xf00000000ULL, 1152 }, 1153 /* SS-20 */ 1154 { 1155 .iommu_base = 0xfe0000000ULL, 1156 .tcx_base = 0xe20000000ULL, 1157 .slavio_base = 0xff0000000ULL, 1158 .ms_kb_base = 0xff1000000ULL, 1159 .serial_base = 0xff1100000ULL, 1160 .nvram_base = 0xff1200000ULL, 1161 .fd_base = 0xff1700000ULL, 1162 .counter_base = 0xff1300000ULL, 1163 .intctl_base = 0xff1400000ULL, 1164 .idreg_base = 0xef0000000ULL, 1165 .dma_base = 0xef0400000ULL, 1166 .esp_base = 0xef0800000ULL, 1167 .le_base = 0xef0c00000ULL, 1168 .bpp_base = 0xef4800000ULL, 1169 .apc_base = 0xefa000000ULL, // XXX should not exist 1170 .aux1_base = 0xff1800000ULL, 1171 .aux2_base = 0xff1a01000ULL, 1172 .dbri_base = 0xee0000000ULL, 1173 .sx_base = 0xf80000000ULL, 1174 .vsimm = { 1175 { 1176 .reg_base = 0x9c000000ULL, 1177 .vram_base = 0xfc000000ULL 1178 }, { 1179 .reg_base = 0x90000000ULL, 1180 .vram_base = 0xf0000000ULL 1181 }, { 1182 .reg_base = 0x94000000ULL 1183 }, { 1184 .reg_base = 0x98000000ULL 1185 } 1186 }, 1187 .ecc_base = 0xf00000000ULL, 1188 .ecc_version = 0x20000000, // version 0, implementation 2 1189 .nvram_machine_id = 0x72, 1190 .machine_id = ss20_id, 1191 .iommu_version = 0x13000000, 1192 .max_mem = 0xf00000000ULL, 1193 }, 1194 /* Voyager */ 1195 { 1196 .iommu_base = 0x10000000, 1197 .tcx_base = 0x50000000, 1198 .slavio_base = 0x70000000, 1199 .ms_kb_base = 0x71000000, 1200 .serial_base = 0x71100000, 1201 .nvram_base = 0x71200000, 1202 .fd_base = 0x71400000, 1203 .counter_base = 0x71d00000, 1204 .intctl_base = 0x71e00000, 1205 .idreg_base = 0x78000000, 1206 .dma_base = 0x78400000, 1207 .esp_base = 0x78800000, 1208 .le_base = 0x78c00000, 1209 .apc_base = 0x71300000, // pmc 1210 .aux1_base = 0x71900000, 1211 .aux2_base = 0x71910000, 1212 .nvram_machine_id = 0x80, 1213 .machine_id = vger_id, 1214 .iommu_version = 0x05000000, 1215 .max_mem = 0x10000000, 1216 }, 1217 /* LX */ 1218 { 1219 .iommu_base = 0x10000000, 1220 .iommu_pad_base = 0x10004000, 1221 .iommu_pad_len = 0x0fffb000, 1222 .tcx_base = 0x50000000, 1223 .slavio_base = 0x70000000, 1224 .ms_kb_base = 0x71000000, 1225 .serial_base = 0x71100000, 1226 .nvram_base = 0x71200000, 1227 .fd_base = 0x71400000, 1228 .counter_base = 0x71d00000, 1229 .intctl_base = 0x71e00000, 1230 .idreg_base = 0x78000000, 1231 .dma_base = 0x78400000, 1232 .esp_base = 0x78800000, 1233 .le_base = 0x78c00000, 1234 .aux1_base = 0x71900000, 1235 .aux2_base = 0x71910000, 1236 .nvram_machine_id = 0x80, 1237 .machine_id = lx_id, 1238 .iommu_version = 0x04000000, 1239 .max_mem = 0x10000000, 1240 }, 1241 /* SS-4 */ 1242 { 1243 .iommu_base = 0x10000000, 1244 .tcx_base = 0x50000000, 1245 .cs_base = 0x6c000000, 1246 .slavio_base = 0x70000000, 1247 .ms_kb_base = 0x71000000, 1248 .serial_base = 0x71100000, 1249 .nvram_base = 0x71200000, 1250 .fd_base = 0x71400000, 1251 .counter_base = 0x71d00000, 1252 .intctl_base = 0x71e00000, 1253 .idreg_base = 0x78000000, 1254 .dma_base = 0x78400000, 1255 .esp_base = 0x78800000, 1256 .le_base = 0x78c00000, 1257 .apc_base = 0x6a000000, 1258 .aux1_base = 0x71900000, 1259 .aux2_base = 0x71910000, 1260 .nvram_machine_id = 0x80, 1261 .machine_id = ss4_id, 1262 .iommu_version = 0x05000000, 1263 .max_mem = 0x10000000, 1264 }, 1265 /* SPARCClassic */ 1266 { 1267 .iommu_base = 0x10000000, 1268 .tcx_base = 0x50000000, 1269 .slavio_base = 0x70000000, 1270 .ms_kb_base = 0x71000000, 1271 .serial_base = 0x71100000, 1272 .nvram_base = 0x71200000, 1273 .fd_base = 0x71400000, 1274 .counter_base = 0x71d00000, 1275 .intctl_base = 0x71e00000, 1276 .idreg_base = 0x78000000, 1277 .dma_base = 0x78400000, 1278 .esp_base = 0x78800000, 1279 .le_base = 0x78c00000, 1280 .apc_base = 0x6a000000, 1281 .aux1_base = 0x71900000, 1282 .aux2_base = 0x71910000, 1283 .nvram_machine_id = 0x80, 1284 .machine_id = scls_id, 1285 .iommu_version = 0x05000000, 1286 .max_mem = 0x10000000, 1287 }, 1288 /* SPARCbook */ 1289 { 1290 .iommu_base = 0x10000000, 1291 .tcx_base = 0x50000000, // XXX 1292 .slavio_base = 0x70000000, 1293 .ms_kb_base = 0x71000000, 1294 .serial_base = 0x71100000, 1295 .nvram_base = 0x71200000, 1296 .fd_base = 0x71400000, 1297 .counter_base = 0x71d00000, 1298 .intctl_base = 0x71e00000, 1299 .idreg_base = 0x78000000, 1300 .dma_base = 0x78400000, 1301 .esp_base = 0x78800000, 1302 .le_base = 0x78c00000, 1303 .apc_base = 0x6a000000, 1304 .aux1_base = 0x71900000, 1305 .aux2_base = 0x71910000, 1306 .nvram_machine_id = 0x80, 1307 .machine_id = sbook_id, 1308 .iommu_version = 0x05000000, 1309 .max_mem = 0x10000000, 1310 }, 1311 }; 1312 1313 /* SPARCstation 5 hardware initialisation */ 1314 static void ss5_init(MachineState *machine) 1315 { 1316 sun4m_hw_init(&sun4m_hwdefs[0], machine); 1317 } 1318 1319 /* SPARCstation 10 hardware initialisation */ 1320 static void ss10_init(MachineState *machine) 1321 { 1322 sun4m_hw_init(&sun4m_hwdefs[1], machine); 1323 } 1324 1325 /* SPARCserver 600MP hardware initialisation */ 1326 static void ss600mp_init(MachineState *machine) 1327 { 1328 sun4m_hw_init(&sun4m_hwdefs[2], machine); 1329 } 1330 1331 /* SPARCstation 20 hardware initialisation */ 1332 static void ss20_init(MachineState *machine) 1333 { 1334 sun4m_hw_init(&sun4m_hwdefs[3], machine); 1335 } 1336 1337 /* SPARCstation Voyager hardware initialisation */ 1338 static void vger_init(MachineState *machine) 1339 { 1340 sun4m_hw_init(&sun4m_hwdefs[4], machine); 1341 } 1342 1343 /* SPARCstation LX hardware initialisation */ 1344 static void ss_lx_init(MachineState *machine) 1345 { 1346 sun4m_hw_init(&sun4m_hwdefs[5], machine); 1347 } 1348 1349 /* SPARCstation 4 hardware initialisation */ 1350 static void ss4_init(MachineState *machine) 1351 { 1352 sun4m_hw_init(&sun4m_hwdefs[6], machine); 1353 } 1354 1355 /* SPARCClassic hardware initialisation */ 1356 static void scls_init(MachineState *machine) 1357 { 1358 sun4m_hw_init(&sun4m_hwdefs[7], machine); 1359 } 1360 1361 /* SPARCbook hardware initialisation */ 1362 static void sbook_init(MachineState *machine) 1363 { 1364 sun4m_hw_init(&sun4m_hwdefs[8], machine); 1365 } 1366 1367 static void ss5_class_init(ObjectClass *oc, void *data) 1368 { 1369 MachineClass *mc = MACHINE_CLASS(oc); 1370 1371 mc->desc = "Sun4m platform, SPARCstation 5"; 1372 mc->init = ss5_init; 1373 mc->block_default_type = IF_SCSI; 1374 mc->is_default = 1; 1375 mc->default_boot_order = "c"; 1376 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904"); 1377 } 1378 1379 static const TypeInfo ss5_type = { 1380 .name = MACHINE_TYPE_NAME("SS-5"), 1381 .parent = TYPE_MACHINE, 1382 .class_init = ss5_class_init, 1383 }; 1384 1385 static void ss10_class_init(ObjectClass *oc, void *data) 1386 { 1387 MachineClass *mc = MACHINE_CLASS(oc); 1388 1389 mc->desc = "Sun4m platform, SPARCstation 10"; 1390 mc->init = ss10_init; 1391 mc->block_default_type = IF_SCSI; 1392 mc->max_cpus = 4; 1393 mc->default_boot_order = "c"; 1394 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II"); 1395 } 1396 1397 static const TypeInfo ss10_type = { 1398 .name = MACHINE_TYPE_NAME("SS-10"), 1399 .parent = TYPE_MACHINE, 1400 .class_init = ss10_class_init, 1401 }; 1402 1403 static void ss600mp_class_init(ObjectClass *oc, void *data) 1404 { 1405 MachineClass *mc = MACHINE_CLASS(oc); 1406 1407 mc->desc = "Sun4m platform, SPARCserver 600MP"; 1408 mc->init = ss600mp_init; 1409 mc->block_default_type = IF_SCSI; 1410 mc->max_cpus = 4; 1411 mc->default_boot_order = "c"; 1412 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II"); 1413 } 1414 1415 static const TypeInfo ss600mp_type = { 1416 .name = MACHINE_TYPE_NAME("SS-600MP"), 1417 .parent = TYPE_MACHINE, 1418 .class_init = ss600mp_class_init, 1419 }; 1420 1421 static void ss20_class_init(ObjectClass *oc, void *data) 1422 { 1423 MachineClass *mc = MACHINE_CLASS(oc); 1424 1425 mc->desc = "Sun4m platform, SPARCstation 20"; 1426 mc->init = ss20_init; 1427 mc->block_default_type = IF_SCSI; 1428 mc->max_cpus = 4; 1429 mc->default_boot_order = "c"; 1430 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II"); 1431 } 1432 1433 static const TypeInfo ss20_type = { 1434 .name = MACHINE_TYPE_NAME("SS-20"), 1435 .parent = TYPE_MACHINE, 1436 .class_init = ss20_class_init, 1437 }; 1438 1439 static void voyager_class_init(ObjectClass *oc, void *data) 1440 { 1441 MachineClass *mc = MACHINE_CLASS(oc); 1442 1443 mc->desc = "Sun4m platform, SPARCstation Voyager"; 1444 mc->init = vger_init; 1445 mc->block_default_type = IF_SCSI; 1446 mc->default_boot_order = "c"; 1447 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904"); 1448 } 1449 1450 static const TypeInfo voyager_type = { 1451 .name = MACHINE_TYPE_NAME("Voyager"), 1452 .parent = TYPE_MACHINE, 1453 .class_init = voyager_class_init, 1454 }; 1455 1456 static void ss_lx_class_init(ObjectClass *oc, void *data) 1457 { 1458 MachineClass *mc = MACHINE_CLASS(oc); 1459 1460 mc->desc = "Sun4m platform, SPARCstation LX"; 1461 mc->init = ss_lx_init; 1462 mc->block_default_type = IF_SCSI; 1463 mc->default_boot_order = "c"; 1464 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I"); 1465 } 1466 1467 static const TypeInfo ss_lx_type = { 1468 .name = MACHINE_TYPE_NAME("LX"), 1469 .parent = TYPE_MACHINE, 1470 .class_init = ss_lx_class_init, 1471 }; 1472 1473 static void ss4_class_init(ObjectClass *oc, void *data) 1474 { 1475 MachineClass *mc = MACHINE_CLASS(oc); 1476 1477 mc->desc = "Sun4m platform, SPARCstation 4"; 1478 mc->init = ss4_init; 1479 mc->block_default_type = IF_SCSI; 1480 mc->default_boot_order = "c"; 1481 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904"); 1482 } 1483 1484 static const TypeInfo ss4_type = { 1485 .name = MACHINE_TYPE_NAME("SS-4"), 1486 .parent = TYPE_MACHINE, 1487 .class_init = ss4_class_init, 1488 }; 1489 1490 static void scls_class_init(ObjectClass *oc, void *data) 1491 { 1492 MachineClass *mc = MACHINE_CLASS(oc); 1493 1494 mc->desc = "Sun4m platform, SPARCClassic"; 1495 mc->init = scls_init; 1496 mc->block_default_type = IF_SCSI; 1497 mc->default_boot_order = "c"; 1498 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I"); 1499 } 1500 1501 static const TypeInfo scls_type = { 1502 .name = MACHINE_TYPE_NAME("SPARCClassic"), 1503 .parent = TYPE_MACHINE, 1504 .class_init = scls_class_init, 1505 }; 1506 1507 static void sbook_class_init(ObjectClass *oc, void *data) 1508 { 1509 MachineClass *mc = MACHINE_CLASS(oc); 1510 1511 mc->desc = "Sun4m platform, SPARCbook"; 1512 mc->init = sbook_init; 1513 mc->block_default_type = IF_SCSI; 1514 mc->default_boot_order = "c"; 1515 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I"); 1516 } 1517 1518 static const TypeInfo sbook_type = { 1519 .name = MACHINE_TYPE_NAME("SPARCbook"), 1520 .parent = TYPE_MACHINE, 1521 .class_init = sbook_class_init, 1522 }; 1523 1524 static void sun4m_register_types(void) 1525 { 1526 type_register_static(&idreg_info); 1527 type_register_static(&afx_info); 1528 type_register_static(&prom_info); 1529 type_register_static(&ram_info); 1530 1531 type_register_static(&ss5_type); 1532 type_register_static(&ss10_type); 1533 type_register_static(&ss600mp_type); 1534 type_register_static(&ss20_type); 1535 type_register_static(&voyager_type); 1536 type_register_static(&ss_lx_type); 1537 type_register_static(&ss4_type); 1538 type_register_static(&scls_type); 1539 type_register_static(&sbook_type); 1540 } 1541 1542 type_init(sun4m_register_types) 1543