1 /* 2 * QEMU Sun4m & Sun4d & Sun4c System Emulator 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "qapi/error.h" 28 #include "qemu-common.h" 29 #include "cpu.h" 30 #include "hw/sysbus.h" 31 #include "qemu/error-report.h" 32 #include "qemu/timer.h" 33 #include "hw/sparc/sun4m_iommu.h" 34 #include "hw/rtc/m48t59.h" 35 #include "migration/vmstate.h" 36 #include "hw/sparc/sparc32_dma.h" 37 #include "hw/block/fdc.h" 38 #include "sysemu/reset.h" 39 #include "sysemu/runstate.h" 40 #include "sysemu/sysemu.h" 41 #include "net/net.h" 42 #include "hw/boards.h" 43 #include "hw/scsi/esp.h" 44 #include "hw/nvram/sun_nvram.h" 45 #include "hw/qdev-properties.h" 46 #include "hw/nvram/chrp_nvram.h" 47 #include "hw/nvram/fw_cfg.h" 48 #include "hw/char/escc.h" 49 #include "hw/misc/empty_slot.h" 50 #include "hw/misc/unimp.h" 51 #include "hw/irq.h" 52 #include "hw/loader.h" 53 #include "elf.h" 54 #include "trace.h" 55 56 /* 57 * Sun4m architecture was used in the following machines: 58 * 59 * SPARCserver 6xxMP/xx 60 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), 61 * SPARCclassic X (4/10) 62 * SPARCstation LX/ZX (4/30) 63 * SPARCstation Voyager 64 * SPARCstation 10/xx, SPARCserver 10/xx 65 * SPARCstation 5, SPARCserver 5 66 * SPARCstation 20/xx, SPARCserver 20 67 * SPARCstation 4 68 * 69 * See for example: http://www.sunhelp.org/faq/sunref1.html 70 */ 71 72 #define KERNEL_LOAD_ADDR 0x00004000 73 #define CMDLINE_ADDR 0x007ff000 74 #define INITRD_LOAD_ADDR 0x00800000 75 #define PROM_SIZE_MAX (1 * MiB) 76 #define PROM_VADDR 0xffd00000 77 #define PROM_FILENAME "openbios-sparc32" 78 #define CFG_ADDR 0xd00000510ULL 79 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00) 80 #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01) 81 #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02) 82 83 #define MAX_CPUS 16 84 #define MAX_PILS 16 85 #define MAX_VSIMMS 4 86 87 #define ESCC_CLOCK 4915200 88 89 struct sun4m_hwdef { 90 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base; 91 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base; 92 hwaddr serial_base, fd_base; 93 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base; 94 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base; 95 hwaddr bpp_base, dbri_base, sx_base; 96 struct { 97 hwaddr reg_base, vram_base; 98 } vsimm[MAX_VSIMMS]; 99 hwaddr ecc_base; 100 uint64_t max_mem; 101 uint32_t ecc_version; 102 uint32_t iommu_version; 103 uint16_t machine_id; 104 uint8_t nvram_machine_id; 105 }; 106 107 const char *fw_cfg_arch_key_name(uint16_t key) 108 { 109 static const struct { 110 uint16_t key; 111 const char *name; 112 } fw_cfg_arch_wellknown_keys[] = { 113 {FW_CFG_SUN4M_DEPTH, "depth"}, 114 {FW_CFG_SUN4M_WIDTH, "width"}, 115 {FW_CFG_SUN4M_HEIGHT, "height"}, 116 }; 117 118 for (size_t i = 0; i < ARRAY_SIZE(fw_cfg_arch_wellknown_keys); i++) { 119 if (fw_cfg_arch_wellknown_keys[i].key == key) { 120 return fw_cfg_arch_wellknown_keys[i].name; 121 } 122 } 123 return NULL; 124 } 125 126 static void fw_cfg_boot_set(void *opaque, const char *boot_device, 127 Error **errp) 128 { 129 fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); 130 } 131 132 static void nvram_init(Nvram *nvram, uint8_t *macaddr, 133 const char *cmdline, const char *boot_devices, 134 ram_addr_t RAM_size, uint32_t kernel_size, 135 int width, int height, int depth, 136 int nvram_machine_id, const char *arch) 137 { 138 unsigned int i; 139 int sysp_end; 140 uint8_t image[0x1ff0]; 141 NvramClass *k = NVRAM_GET_CLASS(nvram); 142 143 memset(image, '\0', sizeof(image)); 144 145 /* OpenBIOS nvram variables partition */ 146 sysp_end = chrp_nvram_create_system_partition(image, 0, 0x1fd0); 147 148 /* Free space partition */ 149 chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end); 150 151 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 152 nvram_machine_id); 153 154 for (i = 0; i < sizeof(image); i++) { 155 (k->write)(nvram, i, image[i]); 156 } 157 } 158 159 void cpu_check_irqs(CPUSPARCState *env) 160 { 161 CPUState *cs; 162 163 /* We should be holding the BQL before we mess with IRQs */ 164 g_assert(qemu_mutex_iothread_locked()); 165 166 if (env->pil_in && (env->interrupt_index == 0 || 167 (env->interrupt_index & ~15) == TT_EXTINT)) { 168 unsigned int i; 169 170 for (i = 15; i > 0; i--) { 171 if (env->pil_in & (1 << i)) { 172 int old_interrupt = env->interrupt_index; 173 174 env->interrupt_index = TT_EXTINT | i; 175 if (old_interrupt != env->interrupt_index) { 176 cs = env_cpu(env); 177 trace_sun4m_cpu_interrupt(i); 178 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 179 } 180 break; 181 } 182 } 183 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { 184 cs = env_cpu(env); 185 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15); 186 env->interrupt_index = 0; 187 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 188 } 189 } 190 191 static void cpu_kick_irq(SPARCCPU *cpu) 192 { 193 CPUSPARCState *env = &cpu->env; 194 CPUState *cs = CPU(cpu); 195 196 cs->halted = 0; 197 cpu_check_irqs(env); 198 qemu_cpu_kick(cs); 199 } 200 201 static void cpu_set_irq(void *opaque, int irq, int level) 202 { 203 SPARCCPU *cpu = opaque; 204 CPUSPARCState *env = &cpu->env; 205 206 if (level) { 207 trace_sun4m_cpu_set_irq_raise(irq); 208 env->pil_in |= 1 << irq; 209 cpu_kick_irq(cpu); 210 } else { 211 trace_sun4m_cpu_set_irq_lower(irq); 212 env->pil_in &= ~(1 << irq); 213 cpu_check_irqs(env); 214 } 215 } 216 217 static void dummy_cpu_set_irq(void *opaque, int irq, int level) 218 { 219 } 220 221 static void main_cpu_reset(void *opaque) 222 { 223 SPARCCPU *cpu = opaque; 224 CPUState *cs = CPU(cpu); 225 226 cpu_reset(cs); 227 cs->halted = 0; 228 } 229 230 static void secondary_cpu_reset(void *opaque) 231 { 232 SPARCCPU *cpu = opaque; 233 CPUState *cs = CPU(cpu); 234 235 cpu_reset(cs); 236 cs->halted = 1; 237 } 238 239 static void cpu_halt_signal(void *opaque, int irq, int level) 240 { 241 if (level && current_cpu) { 242 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT); 243 } 244 } 245 246 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 247 { 248 return addr - 0xf0000000ULL; 249 } 250 251 static unsigned long sun4m_load_kernel(const char *kernel_filename, 252 const char *initrd_filename, 253 ram_addr_t RAM_size, 254 uint32_t *initrd_size) 255 { 256 int linux_boot; 257 unsigned int i; 258 long kernel_size; 259 uint8_t *ptr; 260 261 linux_boot = (kernel_filename != NULL); 262 263 kernel_size = 0; 264 if (linux_boot) { 265 int bswap_needed; 266 267 #ifdef BSWAP_NEEDED 268 bswap_needed = 1; 269 #else 270 bswap_needed = 0; 271 #endif 272 kernel_size = load_elf(kernel_filename, NULL, 273 translate_kernel_address, NULL, 274 NULL, NULL, NULL, NULL, 1, EM_SPARC, 0, 0); 275 if (kernel_size < 0) 276 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, 277 RAM_size - KERNEL_LOAD_ADDR, bswap_needed, 278 TARGET_PAGE_SIZE); 279 if (kernel_size < 0) 280 kernel_size = load_image_targphys(kernel_filename, 281 KERNEL_LOAD_ADDR, 282 RAM_size - KERNEL_LOAD_ADDR); 283 if (kernel_size < 0) { 284 error_report("could not load kernel '%s'", kernel_filename); 285 exit(1); 286 } 287 288 /* load initrd */ 289 *initrd_size = 0; 290 if (initrd_filename) { 291 *initrd_size = load_image_targphys(initrd_filename, 292 INITRD_LOAD_ADDR, 293 RAM_size - INITRD_LOAD_ADDR); 294 if ((int)*initrd_size < 0) { 295 error_report("could not load initial ram disk '%s'", 296 initrd_filename); 297 exit(1); 298 } 299 } 300 if (*initrd_size > 0) { 301 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { 302 ptr = rom_ptr(KERNEL_LOAD_ADDR + i, 24); 303 if (ptr && ldl_p(ptr) == 0x48647253) { /* HdrS */ 304 stl_p(ptr + 16, INITRD_LOAD_ADDR); 305 stl_p(ptr + 20, *initrd_size); 306 break; 307 } 308 } 309 } 310 } 311 return kernel_size; 312 } 313 314 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq) 315 { 316 DeviceState *dev; 317 SysBusDevice *s; 318 319 dev = qdev_new(TYPE_SUN4M_IOMMU); 320 qdev_prop_set_uint32(dev, "version", version); 321 s = SYS_BUS_DEVICE(dev); 322 sysbus_realize_and_unref(s, &error_fatal); 323 sysbus_connect_irq(s, 0, irq); 324 sysbus_mmio_map(s, 0, addr); 325 326 return s; 327 } 328 329 static void *sparc32_dma_init(hwaddr dma_base, 330 hwaddr esp_base, qemu_irq espdma_irq, 331 hwaddr le_base, qemu_irq ledma_irq) 332 { 333 DeviceState *dma; 334 ESPDMADeviceState *espdma; 335 LEDMADeviceState *ledma; 336 SysBusESPState *esp; 337 SysBusPCNetState *lance; 338 339 dma = qdev_new(TYPE_SPARC32_DMA); 340 sysbus_realize_and_unref(SYS_BUS_DEVICE(dma), &error_fatal); 341 sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base); 342 343 espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component( 344 OBJECT(dma), "espdma")); 345 sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq); 346 347 esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp")); 348 sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base); 349 scsi_bus_legacy_handle_cmdline(&esp->esp.bus); 350 351 ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component( 352 OBJECT(dma), "ledma")); 353 sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq); 354 355 lance = SYSBUS_PCNET(object_resolve_path_component( 356 OBJECT(ledma), "lance")); 357 sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base); 358 359 return dma; 360 } 361 362 static DeviceState *slavio_intctl_init(hwaddr addr, 363 hwaddr addrg, 364 qemu_irq **parent_irq) 365 { 366 DeviceState *dev; 367 SysBusDevice *s; 368 unsigned int i, j; 369 370 dev = qdev_new("slavio_intctl"); 371 372 s = SYS_BUS_DEVICE(dev); 373 sysbus_realize_and_unref(s, &error_fatal); 374 375 for (i = 0; i < MAX_CPUS; i++) { 376 for (j = 0; j < MAX_PILS; j++) { 377 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]); 378 } 379 } 380 sysbus_mmio_map(s, 0, addrg); 381 for (i = 0; i < MAX_CPUS; i++) { 382 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE); 383 } 384 385 return dev; 386 } 387 388 #define SYS_TIMER_OFFSET 0x10000ULL 389 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu) 390 391 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq, 392 qemu_irq *cpu_irqs, unsigned int num_cpus) 393 { 394 DeviceState *dev; 395 SysBusDevice *s; 396 unsigned int i; 397 398 dev = qdev_new("slavio_timer"); 399 qdev_prop_set_uint32(dev, "num_cpus", num_cpus); 400 s = SYS_BUS_DEVICE(dev); 401 sysbus_realize_and_unref(s, &error_fatal); 402 sysbus_connect_irq(s, 0, master_irq); 403 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET); 404 405 for (i = 0; i < MAX_CPUS; i++) { 406 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i)); 407 sysbus_connect_irq(s, i + 1, cpu_irqs[i]); 408 } 409 } 410 411 static qemu_irq slavio_system_powerdown; 412 413 static void slavio_powerdown_req(Notifier *n, void *opaque) 414 { 415 qemu_irq_raise(slavio_system_powerdown); 416 } 417 418 static Notifier slavio_system_powerdown_notifier = { 419 .notify = slavio_powerdown_req 420 }; 421 422 #define MISC_LEDS 0x01600000 423 #define MISC_CFG 0x01800000 424 #define MISC_DIAG 0x01a00000 425 #define MISC_MDM 0x01b00000 426 #define MISC_SYS 0x01f00000 427 428 static void slavio_misc_init(hwaddr base, 429 hwaddr aux1_base, 430 hwaddr aux2_base, qemu_irq irq, 431 qemu_irq fdc_tc) 432 { 433 DeviceState *dev; 434 SysBusDevice *s; 435 436 dev = qdev_new("slavio_misc"); 437 s = SYS_BUS_DEVICE(dev); 438 sysbus_realize_and_unref(s, &error_fatal); 439 if (base) { 440 /* 8 bit registers */ 441 /* Slavio control */ 442 sysbus_mmio_map(s, 0, base + MISC_CFG); 443 /* Diagnostics */ 444 sysbus_mmio_map(s, 1, base + MISC_DIAG); 445 /* Modem control */ 446 sysbus_mmio_map(s, 2, base + MISC_MDM); 447 /* 16 bit registers */ 448 /* ss600mp diag LEDs */ 449 sysbus_mmio_map(s, 3, base + MISC_LEDS); 450 /* 32 bit registers */ 451 /* System control */ 452 sysbus_mmio_map(s, 4, base + MISC_SYS); 453 } 454 if (aux1_base) { 455 /* AUX 1 (Misc System Functions) */ 456 sysbus_mmio_map(s, 5, aux1_base); 457 } 458 if (aux2_base) { 459 /* AUX 2 (Software Powerdown Control) */ 460 sysbus_mmio_map(s, 6, aux2_base); 461 } 462 sysbus_connect_irq(s, 0, irq); 463 sysbus_connect_irq(s, 1, fdc_tc); 464 slavio_system_powerdown = qdev_get_gpio_in(dev, 0); 465 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier); 466 } 467 468 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version) 469 { 470 DeviceState *dev; 471 SysBusDevice *s; 472 473 dev = qdev_new("eccmemctl"); 474 qdev_prop_set_uint32(dev, "version", version); 475 s = SYS_BUS_DEVICE(dev); 476 sysbus_realize_and_unref(s, &error_fatal); 477 sysbus_connect_irq(s, 0, irq); 478 sysbus_mmio_map(s, 0, base); 479 if (version == 0) { // SS-600MP only 480 sysbus_mmio_map(s, 1, base + 0x1000); 481 } 482 } 483 484 static void apc_init(hwaddr power_base, qemu_irq cpu_halt) 485 { 486 DeviceState *dev; 487 SysBusDevice *s; 488 489 dev = qdev_new("apc"); 490 s = SYS_BUS_DEVICE(dev); 491 sysbus_realize_and_unref(s, &error_fatal); 492 /* Power management (APC) XXX: not a Slavio device */ 493 sysbus_mmio_map(s, 0, power_base); 494 sysbus_connect_irq(s, 0, cpu_halt); 495 } 496 497 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 498 int height, int depth) 499 { 500 DeviceState *dev; 501 SysBusDevice *s; 502 503 dev = qdev_new("SUNW,tcx"); 504 qdev_prop_set_uint32(dev, "vram_size", vram_size); 505 qdev_prop_set_uint16(dev, "width", width); 506 qdev_prop_set_uint16(dev, "height", height); 507 qdev_prop_set_uint16(dev, "depth", depth); 508 s = SYS_BUS_DEVICE(dev); 509 sysbus_realize_and_unref(s, &error_fatal); 510 511 /* 10/ROM : FCode ROM */ 512 sysbus_mmio_map(s, 0, addr); 513 /* 2/STIP : Stipple */ 514 sysbus_mmio_map(s, 1, addr + 0x04000000ULL); 515 /* 3/BLIT : Blitter */ 516 sysbus_mmio_map(s, 2, addr + 0x06000000ULL); 517 /* 5/RSTIP : Raw Stipple */ 518 sysbus_mmio_map(s, 3, addr + 0x0c000000ULL); 519 /* 6/RBLIT : Raw Blitter */ 520 sysbus_mmio_map(s, 4, addr + 0x0e000000ULL); 521 /* 7/TEC : Transform Engine */ 522 sysbus_mmio_map(s, 5, addr + 0x00700000ULL); 523 /* 8/CMAP : DAC */ 524 sysbus_mmio_map(s, 6, addr + 0x00200000ULL); 525 /* 9/THC : */ 526 if (depth == 8) { 527 sysbus_mmio_map(s, 7, addr + 0x00300000ULL); 528 } else { 529 sysbus_mmio_map(s, 7, addr + 0x00301000ULL); 530 } 531 /* 11/DHC : */ 532 sysbus_mmio_map(s, 8, addr + 0x00240000ULL); 533 /* 12/ALT : */ 534 sysbus_mmio_map(s, 9, addr + 0x00280000ULL); 535 /* 0/DFB8 : 8-bit plane */ 536 sysbus_mmio_map(s, 10, addr + 0x00800000ULL); 537 /* 1/DFB24 : 24bit plane */ 538 sysbus_mmio_map(s, 11, addr + 0x02000000ULL); 539 /* 4/RDFB32: Raw framebuffer. Control plane */ 540 sysbus_mmio_map(s, 12, addr + 0x0a000000ULL); 541 /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */ 542 if (depth == 8) { 543 sysbus_mmio_map(s, 13, addr + 0x00301000ULL); 544 } 545 546 sysbus_connect_irq(s, 0, irq); 547 } 548 549 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 550 int height, int depth) 551 { 552 DeviceState *dev; 553 SysBusDevice *s; 554 555 dev = qdev_new("cgthree"); 556 qdev_prop_set_uint32(dev, "vram-size", vram_size); 557 qdev_prop_set_uint16(dev, "width", width); 558 qdev_prop_set_uint16(dev, "height", height); 559 qdev_prop_set_uint16(dev, "depth", depth); 560 s = SYS_BUS_DEVICE(dev); 561 sysbus_realize_and_unref(s, &error_fatal); 562 563 /* FCode ROM */ 564 sysbus_mmio_map(s, 0, addr); 565 /* DAC */ 566 sysbus_mmio_map(s, 1, addr + 0x400000ULL); 567 /* 8-bit plane */ 568 sysbus_mmio_map(s, 2, addr + 0x800000ULL); 569 570 sysbus_connect_irq(s, 0, irq); 571 } 572 573 /* NCR89C100/MACIO Internal ID register */ 574 575 #define TYPE_MACIO_ID_REGISTER "macio_idreg" 576 577 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 }; 578 579 static void idreg_init(hwaddr addr) 580 { 581 DeviceState *dev; 582 SysBusDevice *s; 583 584 dev = qdev_new(TYPE_MACIO_ID_REGISTER); 585 s = SYS_BUS_DEVICE(dev); 586 sysbus_realize_and_unref(s, &error_fatal); 587 588 sysbus_mmio_map(s, 0, addr); 589 address_space_write_rom(&address_space_memory, addr, 590 MEMTXATTRS_UNSPECIFIED, 591 idreg_data, sizeof(idreg_data)); 592 } 593 594 #define MACIO_ID_REGISTER(obj) \ 595 OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER) 596 597 typedef struct IDRegState { 598 SysBusDevice parent_obj; 599 600 MemoryRegion mem; 601 } IDRegState; 602 603 static void idreg_realize(DeviceState *ds, Error **errp) 604 { 605 IDRegState *s = MACIO_ID_REGISTER(ds); 606 SysBusDevice *dev = SYS_BUS_DEVICE(ds); 607 Error *local_err = NULL; 608 609 memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.idreg", 610 sizeof(idreg_data), &local_err); 611 if (local_err) { 612 error_propagate(errp, local_err); 613 return; 614 } 615 616 vmstate_register_ram_global(&s->mem); 617 memory_region_set_readonly(&s->mem, true); 618 sysbus_init_mmio(dev, &s->mem); 619 } 620 621 static void idreg_class_init(ObjectClass *oc, void *data) 622 { 623 DeviceClass *dc = DEVICE_CLASS(oc); 624 625 dc->realize = idreg_realize; 626 } 627 628 static const TypeInfo idreg_info = { 629 .name = TYPE_MACIO_ID_REGISTER, 630 .parent = TYPE_SYS_BUS_DEVICE, 631 .instance_size = sizeof(IDRegState), 632 .class_init = idreg_class_init, 633 }; 634 635 #define TYPE_TCX_AFX "tcx_afx" 636 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX) 637 638 typedef struct AFXState { 639 SysBusDevice parent_obj; 640 641 MemoryRegion mem; 642 } AFXState; 643 644 /* SS-5 TCX AFX register */ 645 static void afx_init(hwaddr addr) 646 { 647 DeviceState *dev; 648 SysBusDevice *s; 649 650 dev = qdev_new(TYPE_TCX_AFX); 651 s = SYS_BUS_DEVICE(dev); 652 sysbus_realize_and_unref(s, &error_fatal); 653 654 sysbus_mmio_map(s, 0, addr); 655 } 656 657 static void afx_realize(DeviceState *ds, Error **errp) 658 { 659 AFXState *s = TCX_AFX(ds); 660 SysBusDevice *dev = SYS_BUS_DEVICE(ds); 661 Error *local_err = NULL; 662 663 memory_region_init_ram_nomigrate(&s->mem, OBJECT(ds), "sun4m.afx", 4, 664 &local_err); 665 if (local_err) { 666 error_propagate(errp, local_err); 667 return; 668 } 669 670 vmstate_register_ram_global(&s->mem); 671 sysbus_init_mmio(dev, &s->mem); 672 } 673 674 static void afx_class_init(ObjectClass *oc, void *data) 675 { 676 DeviceClass *dc = DEVICE_CLASS(oc); 677 678 dc->realize = afx_realize; 679 } 680 681 static const TypeInfo afx_info = { 682 .name = TYPE_TCX_AFX, 683 .parent = TYPE_SYS_BUS_DEVICE, 684 .instance_size = sizeof(AFXState), 685 .class_init = afx_class_init, 686 }; 687 688 #define TYPE_OPENPROM "openprom" 689 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM) 690 691 typedef struct PROMState { 692 SysBusDevice parent_obj; 693 694 MemoryRegion prom; 695 } PROMState; 696 697 /* Boot PROM (OpenBIOS) */ 698 static uint64_t translate_prom_address(void *opaque, uint64_t addr) 699 { 700 hwaddr *base_addr = (hwaddr *)opaque; 701 return addr + *base_addr - PROM_VADDR; 702 } 703 704 static void prom_init(hwaddr addr, const char *bios_name) 705 { 706 DeviceState *dev; 707 SysBusDevice *s; 708 char *filename; 709 int ret; 710 711 dev = qdev_new(TYPE_OPENPROM); 712 s = SYS_BUS_DEVICE(dev); 713 sysbus_realize_and_unref(s, &error_fatal); 714 715 sysbus_mmio_map(s, 0, addr); 716 717 /* load boot prom */ 718 if (bios_name == NULL) { 719 bios_name = PROM_FILENAME; 720 } 721 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 722 if (filename) { 723 ret = load_elf(filename, NULL, 724 translate_prom_address, &addr, NULL, 725 NULL, NULL, NULL, 1, EM_SPARC, 0, 0); 726 if (ret < 0 || ret > PROM_SIZE_MAX) { 727 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX); 728 } 729 g_free(filename); 730 } else { 731 ret = -1; 732 } 733 if (ret < 0 || ret > PROM_SIZE_MAX) { 734 error_report("could not load prom '%s'", bios_name); 735 exit(1); 736 } 737 } 738 739 static void prom_realize(DeviceState *ds, Error **errp) 740 { 741 PROMState *s = OPENPROM(ds); 742 SysBusDevice *dev = SYS_BUS_DEVICE(ds); 743 Error *local_err = NULL; 744 745 memory_region_init_ram_nomigrate(&s->prom, OBJECT(ds), "sun4m.prom", 746 PROM_SIZE_MAX, &local_err); 747 if (local_err) { 748 error_propagate(errp, local_err); 749 return; 750 } 751 752 vmstate_register_ram_global(&s->prom); 753 memory_region_set_readonly(&s->prom, true); 754 sysbus_init_mmio(dev, &s->prom); 755 } 756 757 static Property prom_properties[] = { 758 {/* end of property list */}, 759 }; 760 761 static void prom_class_init(ObjectClass *klass, void *data) 762 { 763 DeviceClass *dc = DEVICE_CLASS(klass); 764 765 device_class_set_props(dc, prom_properties); 766 dc->realize = prom_realize; 767 } 768 769 static const TypeInfo prom_info = { 770 .name = TYPE_OPENPROM, 771 .parent = TYPE_SYS_BUS_DEVICE, 772 .instance_size = sizeof(PROMState), 773 .class_init = prom_class_init, 774 }; 775 776 #define TYPE_SUN4M_MEMORY "memory" 777 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY) 778 779 typedef struct RamDevice { 780 SysBusDevice parent_obj; 781 HostMemoryBackend *memdev; 782 } RamDevice; 783 784 /* System RAM */ 785 static void ram_realize(DeviceState *dev, Error **errp) 786 { 787 RamDevice *d = SUN4M_RAM(dev); 788 MemoryRegion *ram = host_memory_backend_get_memory(d->memdev); 789 790 sysbus_init_mmio(SYS_BUS_DEVICE(dev), ram); 791 } 792 793 static void ram_initfn(Object *obj) 794 { 795 RamDevice *d = SUN4M_RAM(obj); 796 object_property_add_link(obj, "memdev", TYPE_MEMORY_BACKEND, 797 (Object **)&d->memdev, 798 object_property_allow_set_link, 799 OBJ_PROP_LINK_STRONG); 800 object_property_set_description(obj, "memdev", "Set RAM backend" 801 "Valid value is ID of a hostmem backend"); 802 } 803 804 static void ram_class_init(ObjectClass *klass, void *data) 805 { 806 DeviceClass *dc = DEVICE_CLASS(klass); 807 808 dc->realize = ram_realize; 809 } 810 811 static const TypeInfo ram_info = { 812 .name = TYPE_SUN4M_MEMORY, 813 .parent = TYPE_SYS_BUS_DEVICE, 814 .instance_size = sizeof(RamDevice), 815 .instance_init = ram_initfn, 816 .class_init = ram_class_init, 817 }; 818 819 static void cpu_devinit(const char *cpu_type, unsigned int id, 820 uint64_t prom_addr, qemu_irq **cpu_irqs) 821 { 822 CPUState *cs; 823 SPARCCPU *cpu; 824 CPUSPARCState *env; 825 826 cpu = SPARC_CPU(cpu_create(cpu_type)); 827 env = &cpu->env; 828 829 cpu_sparc_set_id(env, id); 830 if (id == 0) { 831 qemu_register_reset(main_cpu_reset, cpu); 832 } else { 833 qemu_register_reset(secondary_cpu_reset, cpu); 834 cs = CPU(cpu); 835 cs->halted = 1; 836 } 837 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS); 838 env->prom_addr = prom_addr; 839 } 840 841 static void dummy_fdc_tc(void *opaque, int irq, int level) 842 { 843 } 844 845 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, 846 MachineState *machine) 847 { 848 DeviceState *slavio_intctl; 849 unsigned int i; 850 void *nvram; 851 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS]; 852 qemu_irq fdc_tc; 853 unsigned long kernel_size; 854 uint32_t initrd_size; 855 DriveInfo *fd[MAX_FD]; 856 FWCfgState *fw_cfg; 857 DeviceState *dev; 858 SysBusDevice *s; 859 unsigned int smp_cpus = machine->smp.cpus; 860 unsigned int max_cpus = machine->smp.max_cpus; 861 Object *ram_memdev = object_resolve_path_type(machine->ram_memdev_id, 862 TYPE_MEMORY_BACKEND, NULL); 863 864 if (machine->ram_size > hwdef->max_mem) { 865 error_report("Too much memory for this machine: %" PRId64 "," 866 " maximum %" PRId64, 867 machine->ram_size / MiB, hwdef->max_mem / MiB); 868 exit(1); 869 } 870 871 /* init CPUs */ 872 for(i = 0; i < smp_cpus; i++) { 873 cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]); 874 } 875 876 for (i = smp_cpus; i < MAX_CPUS; i++) 877 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); 878 879 /* Create and map RAM frontend */ 880 dev = qdev_new("memory"); 881 object_property_set_link(OBJECT(dev), "memdev", ram_memdev, &error_fatal); 882 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 883 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0); 884 885 /* models without ECC don't trap when missing ram is accessed */ 886 if (!hwdef->ecc_base) { 887 empty_slot_init("ecc", machine->ram_size, 888 hwdef->max_mem - machine->ram_size); 889 } 890 891 prom_init(hwdef->slavio_base, bios_name); 892 893 slavio_intctl = slavio_intctl_init(hwdef->intctl_base, 894 hwdef->intctl_base + 0x10000ULL, 895 cpu_irqs); 896 897 for (i = 0; i < 32; i++) { 898 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i); 899 } 900 for (i = 0; i < MAX_CPUS; i++) { 901 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i); 902 } 903 904 if (hwdef->idreg_base) { 905 idreg_init(hwdef->idreg_base); 906 } 907 908 if (hwdef->afx_base) { 909 afx_init(hwdef->afx_base); 910 } 911 912 iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]); 913 914 if (hwdef->iommu_pad_base) { 915 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased. 916 Software shouldn't use aliased addresses, neither should it crash 917 when does. Using empty_slot instead of aliasing can help with 918 debugging such accesses */ 919 empty_slot_init("iommu.alias", 920 hwdef->iommu_pad_base, hwdef->iommu_pad_len); 921 } 922 923 sparc32_dma_init(hwdef->dma_base, 924 hwdef->esp_base, slavio_irq[18], 925 hwdef->le_base, slavio_irq[16]); 926 927 if (graphic_depth != 8 && graphic_depth != 24) { 928 error_report("Unsupported depth: %d", graphic_depth); 929 exit (1); 930 } 931 if (vga_interface_type != VGA_NONE) { 932 if (vga_interface_type == VGA_CG3) { 933 if (graphic_depth != 8) { 934 error_report("Unsupported depth: %d", graphic_depth); 935 exit(1); 936 } 937 938 if (!(graphic_width == 1024 && graphic_height == 768) && 939 !(graphic_width == 1152 && graphic_height == 900)) { 940 error_report("Unsupported resolution: %d x %d", graphic_width, 941 graphic_height); 942 exit(1); 943 } 944 945 /* sbus irq 5 */ 946 cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 947 graphic_width, graphic_height, graphic_depth); 948 } else { 949 /* If no display specified, default to TCX */ 950 if (graphic_depth != 8 && graphic_depth != 24) { 951 error_report("Unsupported depth: %d", graphic_depth); 952 exit(1); 953 } 954 955 if (!(graphic_width == 1024 && graphic_height == 768)) { 956 error_report("Unsupported resolution: %d x %d", 957 graphic_width, graphic_height); 958 exit(1); 959 } 960 961 tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 962 graphic_width, graphic_height, graphic_depth); 963 } 964 } 965 966 for (i = 0; i < MAX_VSIMMS; i++) { 967 /* vsimm registers probed by OBP */ 968 if (hwdef->vsimm[i].reg_base) { 969 char *name = g_strdup_printf("vsimm[%d]", i); 970 empty_slot_init(name, hwdef->vsimm[i].reg_base, 0x2000); 971 g_free(name); 972 } 973 } 974 975 if (hwdef->sx_base) { 976 create_unimplemented_device("SUNW,sx", hwdef->sx_base, 0x2000); 977 } 978 979 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8); 980 981 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus); 982 983 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device 984 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */ 985 dev = qdev_new(TYPE_ESCC); 986 qdev_prop_set_uint32(dev, "disabled", !machine->enable_graphics); 987 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK); 988 qdev_prop_set_uint32(dev, "it_shift", 1); 989 qdev_prop_set_chr(dev, "chrB", NULL); 990 qdev_prop_set_chr(dev, "chrA", NULL); 991 qdev_prop_set_uint32(dev, "chnBtype", escc_mouse); 992 qdev_prop_set_uint32(dev, "chnAtype", escc_kbd); 993 s = SYS_BUS_DEVICE(dev); 994 sysbus_realize_and_unref(s, &error_fatal); 995 sysbus_connect_irq(s, 0, slavio_irq[14]); 996 sysbus_connect_irq(s, 1, slavio_irq[14]); 997 sysbus_mmio_map(s, 0, hwdef->ms_kb_base); 998 999 dev = qdev_new(TYPE_ESCC); 1000 qdev_prop_set_uint32(dev, "disabled", 0); 1001 qdev_prop_set_uint32(dev, "frequency", ESCC_CLOCK); 1002 qdev_prop_set_uint32(dev, "it_shift", 1); 1003 qdev_prop_set_chr(dev, "chrB", serial_hd(1)); 1004 qdev_prop_set_chr(dev, "chrA", serial_hd(0)); 1005 qdev_prop_set_uint32(dev, "chnBtype", escc_serial); 1006 qdev_prop_set_uint32(dev, "chnAtype", escc_serial); 1007 1008 s = SYS_BUS_DEVICE(dev); 1009 sysbus_realize_and_unref(s, &error_fatal); 1010 sysbus_connect_irq(s, 0, slavio_irq[15]); 1011 sysbus_connect_irq(s, 1, slavio_irq[15]); 1012 sysbus_mmio_map(s, 0, hwdef->serial_base); 1013 1014 if (hwdef->apc_base) { 1015 apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0)); 1016 } 1017 1018 if (hwdef->fd_base) { 1019 /* there is zero or one floppy drive */ 1020 memset(fd, 0, sizeof(fd)); 1021 fd[0] = drive_get(IF_FLOPPY, 0, 0); 1022 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd, 1023 &fdc_tc); 1024 } else { 1025 fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0); 1026 } 1027 1028 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base, 1029 slavio_irq[30], fdc_tc); 1030 1031 if (hwdef->cs_base) { 1032 sysbus_create_simple("SUNW,CS4231", hwdef->cs_base, 1033 slavio_irq[5]); 1034 } 1035 1036 if (hwdef->dbri_base) { 1037 /* ISDN chip with attached CS4215 audio codec */ 1038 /* prom space */ 1039 create_unimplemented_device("SUNW,DBRI.prom", 1040 hwdef->dbri_base + 0x1000, 0x30); 1041 /* reg space */ 1042 create_unimplemented_device("SUNW,DBRI", 1043 hwdef->dbri_base + 0x10000, 0x100); 1044 } 1045 1046 if (hwdef->bpp_base) { 1047 /* parallel port */ 1048 create_unimplemented_device("SUNW,bpp", hwdef->bpp_base, 0x20); 1049 } 1050 1051 initrd_size = 0; 1052 kernel_size = sun4m_load_kernel(machine->kernel_filename, 1053 machine->initrd_filename, 1054 machine->ram_size, &initrd_size); 1055 1056 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline, 1057 machine->boot_order, machine->ram_size, kernel_size, 1058 graphic_width, graphic_height, graphic_depth, 1059 hwdef->nvram_machine_id, "Sun4m"); 1060 1061 if (hwdef->ecc_base) 1062 ecc_init(hwdef->ecc_base, slavio_irq[28], 1063 hwdef->ecc_version); 1064 1065 dev = qdev_new(TYPE_FW_CFG_MEM); 1066 fw_cfg = FW_CFG(dev); 1067 qdev_prop_set_uint32(dev, "data_width", 1); 1068 qdev_prop_set_bit(dev, "dma_enabled", false); 1069 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1070 OBJECT(fw_cfg)); 1071 s = SYS_BUS_DEVICE(dev); 1072 sysbus_realize_and_unref(s, &error_fatal); 1073 sysbus_mmio_map(s, 0, CFG_ADDR); 1074 sysbus_mmio_map(s, 1, CFG_ADDR + 2); 1075 1076 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus); 1077 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); 1078 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size); 1079 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); 1080 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); 1081 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width); 1082 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height); 1083 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); 1084 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1085 if (machine->kernel_cmdline) { 1086 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); 1087 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, 1088 machine->kernel_cmdline); 1089 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline); 1090 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 1091 strlen(machine->kernel_cmdline) + 1); 1092 } else { 1093 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); 1094 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); 1095 } 1096 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); 1097 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 1098 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]); 1099 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); 1100 } 1101 1102 enum { 1103 ss5_id = 32, 1104 vger_id, 1105 lx_id, 1106 ss4_id, 1107 scls_id, 1108 sbook_id, 1109 ss10_id = 64, 1110 ss20_id, 1111 ss600mp_id, 1112 }; 1113 1114 static const struct sun4m_hwdef sun4m_hwdefs[] = { 1115 /* SS-5 */ 1116 { 1117 .iommu_base = 0x10000000, 1118 .iommu_pad_base = 0x10004000, 1119 .iommu_pad_len = 0x0fffb000, 1120 .tcx_base = 0x50000000, 1121 .cs_base = 0x6c000000, 1122 .slavio_base = 0x70000000, 1123 .ms_kb_base = 0x71000000, 1124 .serial_base = 0x71100000, 1125 .nvram_base = 0x71200000, 1126 .fd_base = 0x71400000, 1127 .counter_base = 0x71d00000, 1128 .intctl_base = 0x71e00000, 1129 .idreg_base = 0x78000000, 1130 .dma_base = 0x78400000, 1131 .esp_base = 0x78800000, 1132 .le_base = 0x78c00000, 1133 .apc_base = 0x6a000000, 1134 .afx_base = 0x6e000000, 1135 .aux1_base = 0x71900000, 1136 .aux2_base = 0x71910000, 1137 .nvram_machine_id = 0x80, 1138 .machine_id = ss5_id, 1139 .iommu_version = 0x05000000, 1140 .max_mem = 0x10000000, 1141 }, 1142 /* SS-10 */ 1143 { 1144 .iommu_base = 0xfe0000000ULL, 1145 .tcx_base = 0xe20000000ULL, 1146 .slavio_base = 0xff0000000ULL, 1147 .ms_kb_base = 0xff1000000ULL, 1148 .serial_base = 0xff1100000ULL, 1149 .nvram_base = 0xff1200000ULL, 1150 .fd_base = 0xff1700000ULL, 1151 .counter_base = 0xff1300000ULL, 1152 .intctl_base = 0xff1400000ULL, 1153 .idreg_base = 0xef0000000ULL, 1154 .dma_base = 0xef0400000ULL, 1155 .esp_base = 0xef0800000ULL, 1156 .le_base = 0xef0c00000ULL, 1157 .apc_base = 0xefa000000ULL, // XXX should not exist 1158 .aux1_base = 0xff1800000ULL, 1159 .aux2_base = 0xff1a01000ULL, 1160 .ecc_base = 0xf00000000ULL, 1161 .ecc_version = 0x10000000, // version 0, implementation 1 1162 .nvram_machine_id = 0x72, 1163 .machine_id = ss10_id, 1164 .iommu_version = 0x03000000, 1165 .max_mem = 0xf00000000ULL, 1166 }, 1167 /* SS-600MP */ 1168 { 1169 .iommu_base = 0xfe0000000ULL, 1170 .tcx_base = 0xe20000000ULL, 1171 .slavio_base = 0xff0000000ULL, 1172 .ms_kb_base = 0xff1000000ULL, 1173 .serial_base = 0xff1100000ULL, 1174 .nvram_base = 0xff1200000ULL, 1175 .counter_base = 0xff1300000ULL, 1176 .intctl_base = 0xff1400000ULL, 1177 .dma_base = 0xef0081000ULL, 1178 .esp_base = 0xef0080000ULL, 1179 .le_base = 0xef0060000ULL, 1180 .apc_base = 0xefa000000ULL, // XXX should not exist 1181 .aux1_base = 0xff1800000ULL, 1182 .aux2_base = 0xff1a01000ULL, // XXX should not exist 1183 .ecc_base = 0xf00000000ULL, 1184 .ecc_version = 0x00000000, // version 0, implementation 0 1185 .nvram_machine_id = 0x71, 1186 .machine_id = ss600mp_id, 1187 .iommu_version = 0x01000000, 1188 .max_mem = 0xf00000000ULL, 1189 }, 1190 /* SS-20 */ 1191 { 1192 .iommu_base = 0xfe0000000ULL, 1193 .tcx_base = 0xe20000000ULL, 1194 .slavio_base = 0xff0000000ULL, 1195 .ms_kb_base = 0xff1000000ULL, 1196 .serial_base = 0xff1100000ULL, 1197 .nvram_base = 0xff1200000ULL, 1198 .fd_base = 0xff1700000ULL, 1199 .counter_base = 0xff1300000ULL, 1200 .intctl_base = 0xff1400000ULL, 1201 .idreg_base = 0xef0000000ULL, 1202 .dma_base = 0xef0400000ULL, 1203 .esp_base = 0xef0800000ULL, 1204 .le_base = 0xef0c00000ULL, 1205 .bpp_base = 0xef4800000ULL, 1206 .apc_base = 0xefa000000ULL, // XXX should not exist 1207 .aux1_base = 0xff1800000ULL, 1208 .aux2_base = 0xff1a01000ULL, 1209 .dbri_base = 0xee0000000ULL, 1210 .sx_base = 0xf80000000ULL, 1211 .vsimm = { 1212 { 1213 .reg_base = 0x9c000000ULL, 1214 .vram_base = 0xfc000000ULL 1215 }, { 1216 .reg_base = 0x90000000ULL, 1217 .vram_base = 0xf0000000ULL 1218 }, { 1219 .reg_base = 0x94000000ULL 1220 }, { 1221 .reg_base = 0x98000000ULL 1222 } 1223 }, 1224 .ecc_base = 0xf00000000ULL, 1225 .ecc_version = 0x20000000, // version 0, implementation 2 1226 .nvram_machine_id = 0x72, 1227 .machine_id = ss20_id, 1228 .iommu_version = 0x13000000, 1229 .max_mem = 0xf00000000ULL, 1230 }, 1231 /* Voyager */ 1232 { 1233 .iommu_base = 0x10000000, 1234 .tcx_base = 0x50000000, 1235 .slavio_base = 0x70000000, 1236 .ms_kb_base = 0x71000000, 1237 .serial_base = 0x71100000, 1238 .nvram_base = 0x71200000, 1239 .fd_base = 0x71400000, 1240 .counter_base = 0x71d00000, 1241 .intctl_base = 0x71e00000, 1242 .idreg_base = 0x78000000, 1243 .dma_base = 0x78400000, 1244 .esp_base = 0x78800000, 1245 .le_base = 0x78c00000, 1246 .apc_base = 0x71300000, // pmc 1247 .aux1_base = 0x71900000, 1248 .aux2_base = 0x71910000, 1249 .nvram_machine_id = 0x80, 1250 .machine_id = vger_id, 1251 .iommu_version = 0x05000000, 1252 .max_mem = 0x10000000, 1253 }, 1254 /* LX */ 1255 { 1256 .iommu_base = 0x10000000, 1257 .iommu_pad_base = 0x10004000, 1258 .iommu_pad_len = 0x0fffb000, 1259 .tcx_base = 0x50000000, 1260 .slavio_base = 0x70000000, 1261 .ms_kb_base = 0x71000000, 1262 .serial_base = 0x71100000, 1263 .nvram_base = 0x71200000, 1264 .fd_base = 0x71400000, 1265 .counter_base = 0x71d00000, 1266 .intctl_base = 0x71e00000, 1267 .idreg_base = 0x78000000, 1268 .dma_base = 0x78400000, 1269 .esp_base = 0x78800000, 1270 .le_base = 0x78c00000, 1271 .aux1_base = 0x71900000, 1272 .aux2_base = 0x71910000, 1273 .nvram_machine_id = 0x80, 1274 .machine_id = lx_id, 1275 .iommu_version = 0x04000000, 1276 .max_mem = 0x10000000, 1277 }, 1278 /* SS-4 */ 1279 { 1280 .iommu_base = 0x10000000, 1281 .tcx_base = 0x50000000, 1282 .cs_base = 0x6c000000, 1283 .slavio_base = 0x70000000, 1284 .ms_kb_base = 0x71000000, 1285 .serial_base = 0x71100000, 1286 .nvram_base = 0x71200000, 1287 .fd_base = 0x71400000, 1288 .counter_base = 0x71d00000, 1289 .intctl_base = 0x71e00000, 1290 .idreg_base = 0x78000000, 1291 .dma_base = 0x78400000, 1292 .esp_base = 0x78800000, 1293 .le_base = 0x78c00000, 1294 .apc_base = 0x6a000000, 1295 .aux1_base = 0x71900000, 1296 .aux2_base = 0x71910000, 1297 .nvram_machine_id = 0x80, 1298 .machine_id = ss4_id, 1299 .iommu_version = 0x05000000, 1300 .max_mem = 0x10000000, 1301 }, 1302 /* SPARCClassic */ 1303 { 1304 .iommu_base = 0x10000000, 1305 .tcx_base = 0x50000000, 1306 .slavio_base = 0x70000000, 1307 .ms_kb_base = 0x71000000, 1308 .serial_base = 0x71100000, 1309 .nvram_base = 0x71200000, 1310 .fd_base = 0x71400000, 1311 .counter_base = 0x71d00000, 1312 .intctl_base = 0x71e00000, 1313 .idreg_base = 0x78000000, 1314 .dma_base = 0x78400000, 1315 .esp_base = 0x78800000, 1316 .le_base = 0x78c00000, 1317 .apc_base = 0x6a000000, 1318 .aux1_base = 0x71900000, 1319 .aux2_base = 0x71910000, 1320 .nvram_machine_id = 0x80, 1321 .machine_id = scls_id, 1322 .iommu_version = 0x05000000, 1323 .max_mem = 0x10000000, 1324 }, 1325 /* SPARCbook */ 1326 { 1327 .iommu_base = 0x10000000, 1328 .tcx_base = 0x50000000, // XXX 1329 .slavio_base = 0x70000000, 1330 .ms_kb_base = 0x71000000, 1331 .serial_base = 0x71100000, 1332 .nvram_base = 0x71200000, 1333 .fd_base = 0x71400000, 1334 .counter_base = 0x71d00000, 1335 .intctl_base = 0x71e00000, 1336 .idreg_base = 0x78000000, 1337 .dma_base = 0x78400000, 1338 .esp_base = 0x78800000, 1339 .le_base = 0x78c00000, 1340 .apc_base = 0x6a000000, 1341 .aux1_base = 0x71900000, 1342 .aux2_base = 0x71910000, 1343 .nvram_machine_id = 0x80, 1344 .machine_id = sbook_id, 1345 .iommu_version = 0x05000000, 1346 .max_mem = 0x10000000, 1347 }, 1348 }; 1349 1350 /* SPARCstation 5 hardware initialisation */ 1351 static void ss5_init(MachineState *machine) 1352 { 1353 sun4m_hw_init(&sun4m_hwdefs[0], machine); 1354 } 1355 1356 /* SPARCstation 10 hardware initialisation */ 1357 static void ss10_init(MachineState *machine) 1358 { 1359 sun4m_hw_init(&sun4m_hwdefs[1], machine); 1360 } 1361 1362 /* SPARCserver 600MP hardware initialisation */ 1363 static void ss600mp_init(MachineState *machine) 1364 { 1365 sun4m_hw_init(&sun4m_hwdefs[2], machine); 1366 } 1367 1368 /* SPARCstation 20 hardware initialisation */ 1369 static void ss20_init(MachineState *machine) 1370 { 1371 sun4m_hw_init(&sun4m_hwdefs[3], machine); 1372 } 1373 1374 /* SPARCstation Voyager hardware initialisation */ 1375 static void vger_init(MachineState *machine) 1376 { 1377 sun4m_hw_init(&sun4m_hwdefs[4], machine); 1378 } 1379 1380 /* SPARCstation LX hardware initialisation */ 1381 static void ss_lx_init(MachineState *machine) 1382 { 1383 sun4m_hw_init(&sun4m_hwdefs[5], machine); 1384 } 1385 1386 /* SPARCstation 4 hardware initialisation */ 1387 static void ss4_init(MachineState *machine) 1388 { 1389 sun4m_hw_init(&sun4m_hwdefs[6], machine); 1390 } 1391 1392 /* SPARCClassic hardware initialisation */ 1393 static void scls_init(MachineState *machine) 1394 { 1395 sun4m_hw_init(&sun4m_hwdefs[7], machine); 1396 } 1397 1398 /* SPARCbook hardware initialisation */ 1399 static void sbook_init(MachineState *machine) 1400 { 1401 sun4m_hw_init(&sun4m_hwdefs[8], machine); 1402 } 1403 1404 static void ss5_class_init(ObjectClass *oc, void *data) 1405 { 1406 MachineClass *mc = MACHINE_CLASS(oc); 1407 1408 mc->desc = "Sun4m platform, SPARCstation 5"; 1409 mc->init = ss5_init; 1410 mc->block_default_type = IF_SCSI; 1411 mc->is_default = true; 1412 mc->default_boot_order = "c"; 1413 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904"); 1414 mc->default_display = "tcx"; 1415 mc->default_ram_id = "sun4m.ram"; 1416 } 1417 1418 static const TypeInfo ss5_type = { 1419 .name = MACHINE_TYPE_NAME("SS-5"), 1420 .parent = TYPE_MACHINE, 1421 .class_init = ss5_class_init, 1422 }; 1423 1424 static void ss10_class_init(ObjectClass *oc, void *data) 1425 { 1426 MachineClass *mc = MACHINE_CLASS(oc); 1427 1428 mc->desc = "Sun4m platform, SPARCstation 10"; 1429 mc->init = ss10_init; 1430 mc->block_default_type = IF_SCSI; 1431 mc->max_cpus = 4; 1432 mc->default_boot_order = "c"; 1433 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II"); 1434 mc->default_display = "tcx"; 1435 mc->default_ram_id = "sun4m.ram"; 1436 } 1437 1438 static const TypeInfo ss10_type = { 1439 .name = MACHINE_TYPE_NAME("SS-10"), 1440 .parent = TYPE_MACHINE, 1441 .class_init = ss10_class_init, 1442 }; 1443 1444 static void ss600mp_class_init(ObjectClass *oc, void *data) 1445 { 1446 MachineClass *mc = MACHINE_CLASS(oc); 1447 1448 mc->desc = "Sun4m platform, SPARCserver 600MP"; 1449 mc->init = ss600mp_init; 1450 mc->block_default_type = IF_SCSI; 1451 mc->max_cpus = 4; 1452 mc->default_boot_order = "c"; 1453 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II"); 1454 mc->default_display = "tcx"; 1455 mc->default_ram_id = "sun4m.ram"; 1456 } 1457 1458 static const TypeInfo ss600mp_type = { 1459 .name = MACHINE_TYPE_NAME("SS-600MP"), 1460 .parent = TYPE_MACHINE, 1461 .class_init = ss600mp_class_init, 1462 }; 1463 1464 static void ss20_class_init(ObjectClass *oc, void *data) 1465 { 1466 MachineClass *mc = MACHINE_CLASS(oc); 1467 1468 mc->desc = "Sun4m platform, SPARCstation 20"; 1469 mc->init = ss20_init; 1470 mc->block_default_type = IF_SCSI; 1471 mc->max_cpus = 4; 1472 mc->default_boot_order = "c"; 1473 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II"); 1474 mc->default_display = "tcx"; 1475 mc->default_ram_id = "sun4m.ram"; 1476 } 1477 1478 static const TypeInfo ss20_type = { 1479 .name = MACHINE_TYPE_NAME("SS-20"), 1480 .parent = TYPE_MACHINE, 1481 .class_init = ss20_class_init, 1482 }; 1483 1484 static void voyager_class_init(ObjectClass *oc, void *data) 1485 { 1486 MachineClass *mc = MACHINE_CLASS(oc); 1487 1488 mc->desc = "Sun4m platform, SPARCstation Voyager"; 1489 mc->init = vger_init; 1490 mc->block_default_type = IF_SCSI; 1491 mc->default_boot_order = "c"; 1492 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904"); 1493 mc->default_display = "tcx"; 1494 mc->default_ram_id = "sun4m.ram"; 1495 } 1496 1497 static const TypeInfo voyager_type = { 1498 .name = MACHINE_TYPE_NAME("Voyager"), 1499 .parent = TYPE_MACHINE, 1500 .class_init = voyager_class_init, 1501 }; 1502 1503 static void ss_lx_class_init(ObjectClass *oc, void *data) 1504 { 1505 MachineClass *mc = MACHINE_CLASS(oc); 1506 1507 mc->desc = "Sun4m platform, SPARCstation LX"; 1508 mc->init = ss_lx_init; 1509 mc->block_default_type = IF_SCSI; 1510 mc->default_boot_order = "c"; 1511 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I"); 1512 mc->default_display = "tcx"; 1513 mc->default_ram_id = "sun4m.ram"; 1514 } 1515 1516 static const TypeInfo ss_lx_type = { 1517 .name = MACHINE_TYPE_NAME("LX"), 1518 .parent = TYPE_MACHINE, 1519 .class_init = ss_lx_class_init, 1520 }; 1521 1522 static void ss4_class_init(ObjectClass *oc, void *data) 1523 { 1524 MachineClass *mc = MACHINE_CLASS(oc); 1525 1526 mc->desc = "Sun4m platform, SPARCstation 4"; 1527 mc->init = ss4_init; 1528 mc->block_default_type = IF_SCSI; 1529 mc->default_boot_order = "c"; 1530 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904"); 1531 mc->default_display = "tcx"; 1532 mc->default_ram_id = "sun4m.ram"; 1533 } 1534 1535 static const TypeInfo ss4_type = { 1536 .name = MACHINE_TYPE_NAME("SS-4"), 1537 .parent = TYPE_MACHINE, 1538 .class_init = ss4_class_init, 1539 }; 1540 1541 static void scls_class_init(ObjectClass *oc, void *data) 1542 { 1543 MachineClass *mc = MACHINE_CLASS(oc); 1544 1545 mc->desc = "Sun4m platform, SPARCClassic"; 1546 mc->init = scls_init; 1547 mc->block_default_type = IF_SCSI; 1548 mc->default_boot_order = "c"; 1549 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I"); 1550 mc->default_display = "tcx"; 1551 mc->default_ram_id = "sun4m.ram"; 1552 } 1553 1554 static const TypeInfo scls_type = { 1555 .name = MACHINE_TYPE_NAME("SPARCClassic"), 1556 .parent = TYPE_MACHINE, 1557 .class_init = scls_class_init, 1558 }; 1559 1560 static void sbook_class_init(ObjectClass *oc, void *data) 1561 { 1562 MachineClass *mc = MACHINE_CLASS(oc); 1563 1564 mc->desc = "Sun4m platform, SPARCbook"; 1565 mc->init = sbook_init; 1566 mc->block_default_type = IF_SCSI; 1567 mc->default_boot_order = "c"; 1568 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I"); 1569 mc->default_display = "tcx"; 1570 mc->default_ram_id = "sun4m.ram"; 1571 } 1572 1573 static const TypeInfo sbook_type = { 1574 .name = MACHINE_TYPE_NAME("SPARCbook"), 1575 .parent = TYPE_MACHINE, 1576 .class_init = sbook_class_init, 1577 }; 1578 1579 static void sun4m_register_types(void) 1580 { 1581 type_register_static(&idreg_info); 1582 type_register_static(&afx_info); 1583 type_register_static(&prom_info); 1584 type_register_static(&ram_info); 1585 1586 type_register_static(&ss5_type); 1587 type_register_static(&ss10_type); 1588 type_register_static(&ss600mp_type); 1589 type_register_static(&ss20_type); 1590 type_register_static(&voyager_type); 1591 type_register_static(&ss_lx_type); 1592 type_register_static(&ss4_type); 1593 type_register_static(&scls_type); 1594 type_register_static(&sbook_type); 1595 } 1596 1597 type_init(sun4m_register_types) 1598