1 /* 2 * QEMU Sun4m & Sun4d & Sun4c System Emulator 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qemu-common.h" 27 #include "cpu.h" 28 #include "hw/sysbus.h" 29 #include "qemu/error-report.h" 30 #include "qemu/timer.h" 31 #include "hw/sparc/sun4m.h" 32 #include "hw/timer/m48t59.h" 33 #include "hw/sparc/sparc32_dma.h" 34 #include "hw/block/fdc.h" 35 #include "sysemu/sysemu.h" 36 #include "net/net.h" 37 #include "hw/boards.h" 38 #include "hw/scsi/esp.h" 39 #include "hw/i386/pc.h" 40 #include "hw/isa/isa.h" 41 #include "hw/nvram/sun_nvram.h" 42 #include "hw/nvram/chrp_nvram.h" 43 #include "hw/nvram/fw_cfg.h" 44 #include "hw/char/escc.h" 45 #include "hw/empty_slot.h" 46 #include "hw/loader.h" 47 #include "elf.h" 48 #include "sysemu/block-backend.h" 49 #include "trace.h" 50 #include "qemu/cutils.h" 51 52 /* 53 * Sun4m architecture was used in the following machines: 54 * 55 * SPARCserver 6xxMP/xx 56 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), 57 * SPARCclassic X (4/10) 58 * SPARCstation LX/ZX (4/30) 59 * SPARCstation Voyager 60 * SPARCstation 10/xx, SPARCserver 10/xx 61 * SPARCstation 5, SPARCserver 5 62 * SPARCstation 20/xx, SPARCserver 20 63 * SPARCstation 4 64 * 65 * See for example: http://www.sunhelp.org/faq/sunref1.html 66 */ 67 68 #define KERNEL_LOAD_ADDR 0x00004000 69 #define CMDLINE_ADDR 0x007ff000 70 #define INITRD_LOAD_ADDR 0x00800000 71 #define PROM_SIZE_MAX (1024 * 1024) 72 #define PROM_VADDR 0xffd00000 73 #define PROM_FILENAME "openbios-sparc32" 74 #define CFG_ADDR 0xd00000510ULL 75 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00) 76 #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01) 77 #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02) 78 79 #define MAX_CPUS 16 80 #define MAX_PILS 16 81 #define MAX_VSIMMS 4 82 83 #define ESCC_CLOCK 4915200 84 85 struct sun4m_hwdef { 86 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base; 87 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base; 88 hwaddr serial_base, fd_base; 89 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base; 90 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base; 91 hwaddr bpp_base, dbri_base, sx_base; 92 struct { 93 hwaddr reg_base, vram_base; 94 } vsimm[MAX_VSIMMS]; 95 hwaddr ecc_base; 96 uint64_t max_mem; 97 const char * const default_cpu_model; 98 uint32_t ecc_version; 99 uint32_t iommu_version; 100 uint16_t machine_id; 101 uint8_t nvram_machine_id; 102 }; 103 104 void DMA_init(ISABus *bus, int high_page_enable) 105 { 106 } 107 108 static void fw_cfg_boot_set(void *opaque, const char *boot_device, 109 Error **errp) 110 { 111 fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); 112 } 113 114 static void nvram_init(Nvram *nvram, uint8_t *macaddr, 115 const char *cmdline, const char *boot_devices, 116 ram_addr_t RAM_size, uint32_t kernel_size, 117 int width, int height, int depth, 118 int nvram_machine_id, const char *arch) 119 { 120 unsigned int i; 121 int sysp_end; 122 uint8_t image[0x1ff0]; 123 NvramClass *k = NVRAM_GET_CLASS(nvram); 124 125 memset(image, '\0', sizeof(image)); 126 127 /* OpenBIOS nvram variables partition */ 128 sysp_end = chrp_nvram_create_system_partition(image, 0); 129 130 /* Free space partition */ 131 chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end); 132 133 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 134 nvram_machine_id); 135 136 for (i = 0; i < sizeof(image); i++) { 137 (k->write)(nvram, i, image[i]); 138 } 139 } 140 141 void cpu_check_irqs(CPUSPARCState *env) 142 { 143 CPUState *cs; 144 145 /* We should be holding the BQL before we mess with IRQs */ 146 g_assert(qemu_mutex_iothread_locked()); 147 148 if (env->pil_in && (env->interrupt_index == 0 || 149 (env->interrupt_index & ~15) == TT_EXTINT)) { 150 unsigned int i; 151 152 for (i = 15; i > 0; i--) { 153 if (env->pil_in & (1 << i)) { 154 int old_interrupt = env->interrupt_index; 155 156 env->interrupt_index = TT_EXTINT | i; 157 if (old_interrupt != env->interrupt_index) { 158 cs = CPU(sparc_env_get_cpu(env)); 159 trace_sun4m_cpu_interrupt(i); 160 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 161 } 162 break; 163 } 164 } 165 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { 166 cs = CPU(sparc_env_get_cpu(env)); 167 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15); 168 env->interrupt_index = 0; 169 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 170 } 171 } 172 173 static void cpu_kick_irq(SPARCCPU *cpu) 174 { 175 CPUSPARCState *env = &cpu->env; 176 CPUState *cs = CPU(cpu); 177 178 cs->halted = 0; 179 cpu_check_irqs(env); 180 qemu_cpu_kick(cs); 181 } 182 183 static void cpu_set_irq(void *opaque, int irq, int level) 184 { 185 SPARCCPU *cpu = opaque; 186 CPUSPARCState *env = &cpu->env; 187 188 if (level) { 189 trace_sun4m_cpu_set_irq_raise(irq); 190 env->pil_in |= 1 << irq; 191 cpu_kick_irq(cpu); 192 } else { 193 trace_sun4m_cpu_set_irq_lower(irq); 194 env->pil_in &= ~(1 << irq); 195 cpu_check_irqs(env); 196 } 197 } 198 199 static void dummy_cpu_set_irq(void *opaque, int irq, int level) 200 { 201 } 202 203 static void main_cpu_reset(void *opaque) 204 { 205 SPARCCPU *cpu = opaque; 206 CPUState *cs = CPU(cpu); 207 208 cpu_reset(cs); 209 cs->halted = 0; 210 } 211 212 static void secondary_cpu_reset(void *opaque) 213 { 214 SPARCCPU *cpu = opaque; 215 CPUState *cs = CPU(cpu); 216 217 cpu_reset(cs); 218 cs->halted = 1; 219 } 220 221 static void cpu_halt_signal(void *opaque, int irq, int level) 222 { 223 if (level && current_cpu) { 224 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT); 225 } 226 } 227 228 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 229 { 230 return addr - 0xf0000000ULL; 231 } 232 233 static unsigned long sun4m_load_kernel(const char *kernel_filename, 234 const char *initrd_filename, 235 ram_addr_t RAM_size) 236 { 237 int linux_boot; 238 unsigned int i; 239 long initrd_size, kernel_size; 240 uint8_t *ptr; 241 242 linux_boot = (kernel_filename != NULL); 243 244 kernel_size = 0; 245 if (linux_boot) { 246 int bswap_needed; 247 248 #ifdef BSWAP_NEEDED 249 bswap_needed = 1; 250 #else 251 bswap_needed = 0; 252 #endif 253 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, 254 NULL, NULL, NULL, 1, EM_SPARC, 0, 0); 255 if (kernel_size < 0) 256 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, 257 RAM_size - KERNEL_LOAD_ADDR, bswap_needed, 258 TARGET_PAGE_SIZE); 259 if (kernel_size < 0) 260 kernel_size = load_image_targphys(kernel_filename, 261 KERNEL_LOAD_ADDR, 262 RAM_size - KERNEL_LOAD_ADDR); 263 if (kernel_size < 0) { 264 fprintf(stderr, "qemu: could not load kernel '%s'\n", 265 kernel_filename); 266 exit(1); 267 } 268 269 /* load initrd */ 270 initrd_size = 0; 271 if (initrd_filename) { 272 initrd_size = load_image_targphys(initrd_filename, 273 INITRD_LOAD_ADDR, 274 RAM_size - INITRD_LOAD_ADDR); 275 if (initrd_size < 0) { 276 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 277 initrd_filename); 278 exit(1); 279 } 280 } 281 if (initrd_size > 0) { 282 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { 283 ptr = rom_ptr(KERNEL_LOAD_ADDR + i); 284 if (ldl_p(ptr) == 0x48647253) { // HdrS 285 stl_p(ptr + 16, INITRD_LOAD_ADDR); 286 stl_p(ptr + 20, initrd_size); 287 break; 288 } 289 } 290 } 291 } 292 return kernel_size; 293 } 294 295 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq) 296 { 297 DeviceState *dev; 298 SysBusDevice *s; 299 300 dev = qdev_create(NULL, "iommu"); 301 qdev_prop_set_uint32(dev, "version", version); 302 qdev_init_nofail(dev); 303 s = SYS_BUS_DEVICE(dev); 304 sysbus_connect_irq(s, 0, irq); 305 sysbus_mmio_map(s, 0, addr); 306 307 return s; 308 } 309 310 static void *sparc32_dma_init(hwaddr daddr, qemu_irq parent_irq, 311 void *iommu, qemu_irq *dev_irq, int is_ledma) 312 { 313 DeviceState *dev; 314 SysBusDevice *s; 315 316 dev = qdev_create(NULL, "sparc32_dma"); 317 qdev_prop_set_ptr(dev, "iommu_opaque", iommu); 318 qdev_prop_set_uint32(dev, "is_ledma", is_ledma); 319 qdev_init_nofail(dev); 320 s = SYS_BUS_DEVICE(dev); 321 sysbus_connect_irq(s, 0, parent_irq); 322 *dev_irq = qdev_get_gpio_in(dev, 0); 323 sysbus_mmio_map(s, 0, daddr); 324 325 return s; 326 } 327 328 static void lance_init(NICInfo *nd, hwaddr leaddr, 329 void *dma_opaque, qemu_irq irq) 330 { 331 DeviceState *dev; 332 SysBusDevice *s; 333 qemu_irq reset; 334 335 qemu_check_nic_model(&nd_table[0], "lance"); 336 337 dev = qdev_create(NULL, "lance"); 338 qdev_set_nic_properties(dev, nd); 339 qdev_prop_set_ptr(dev, "dma", dma_opaque); 340 qdev_init_nofail(dev); 341 s = SYS_BUS_DEVICE(dev); 342 sysbus_mmio_map(s, 0, leaddr); 343 sysbus_connect_irq(s, 0, irq); 344 reset = qdev_get_gpio_in(dev, 0); 345 qdev_connect_gpio_out(dma_opaque, 0, reset); 346 } 347 348 static DeviceState *slavio_intctl_init(hwaddr addr, 349 hwaddr addrg, 350 qemu_irq **parent_irq) 351 { 352 DeviceState *dev; 353 SysBusDevice *s; 354 unsigned int i, j; 355 356 dev = qdev_create(NULL, "slavio_intctl"); 357 qdev_init_nofail(dev); 358 359 s = SYS_BUS_DEVICE(dev); 360 361 for (i = 0; i < MAX_CPUS; i++) { 362 for (j = 0; j < MAX_PILS; j++) { 363 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]); 364 } 365 } 366 sysbus_mmio_map(s, 0, addrg); 367 for (i = 0; i < MAX_CPUS; i++) { 368 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE); 369 } 370 371 return dev; 372 } 373 374 #define SYS_TIMER_OFFSET 0x10000ULL 375 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu) 376 377 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq, 378 qemu_irq *cpu_irqs, unsigned int num_cpus) 379 { 380 DeviceState *dev; 381 SysBusDevice *s; 382 unsigned int i; 383 384 dev = qdev_create(NULL, "slavio_timer"); 385 qdev_prop_set_uint32(dev, "num_cpus", num_cpus); 386 qdev_init_nofail(dev); 387 s = SYS_BUS_DEVICE(dev); 388 sysbus_connect_irq(s, 0, master_irq); 389 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET); 390 391 for (i = 0; i < MAX_CPUS; i++) { 392 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i)); 393 sysbus_connect_irq(s, i + 1, cpu_irqs[i]); 394 } 395 } 396 397 static qemu_irq slavio_system_powerdown; 398 399 static void slavio_powerdown_req(Notifier *n, void *opaque) 400 { 401 qemu_irq_raise(slavio_system_powerdown); 402 } 403 404 static Notifier slavio_system_powerdown_notifier = { 405 .notify = slavio_powerdown_req 406 }; 407 408 #define MISC_LEDS 0x01600000 409 #define MISC_CFG 0x01800000 410 #define MISC_DIAG 0x01a00000 411 #define MISC_MDM 0x01b00000 412 #define MISC_SYS 0x01f00000 413 414 static void slavio_misc_init(hwaddr base, 415 hwaddr aux1_base, 416 hwaddr aux2_base, qemu_irq irq, 417 qemu_irq fdc_tc) 418 { 419 DeviceState *dev; 420 SysBusDevice *s; 421 422 dev = qdev_create(NULL, "slavio_misc"); 423 qdev_init_nofail(dev); 424 s = SYS_BUS_DEVICE(dev); 425 if (base) { 426 /* 8 bit registers */ 427 /* Slavio control */ 428 sysbus_mmio_map(s, 0, base + MISC_CFG); 429 /* Diagnostics */ 430 sysbus_mmio_map(s, 1, base + MISC_DIAG); 431 /* Modem control */ 432 sysbus_mmio_map(s, 2, base + MISC_MDM); 433 /* 16 bit registers */ 434 /* ss600mp diag LEDs */ 435 sysbus_mmio_map(s, 3, base + MISC_LEDS); 436 /* 32 bit registers */ 437 /* System control */ 438 sysbus_mmio_map(s, 4, base + MISC_SYS); 439 } 440 if (aux1_base) { 441 /* AUX 1 (Misc System Functions) */ 442 sysbus_mmio_map(s, 5, aux1_base); 443 } 444 if (aux2_base) { 445 /* AUX 2 (Software Powerdown Control) */ 446 sysbus_mmio_map(s, 6, aux2_base); 447 } 448 sysbus_connect_irq(s, 0, irq); 449 sysbus_connect_irq(s, 1, fdc_tc); 450 slavio_system_powerdown = qdev_get_gpio_in(dev, 0); 451 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier); 452 } 453 454 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version) 455 { 456 DeviceState *dev; 457 SysBusDevice *s; 458 459 dev = qdev_create(NULL, "eccmemctl"); 460 qdev_prop_set_uint32(dev, "version", version); 461 qdev_init_nofail(dev); 462 s = SYS_BUS_DEVICE(dev); 463 sysbus_connect_irq(s, 0, irq); 464 sysbus_mmio_map(s, 0, base); 465 if (version == 0) { // SS-600MP only 466 sysbus_mmio_map(s, 1, base + 0x1000); 467 } 468 } 469 470 static void apc_init(hwaddr power_base, qemu_irq cpu_halt) 471 { 472 DeviceState *dev; 473 SysBusDevice *s; 474 475 dev = qdev_create(NULL, "apc"); 476 qdev_init_nofail(dev); 477 s = SYS_BUS_DEVICE(dev); 478 /* Power management (APC) XXX: not a Slavio device */ 479 sysbus_mmio_map(s, 0, power_base); 480 sysbus_connect_irq(s, 0, cpu_halt); 481 } 482 483 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 484 int height, int depth) 485 { 486 DeviceState *dev; 487 SysBusDevice *s; 488 489 dev = qdev_create(NULL, "SUNW,tcx"); 490 qdev_prop_set_uint32(dev, "vram_size", vram_size); 491 qdev_prop_set_uint16(dev, "width", width); 492 qdev_prop_set_uint16(dev, "height", height); 493 qdev_prop_set_uint16(dev, "depth", depth); 494 qdev_init_nofail(dev); 495 s = SYS_BUS_DEVICE(dev); 496 497 /* 10/ROM : FCode ROM */ 498 sysbus_mmio_map(s, 0, addr); 499 /* 2/STIP : Stipple */ 500 sysbus_mmio_map(s, 1, addr + 0x04000000ULL); 501 /* 3/BLIT : Blitter */ 502 sysbus_mmio_map(s, 2, addr + 0x06000000ULL); 503 /* 5/RSTIP : Raw Stipple */ 504 sysbus_mmio_map(s, 3, addr + 0x0c000000ULL); 505 /* 6/RBLIT : Raw Blitter */ 506 sysbus_mmio_map(s, 4, addr + 0x0e000000ULL); 507 /* 7/TEC : Transform Engine */ 508 sysbus_mmio_map(s, 5, addr + 0x00700000ULL); 509 /* 8/CMAP : DAC */ 510 sysbus_mmio_map(s, 6, addr + 0x00200000ULL); 511 /* 9/THC : */ 512 if (depth == 8) { 513 sysbus_mmio_map(s, 7, addr + 0x00300000ULL); 514 } else { 515 sysbus_mmio_map(s, 7, addr + 0x00301000ULL); 516 } 517 /* 11/DHC : */ 518 sysbus_mmio_map(s, 8, addr + 0x00240000ULL); 519 /* 12/ALT : */ 520 sysbus_mmio_map(s, 9, addr + 0x00280000ULL); 521 /* 0/DFB8 : 8-bit plane */ 522 sysbus_mmio_map(s, 10, addr + 0x00800000ULL); 523 /* 1/DFB24 : 24bit plane */ 524 sysbus_mmio_map(s, 11, addr + 0x02000000ULL); 525 /* 4/RDFB32: Raw framebuffer. Control plane */ 526 sysbus_mmio_map(s, 12, addr + 0x0a000000ULL); 527 /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */ 528 if (depth == 8) { 529 sysbus_mmio_map(s, 13, addr + 0x00301000ULL); 530 } 531 532 sysbus_connect_irq(s, 0, irq); 533 } 534 535 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 536 int height, int depth) 537 { 538 DeviceState *dev; 539 SysBusDevice *s; 540 541 dev = qdev_create(NULL, "cgthree"); 542 qdev_prop_set_uint32(dev, "vram-size", vram_size); 543 qdev_prop_set_uint16(dev, "width", width); 544 qdev_prop_set_uint16(dev, "height", height); 545 qdev_prop_set_uint16(dev, "depth", depth); 546 qdev_init_nofail(dev); 547 s = SYS_BUS_DEVICE(dev); 548 549 /* FCode ROM */ 550 sysbus_mmio_map(s, 0, addr); 551 /* DAC */ 552 sysbus_mmio_map(s, 1, addr + 0x400000ULL); 553 /* 8-bit plane */ 554 sysbus_mmio_map(s, 2, addr + 0x800000ULL); 555 556 sysbus_connect_irq(s, 0, irq); 557 } 558 559 /* NCR89C100/MACIO Internal ID register */ 560 561 #define TYPE_MACIO_ID_REGISTER "macio_idreg" 562 563 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 }; 564 565 static void idreg_init(hwaddr addr) 566 { 567 DeviceState *dev; 568 SysBusDevice *s; 569 570 dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER); 571 qdev_init_nofail(dev); 572 s = SYS_BUS_DEVICE(dev); 573 574 sysbus_mmio_map(s, 0, addr); 575 cpu_physical_memory_write_rom(&address_space_memory, 576 addr, idreg_data, sizeof(idreg_data)); 577 } 578 579 #define MACIO_ID_REGISTER(obj) \ 580 OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER) 581 582 typedef struct IDRegState { 583 SysBusDevice parent_obj; 584 585 MemoryRegion mem; 586 } IDRegState; 587 588 static int idreg_init1(SysBusDevice *dev) 589 { 590 IDRegState *s = MACIO_ID_REGISTER(dev); 591 592 memory_region_init_ram(&s->mem, OBJECT(s), 593 "sun4m.idreg", sizeof(idreg_data), &error_fatal); 594 vmstate_register_ram_global(&s->mem); 595 memory_region_set_readonly(&s->mem, true); 596 sysbus_init_mmio(dev, &s->mem); 597 return 0; 598 } 599 600 static void idreg_class_init(ObjectClass *klass, void *data) 601 { 602 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 603 604 k->init = idreg_init1; 605 } 606 607 static const TypeInfo idreg_info = { 608 .name = TYPE_MACIO_ID_REGISTER, 609 .parent = TYPE_SYS_BUS_DEVICE, 610 .instance_size = sizeof(IDRegState), 611 .class_init = idreg_class_init, 612 }; 613 614 #define TYPE_TCX_AFX "tcx_afx" 615 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX) 616 617 typedef struct AFXState { 618 SysBusDevice parent_obj; 619 620 MemoryRegion mem; 621 } AFXState; 622 623 /* SS-5 TCX AFX register */ 624 static void afx_init(hwaddr addr) 625 { 626 DeviceState *dev; 627 SysBusDevice *s; 628 629 dev = qdev_create(NULL, TYPE_TCX_AFX); 630 qdev_init_nofail(dev); 631 s = SYS_BUS_DEVICE(dev); 632 633 sysbus_mmio_map(s, 0, addr); 634 } 635 636 static int afx_init1(SysBusDevice *dev) 637 { 638 AFXState *s = TCX_AFX(dev); 639 640 memory_region_init_ram(&s->mem, OBJECT(s), "sun4m.afx", 4, &error_fatal); 641 vmstate_register_ram_global(&s->mem); 642 sysbus_init_mmio(dev, &s->mem); 643 return 0; 644 } 645 646 static void afx_class_init(ObjectClass *klass, void *data) 647 { 648 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 649 650 k->init = afx_init1; 651 } 652 653 static const TypeInfo afx_info = { 654 .name = TYPE_TCX_AFX, 655 .parent = TYPE_SYS_BUS_DEVICE, 656 .instance_size = sizeof(AFXState), 657 .class_init = afx_class_init, 658 }; 659 660 #define TYPE_OPENPROM "openprom" 661 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM) 662 663 typedef struct PROMState { 664 SysBusDevice parent_obj; 665 666 MemoryRegion prom; 667 } PROMState; 668 669 /* Boot PROM (OpenBIOS) */ 670 static uint64_t translate_prom_address(void *opaque, uint64_t addr) 671 { 672 hwaddr *base_addr = (hwaddr *)opaque; 673 return addr + *base_addr - PROM_VADDR; 674 } 675 676 static void prom_init(hwaddr addr, const char *bios_name) 677 { 678 DeviceState *dev; 679 SysBusDevice *s; 680 char *filename; 681 int ret; 682 683 dev = qdev_create(NULL, TYPE_OPENPROM); 684 qdev_init_nofail(dev); 685 s = SYS_BUS_DEVICE(dev); 686 687 sysbus_mmio_map(s, 0, addr); 688 689 /* load boot prom */ 690 if (bios_name == NULL) { 691 bios_name = PROM_FILENAME; 692 } 693 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 694 if (filename) { 695 ret = load_elf(filename, translate_prom_address, &addr, NULL, 696 NULL, NULL, 1, EM_SPARC, 0, 0); 697 if (ret < 0 || ret > PROM_SIZE_MAX) { 698 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX); 699 } 700 g_free(filename); 701 } else { 702 ret = -1; 703 } 704 if (ret < 0 || ret > PROM_SIZE_MAX) { 705 fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name); 706 exit(1); 707 } 708 } 709 710 static int prom_init1(SysBusDevice *dev) 711 { 712 PROMState *s = OPENPROM(dev); 713 714 memory_region_init_ram(&s->prom, OBJECT(s), "sun4m.prom", PROM_SIZE_MAX, 715 &error_fatal); 716 vmstate_register_ram_global(&s->prom); 717 memory_region_set_readonly(&s->prom, true); 718 sysbus_init_mmio(dev, &s->prom); 719 return 0; 720 } 721 722 static Property prom_properties[] = { 723 {/* end of property list */}, 724 }; 725 726 static void prom_class_init(ObjectClass *klass, void *data) 727 { 728 DeviceClass *dc = DEVICE_CLASS(klass); 729 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 730 731 k->init = prom_init1; 732 dc->props = prom_properties; 733 } 734 735 static const TypeInfo prom_info = { 736 .name = TYPE_OPENPROM, 737 .parent = TYPE_SYS_BUS_DEVICE, 738 .instance_size = sizeof(PROMState), 739 .class_init = prom_class_init, 740 }; 741 742 #define TYPE_SUN4M_MEMORY "memory" 743 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY) 744 745 typedef struct RamDevice { 746 SysBusDevice parent_obj; 747 748 MemoryRegion ram; 749 uint64_t size; 750 } RamDevice; 751 752 /* System RAM */ 753 static int ram_init1(SysBusDevice *dev) 754 { 755 RamDevice *d = SUN4M_RAM(dev); 756 757 memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram", 758 d->size); 759 sysbus_init_mmio(dev, &d->ram); 760 return 0; 761 } 762 763 static void ram_init(hwaddr addr, ram_addr_t RAM_size, 764 uint64_t max_mem) 765 { 766 DeviceState *dev; 767 SysBusDevice *s; 768 RamDevice *d; 769 770 /* allocate RAM */ 771 if ((uint64_t)RAM_size > max_mem) { 772 fprintf(stderr, 773 "qemu: Too much memory for this machine: %d, maximum %d\n", 774 (unsigned int)(RAM_size / (1024 * 1024)), 775 (unsigned int)(max_mem / (1024 * 1024))); 776 exit(1); 777 } 778 dev = qdev_create(NULL, "memory"); 779 s = SYS_BUS_DEVICE(dev); 780 781 d = SUN4M_RAM(dev); 782 d->size = RAM_size; 783 qdev_init_nofail(dev); 784 785 sysbus_mmio_map(s, 0, addr); 786 } 787 788 static Property ram_properties[] = { 789 DEFINE_PROP_UINT64("size", RamDevice, size, 0), 790 DEFINE_PROP_END_OF_LIST(), 791 }; 792 793 static void ram_class_init(ObjectClass *klass, void *data) 794 { 795 DeviceClass *dc = DEVICE_CLASS(klass); 796 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 797 798 k->init = ram_init1; 799 dc->props = ram_properties; 800 } 801 802 static const TypeInfo ram_info = { 803 .name = TYPE_SUN4M_MEMORY, 804 .parent = TYPE_SYS_BUS_DEVICE, 805 .instance_size = sizeof(RamDevice), 806 .class_init = ram_class_init, 807 }; 808 809 static void cpu_devinit(const char *cpu_model, unsigned int id, 810 uint64_t prom_addr, qemu_irq **cpu_irqs) 811 { 812 CPUState *cs; 813 SPARCCPU *cpu; 814 CPUSPARCState *env; 815 816 cpu = cpu_sparc_init(cpu_model); 817 if (cpu == NULL) { 818 fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n"); 819 exit(1); 820 } 821 env = &cpu->env; 822 823 cpu_sparc_set_id(env, id); 824 if (id == 0) { 825 qemu_register_reset(main_cpu_reset, cpu); 826 } else { 827 qemu_register_reset(secondary_cpu_reset, cpu); 828 cs = CPU(cpu); 829 cs->halted = 1; 830 } 831 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS); 832 env->prom_addr = prom_addr; 833 } 834 835 static void dummy_fdc_tc(void *opaque, int irq, int level) 836 { 837 } 838 839 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, 840 MachineState *machine) 841 { 842 DeviceState *slavio_intctl; 843 const char *cpu_model = machine->cpu_model; 844 unsigned int i; 845 void *iommu, *espdma, *ledma, *nvram; 846 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS], 847 espdma_irq, ledma_irq; 848 qemu_irq esp_reset, dma_enable; 849 qemu_irq fdc_tc; 850 unsigned long kernel_size; 851 DriveInfo *fd[MAX_FD]; 852 FWCfgState *fw_cfg; 853 unsigned int num_vsimms; 854 855 /* init CPUs */ 856 if (!cpu_model) 857 cpu_model = hwdef->default_cpu_model; 858 859 for(i = 0; i < smp_cpus; i++) { 860 cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]); 861 } 862 863 for (i = smp_cpus; i < MAX_CPUS; i++) 864 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); 865 866 867 /* set up devices */ 868 ram_init(0, machine->ram_size, hwdef->max_mem); 869 /* models without ECC don't trap when missing ram is accessed */ 870 if (!hwdef->ecc_base) { 871 empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size); 872 } 873 874 prom_init(hwdef->slavio_base, bios_name); 875 876 slavio_intctl = slavio_intctl_init(hwdef->intctl_base, 877 hwdef->intctl_base + 0x10000ULL, 878 cpu_irqs); 879 880 for (i = 0; i < 32; i++) { 881 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i); 882 } 883 for (i = 0; i < MAX_CPUS; i++) { 884 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i); 885 } 886 887 if (hwdef->idreg_base) { 888 idreg_init(hwdef->idreg_base); 889 } 890 891 if (hwdef->afx_base) { 892 afx_init(hwdef->afx_base); 893 } 894 895 iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version, 896 slavio_irq[30]); 897 898 if (hwdef->iommu_pad_base) { 899 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased. 900 Software shouldn't use aliased addresses, neither should it crash 901 when does. Using empty_slot instead of aliasing can help with 902 debugging such accesses */ 903 empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len); 904 } 905 906 espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[18], 907 iommu, &espdma_irq, 0); 908 909 ledma = sparc32_dma_init(hwdef->dma_base + 16ULL, 910 slavio_irq[16], iommu, &ledma_irq, 1); 911 912 if (graphic_depth != 8 && graphic_depth != 24) { 913 error_report("Unsupported depth: %d", graphic_depth); 914 exit (1); 915 } 916 num_vsimms = 0; 917 if (num_vsimms == 0) { 918 if (vga_interface_type == VGA_CG3) { 919 if (graphic_depth != 8) { 920 error_report("Unsupported depth: %d", graphic_depth); 921 exit(1); 922 } 923 924 if (!(graphic_width == 1024 && graphic_height == 768) && 925 !(graphic_width == 1152 && graphic_height == 900)) { 926 error_report("Unsupported resolution: %d x %d", graphic_width, 927 graphic_height); 928 exit(1); 929 } 930 931 /* sbus irq 5 */ 932 cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 933 graphic_width, graphic_height, graphic_depth); 934 } else { 935 /* If no display specified, default to TCX */ 936 if (graphic_depth != 8 && graphic_depth != 24) { 937 error_report("Unsupported depth: %d", graphic_depth); 938 exit(1); 939 } 940 941 if (!(graphic_width == 1024 && graphic_height == 768)) { 942 error_report("Unsupported resolution: %d x %d", 943 graphic_width, graphic_height); 944 exit(1); 945 } 946 947 tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 948 graphic_width, graphic_height, graphic_depth); 949 } 950 } 951 952 for (i = num_vsimms; i < MAX_VSIMMS; i++) { 953 /* vsimm registers probed by OBP */ 954 if (hwdef->vsimm[i].reg_base) { 955 empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000); 956 } 957 } 958 959 if (hwdef->sx_base) { 960 empty_slot_init(hwdef->sx_base, 0x2000); 961 } 962 963 lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq); 964 965 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8); 966 967 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus); 968 969 slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14], 970 !machine->enable_graphics, ESCC_CLOCK, 1); 971 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device 972 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */ 973 escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15], 974 serial_hds[0], serial_hds[1], ESCC_CLOCK, 1); 975 976 if (hwdef->apc_base) { 977 apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0)); 978 } 979 980 if (hwdef->fd_base) { 981 /* there is zero or one floppy drive */ 982 memset(fd, 0, sizeof(fd)); 983 fd[0] = drive_get(IF_FLOPPY, 0, 0); 984 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd, 985 &fdc_tc); 986 } else { 987 fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0); 988 } 989 990 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base, 991 slavio_irq[30], fdc_tc); 992 993 esp_init(hwdef->esp_base, 2, 994 espdma_memory_read, espdma_memory_write, 995 espdma, espdma_irq, &esp_reset, &dma_enable); 996 997 qdev_connect_gpio_out(espdma, 0, esp_reset); 998 qdev_connect_gpio_out(espdma, 1, dma_enable); 999 1000 if (hwdef->cs_base) { 1001 sysbus_create_simple("SUNW,CS4231", hwdef->cs_base, 1002 slavio_irq[5]); 1003 } 1004 1005 if (hwdef->dbri_base) { 1006 /* ISDN chip with attached CS4215 audio codec */ 1007 /* prom space */ 1008 empty_slot_init(hwdef->dbri_base+0x1000, 0x30); 1009 /* reg space */ 1010 empty_slot_init(hwdef->dbri_base+0x10000, 0x100); 1011 } 1012 1013 if (hwdef->bpp_base) { 1014 /* parallel port */ 1015 empty_slot_init(hwdef->bpp_base, 0x20); 1016 } 1017 1018 kernel_size = sun4m_load_kernel(machine->kernel_filename, 1019 machine->initrd_filename, 1020 machine->ram_size); 1021 1022 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline, 1023 machine->boot_order, machine->ram_size, kernel_size, 1024 graphic_width, graphic_height, graphic_depth, 1025 hwdef->nvram_machine_id, "Sun4m"); 1026 1027 if (hwdef->ecc_base) 1028 ecc_init(hwdef->ecc_base, slavio_irq[28], 1029 hwdef->ecc_version); 1030 1031 fw_cfg = fw_cfg_init_mem(CFG_ADDR, CFG_ADDR + 2); 1032 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 1033 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); 1034 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 1035 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); 1036 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); 1037 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width); 1038 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height); 1039 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); 1040 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1041 if (machine->kernel_cmdline) { 1042 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); 1043 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, 1044 machine->kernel_cmdline); 1045 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline); 1046 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 1047 strlen(machine->kernel_cmdline) + 1); 1048 } else { 1049 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); 1050 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); 1051 } 1052 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); 1053 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used 1054 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]); 1055 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); 1056 } 1057 1058 enum { 1059 ss5_id = 32, 1060 vger_id, 1061 lx_id, 1062 ss4_id, 1063 scls_id, 1064 sbook_id, 1065 ss10_id = 64, 1066 ss20_id, 1067 ss600mp_id, 1068 }; 1069 1070 static const struct sun4m_hwdef sun4m_hwdefs[] = { 1071 /* SS-5 */ 1072 { 1073 .iommu_base = 0x10000000, 1074 .iommu_pad_base = 0x10004000, 1075 .iommu_pad_len = 0x0fffb000, 1076 .tcx_base = 0x50000000, 1077 .cs_base = 0x6c000000, 1078 .slavio_base = 0x70000000, 1079 .ms_kb_base = 0x71000000, 1080 .serial_base = 0x71100000, 1081 .nvram_base = 0x71200000, 1082 .fd_base = 0x71400000, 1083 .counter_base = 0x71d00000, 1084 .intctl_base = 0x71e00000, 1085 .idreg_base = 0x78000000, 1086 .dma_base = 0x78400000, 1087 .esp_base = 0x78800000, 1088 .le_base = 0x78c00000, 1089 .apc_base = 0x6a000000, 1090 .afx_base = 0x6e000000, 1091 .aux1_base = 0x71900000, 1092 .aux2_base = 0x71910000, 1093 .nvram_machine_id = 0x80, 1094 .machine_id = ss5_id, 1095 .iommu_version = 0x05000000, 1096 .max_mem = 0x10000000, 1097 .default_cpu_model = "Fujitsu MB86904", 1098 }, 1099 /* SS-10 */ 1100 { 1101 .iommu_base = 0xfe0000000ULL, 1102 .tcx_base = 0xe20000000ULL, 1103 .slavio_base = 0xff0000000ULL, 1104 .ms_kb_base = 0xff1000000ULL, 1105 .serial_base = 0xff1100000ULL, 1106 .nvram_base = 0xff1200000ULL, 1107 .fd_base = 0xff1700000ULL, 1108 .counter_base = 0xff1300000ULL, 1109 .intctl_base = 0xff1400000ULL, 1110 .idreg_base = 0xef0000000ULL, 1111 .dma_base = 0xef0400000ULL, 1112 .esp_base = 0xef0800000ULL, 1113 .le_base = 0xef0c00000ULL, 1114 .apc_base = 0xefa000000ULL, // XXX should not exist 1115 .aux1_base = 0xff1800000ULL, 1116 .aux2_base = 0xff1a01000ULL, 1117 .ecc_base = 0xf00000000ULL, 1118 .ecc_version = 0x10000000, // version 0, implementation 1 1119 .nvram_machine_id = 0x72, 1120 .machine_id = ss10_id, 1121 .iommu_version = 0x03000000, 1122 .max_mem = 0xf00000000ULL, 1123 .default_cpu_model = "TI SuperSparc II", 1124 }, 1125 /* SS-600MP */ 1126 { 1127 .iommu_base = 0xfe0000000ULL, 1128 .tcx_base = 0xe20000000ULL, 1129 .slavio_base = 0xff0000000ULL, 1130 .ms_kb_base = 0xff1000000ULL, 1131 .serial_base = 0xff1100000ULL, 1132 .nvram_base = 0xff1200000ULL, 1133 .counter_base = 0xff1300000ULL, 1134 .intctl_base = 0xff1400000ULL, 1135 .dma_base = 0xef0081000ULL, 1136 .esp_base = 0xef0080000ULL, 1137 .le_base = 0xef0060000ULL, 1138 .apc_base = 0xefa000000ULL, // XXX should not exist 1139 .aux1_base = 0xff1800000ULL, 1140 .aux2_base = 0xff1a01000ULL, // XXX should not exist 1141 .ecc_base = 0xf00000000ULL, 1142 .ecc_version = 0x00000000, // version 0, implementation 0 1143 .nvram_machine_id = 0x71, 1144 .machine_id = ss600mp_id, 1145 .iommu_version = 0x01000000, 1146 .max_mem = 0xf00000000ULL, 1147 .default_cpu_model = "TI SuperSparc II", 1148 }, 1149 /* SS-20 */ 1150 { 1151 .iommu_base = 0xfe0000000ULL, 1152 .tcx_base = 0xe20000000ULL, 1153 .slavio_base = 0xff0000000ULL, 1154 .ms_kb_base = 0xff1000000ULL, 1155 .serial_base = 0xff1100000ULL, 1156 .nvram_base = 0xff1200000ULL, 1157 .fd_base = 0xff1700000ULL, 1158 .counter_base = 0xff1300000ULL, 1159 .intctl_base = 0xff1400000ULL, 1160 .idreg_base = 0xef0000000ULL, 1161 .dma_base = 0xef0400000ULL, 1162 .esp_base = 0xef0800000ULL, 1163 .le_base = 0xef0c00000ULL, 1164 .bpp_base = 0xef4800000ULL, 1165 .apc_base = 0xefa000000ULL, // XXX should not exist 1166 .aux1_base = 0xff1800000ULL, 1167 .aux2_base = 0xff1a01000ULL, 1168 .dbri_base = 0xee0000000ULL, 1169 .sx_base = 0xf80000000ULL, 1170 .vsimm = { 1171 { 1172 .reg_base = 0x9c000000ULL, 1173 .vram_base = 0xfc000000ULL 1174 }, { 1175 .reg_base = 0x90000000ULL, 1176 .vram_base = 0xf0000000ULL 1177 }, { 1178 .reg_base = 0x94000000ULL 1179 }, { 1180 .reg_base = 0x98000000ULL 1181 } 1182 }, 1183 .ecc_base = 0xf00000000ULL, 1184 .ecc_version = 0x20000000, // version 0, implementation 2 1185 .nvram_machine_id = 0x72, 1186 .machine_id = ss20_id, 1187 .iommu_version = 0x13000000, 1188 .max_mem = 0xf00000000ULL, 1189 .default_cpu_model = "TI SuperSparc II", 1190 }, 1191 /* Voyager */ 1192 { 1193 .iommu_base = 0x10000000, 1194 .tcx_base = 0x50000000, 1195 .slavio_base = 0x70000000, 1196 .ms_kb_base = 0x71000000, 1197 .serial_base = 0x71100000, 1198 .nvram_base = 0x71200000, 1199 .fd_base = 0x71400000, 1200 .counter_base = 0x71d00000, 1201 .intctl_base = 0x71e00000, 1202 .idreg_base = 0x78000000, 1203 .dma_base = 0x78400000, 1204 .esp_base = 0x78800000, 1205 .le_base = 0x78c00000, 1206 .apc_base = 0x71300000, // pmc 1207 .aux1_base = 0x71900000, 1208 .aux2_base = 0x71910000, 1209 .nvram_machine_id = 0x80, 1210 .machine_id = vger_id, 1211 .iommu_version = 0x05000000, 1212 .max_mem = 0x10000000, 1213 .default_cpu_model = "Fujitsu MB86904", 1214 }, 1215 /* LX */ 1216 { 1217 .iommu_base = 0x10000000, 1218 .iommu_pad_base = 0x10004000, 1219 .iommu_pad_len = 0x0fffb000, 1220 .tcx_base = 0x50000000, 1221 .slavio_base = 0x70000000, 1222 .ms_kb_base = 0x71000000, 1223 .serial_base = 0x71100000, 1224 .nvram_base = 0x71200000, 1225 .fd_base = 0x71400000, 1226 .counter_base = 0x71d00000, 1227 .intctl_base = 0x71e00000, 1228 .idreg_base = 0x78000000, 1229 .dma_base = 0x78400000, 1230 .esp_base = 0x78800000, 1231 .le_base = 0x78c00000, 1232 .aux1_base = 0x71900000, 1233 .aux2_base = 0x71910000, 1234 .nvram_machine_id = 0x80, 1235 .machine_id = lx_id, 1236 .iommu_version = 0x04000000, 1237 .max_mem = 0x10000000, 1238 .default_cpu_model = "TI MicroSparc I", 1239 }, 1240 /* SS-4 */ 1241 { 1242 .iommu_base = 0x10000000, 1243 .tcx_base = 0x50000000, 1244 .cs_base = 0x6c000000, 1245 .slavio_base = 0x70000000, 1246 .ms_kb_base = 0x71000000, 1247 .serial_base = 0x71100000, 1248 .nvram_base = 0x71200000, 1249 .fd_base = 0x71400000, 1250 .counter_base = 0x71d00000, 1251 .intctl_base = 0x71e00000, 1252 .idreg_base = 0x78000000, 1253 .dma_base = 0x78400000, 1254 .esp_base = 0x78800000, 1255 .le_base = 0x78c00000, 1256 .apc_base = 0x6a000000, 1257 .aux1_base = 0x71900000, 1258 .aux2_base = 0x71910000, 1259 .nvram_machine_id = 0x80, 1260 .machine_id = ss4_id, 1261 .iommu_version = 0x05000000, 1262 .max_mem = 0x10000000, 1263 .default_cpu_model = "Fujitsu MB86904", 1264 }, 1265 /* SPARCClassic */ 1266 { 1267 .iommu_base = 0x10000000, 1268 .tcx_base = 0x50000000, 1269 .slavio_base = 0x70000000, 1270 .ms_kb_base = 0x71000000, 1271 .serial_base = 0x71100000, 1272 .nvram_base = 0x71200000, 1273 .fd_base = 0x71400000, 1274 .counter_base = 0x71d00000, 1275 .intctl_base = 0x71e00000, 1276 .idreg_base = 0x78000000, 1277 .dma_base = 0x78400000, 1278 .esp_base = 0x78800000, 1279 .le_base = 0x78c00000, 1280 .apc_base = 0x6a000000, 1281 .aux1_base = 0x71900000, 1282 .aux2_base = 0x71910000, 1283 .nvram_machine_id = 0x80, 1284 .machine_id = scls_id, 1285 .iommu_version = 0x05000000, 1286 .max_mem = 0x10000000, 1287 .default_cpu_model = "TI MicroSparc I", 1288 }, 1289 /* SPARCbook */ 1290 { 1291 .iommu_base = 0x10000000, 1292 .tcx_base = 0x50000000, // XXX 1293 .slavio_base = 0x70000000, 1294 .ms_kb_base = 0x71000000, 1295 .serial_base = 0x71100000, 1296 .nvram_base = 0x71200000, 1297 .fd_base = 0x71400000, 1298 .counter_base = 0x71d00000, 1299 .intctl_base = 0x71e00000, 1300 .idreg_base = 0x78000000, 1301 .dma_base = 0x78400000, 1302 .esp_base = 0x78800000, 1303 .le_base = 0x78c00000, 1304 .apc_base = 0x6a000000, 1305 .aux1_base = 0x71900000, 1306 .aux2_base = 0x71910000, 1307 .nvram_machine_id = 0x80, 1308 .machine_id = sbook_id, 1309 .iommu_version = 0x05000000, 1310 .max_mem = 0x10000000, 1311 .default_cpu_model = "TI MicroSparc I", 1312 }, 1313 }; 1314 1315 /* SPARCstation 5 hardware initialisation */ 1316 static void ss5_init(MachineState *machine) 1317 { 1318 sun4m_hw_init(&sun4m_hwdefs[0], machine); 1319 } 1320 1321 /* SPARCstation 10 hardware initialisation */ 1322 static void ss10_init(MachineState *machine) 1323 { 1324 sun4m_hw_init(&sun4m_hwdefs[1], machine); 1325 } 1326 1327 /* SPARCserver 600MP hardware initialisation */ 1328 static void ss600mp_init(MachineState *machine) 1329 { 1330 sun4m_hw_init(&sun4m_hwdefs[2], machine); 1331 } 1332 1333 /* SPARCstation 20 hardware initialisation */ 1334 static void ss20_init(MachineState *machine) 1335 { 1336 sun4m_hw_init(&sun4m_hwdefs[3], machine); 1337 } 1338 1339 /* SPARCstation Voyager hardware initialisation */ 1340 static void vger_init(MachineState *machine) 1341 { 1342 sun4m_hw_init(&sun4m_hwdefs[4], machine); 1343 } 1344 1345 /* SPARCstation LX hardware initialisation */ 1346 static void ss_lx_init(MachineState *machine) 1347 { 1348 sun4m_hw_init(&sun4m_hwdefs[5], machine); 1349 } 1350 1351 /* SPARCstation 4 hardware initialisation */ 1352 static void ss4_init(MachineState *machine) 1353 { 1354 sun4m_hw_init(&sun4m_hwdefs[6], machine); 1355 } 1356 1357 /* SPARCClassic hardware initialisation */ 1358 static void scls_init(MachineState *machine) 1359 { 1360 sun4m_hw_init(&sun4m_hwdefs[7], machine); 1361 } 1362 1363 /* SPARCbook hardware initialisation */ 1364 static void sbook_init(MachineState *machine) 1365 { 1366 sun4m_hw_init(&sun4m_hwdefs[8], machine); 1367 } 1368 1369 static void ss5_class_init(ObjectClass *oc, void *data) 1370 { 1371 MachineClass *mc = MACHINE_CLASS(oc); 1372 1373 mc->desc = "Sun4m platform, SPARCstation 5"; 1374 mc->init = ss5_init; 1375 mc->block_default_type = IF_SCSI; 1376 mc->is_default = 1; 1377 mc->default_boot_order = "c"; 1378 } 1379 1380 static const TypeInfo ss5_type = { 1381 .name = MACHINE_TYPE_NAME("SS-5"), 1382 .parent = TYPE_MACHINE, 1383 .class_init = ss5_class_init, 1384 }; 1385 1386 static void ss10_class_init(ObjectClass *oc, void *data) 1387 { 1388 MachineClass *mc = MACHINE_CLASS(oc); 1389 1390 mc->desc = "Sun4m platform, SPARCstation 10"; 1391 mc->init = ss10_init; 1392 mc->block_default_type = IF_SCSI; 1393 mc->max_cpus = 4; 1394 mc->default_boot_order = "c"; 1395 } 1396 1397 static const TypeInfo ss10_type = { 1398 .name = MACHINE_TYPE_NAME("SS-10"), 1399 .parent = TYPE_MACHINE, 1400 .class_init = ss10_class_init, 1401 }; 1402 1403 static void ss600mp_class_init(ObjectClass *oc, void *data) 1404 { 1405 MachineClass *mc = MACHINE_CLASS(oc); 1406 1407 mc->desc = "Sun4m platform, SPARCserver 600MP"; 1408 mc->init = ss600mp_init; 1409 mc->block_default_type = IF_SCSI; 1410 mc->max_cpus = 4; 1411 mc->default_boot_order = "c"; 1412 } 1413 1414 static const TypeInfo ss600mp_type = { 1415 .name = MACHINE_TYPE_NAME("SS-600MP"), 1416 .parent = TYPE_MACHINE, 1417 .class_init = ss600mp_class_init, 1418 }; 1419 1420 static void ss20_class_init(ObjectClass *oc, void *data) 1421 { 1422 MachineClass *mc = MACHINE_CLASS(oc); 1423 1424 mc->desc = "Sun4m platform, SPARCstation 20"; 1425 mc->init = ss20_init; 1426 mc->block_default_type = IF_SCSI; 1427 mc->max_cpus = 4; 1428 mc->default_boot_order = "c"; 1429 } 1430 1431 static const TypeInfo ss20_type = { 1432 .name = MACHINE_TYPE_NAME("SS-20"), 1433 .parent = TYPE_MACHINE, 1434 .class_init = ss20_class_init, 1435 }; 1436 1437 static void voyager_class_init(ObjectClass *oc, void *data) 1438 { 1439 MachineClass *mc = MACHINE_CLASS(oc); 1440 1441 mc->desc = "Sun4m platform, SPARCstation Voyager"; 1442 mc->init = vger_init; 1443 mc->block_default_type = IF_SCSI; 1444 mc->default_boot_order = "c"; 1445 } 1446 1447 static const TypeInfo voyager_type = { 1448 .name = MACHINE_TYPE_NAME("Voyager"), 1449 .parent = TYPE_MACHINE, 1450 .class_init = voyager_class_init, 1451 }; 1452 1453 static void ss_lx_class_init(ObjectClass *oc, void *data) 1454 { 1455 MachineClass *mc = MACHINE_CLASS(oc); 1456 1457 mc->desc = "Sun4m platform, SPARCstation LX"; 1458 mc->init = ss_lx_init; 1459 mc->block_default_type = IF_SCSI; 1460 mc->default_boot_order = "c"; 1461 } 1462 1463 static const TypeInfo ss_lx_type = { 1464 .name = MACHINE_TYPE_NAME("LX"), 1465 .parent = TYPE_MACHINE, 1466 .class_init = ss_lx_class_init, 1467 }; 1468 1469 static void ss4_class_init(ObjectClass *oc, void *data) 1470 { 1471 MachineClass *mc = MACHINE_CLASS(oc); 1472 1473 mc->desc = "Sun4m platform, SPARCstation 4"; 1474 mc->init = ss4_init; 1475 mc->block_default_type = IF_SCSI; 1476 mc->default_boot_order = "c"; 1477 } 1478 1479 static const TypeInfo ss4_type = { 1480 .name = MACHINE_TYPE_NAME("SS-4"), 1481 .parent = TYPE_MACHINE, 1482 .class_init = ss4_class_init, 1483 }; 1484 1485 static void scls_class_init(ObjectClass *oc, void *data) 1486 { 1487 MachineClass *mc = MACHINE_CLASS(oc); 1488 1489 mc->desc = "Sun4m platform, SPARCClassic"; 1490 mc->init = scls_init; 1491 mc->block_default_type = IF_SCSI; 1492 mc->default_boot_order = "c"; 1493 } 1494 1495 static const TypeInfo scls_type = { 1496 .name = MACHINE_TYPE_NAME("SPARCClassic"), 1497 .parent = TYPE_MACHINE, 1498 .class_init = scls_class_init, 1499 }; 1500 1501 static void sbook_class_init(ObjectClass *oc, void *data) 1502 { 1503 MachineClass *mc = MACHINE_CLASS(oc); 1504 1505 mc->desc = "Sun4m platform, SPARCbook"; 1506 mc->init = sbook_init; 1507 mc->block_default_type = IF_SCSI; 1508 mc->default_boot_order = "c"; 1509 } 1510 1511 static const TypeInfo sbook_type = { 1512 .name = MACHINE_TYPE_NAME("SPARCbook"), 1513 .parent = TYPE_MACHINE, 1514 .class_init = sbook_class_init, 1515 }; 1516 1517 static void sun4m_register_types(void) 1518 { 1519 type_register_static(&idreg_info); 1520 type_register_static(&afx_info); 1521 type_register_static(&prom_info); 1522 type_register_static(&ram_info); 1523 1524 type_register_static(&ss5_type); 1525 type_register_static(&ss10_type); 1526 type_register_static(&ss600mp_type); 1527 type_register_static(&ss20_type); 1528 type_register_static(&voyager_type); 1529 type_register_static(&ss_lx_type); 1530 type_register_static(&ss4_type); 1531 type_register_static(&scls_type); 1532 type_register_static(&sbook_type); 1533 } 1534 1535 type_init(sun4m_register_types) 1536