1 /* 2 * QEMU Sun4m & Sun4d & Sun4c System Emulator 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/sysbus.h" 25 #include "qemu/error-report.h" 26 #include "qemu/timer.h" 27 #include "hw/sparc/sun4m.h" 28 #include "hw/timer/m48t59.h" 29 #include "hw/sparc/sparc32_dma.h" 30 #include "hw/block/fdc.h" 31 #include "sysemu/sysemu.h" 32 #include "net/net.h" 33 #include "hw/boards.h" 34 #include "hw/nvram/openbios_firmware_abi.h" 35 #include "hw/scsi/esp.h" 36 #include "hw/i386/pc.h" 37 #include "hw/isa/isa.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/char/escc.h" 40 #include "hw/empty_slot.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "sysemu/block-backend.h" 44 #include "trace.h" 45 46 /* 47 * Sun4m architecture was used in the following machines: 48 * 49 * SPARCserver 6xxMP/xx 50 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), 51 * SPARCclassic X (4/10) 52 * SPARCstation LX/ZX (4/30) 53 * SPARCstation Voyager 54 * SPARCstation 10/xx, SPARCserver 10/xx 55 * SPARCstation 5, SPARCserver 5 56 * SPARCstation 20/xx, SPARCserver 20 57 * SPARCstation 4 58 * 59 * See for example: http://www.sunhelp.org/faq/sunref1.html 60 */ 61 62 #define KERNEL_LOAD_ADDR 0x00004000 63 #define CMDLINE_ADDR 0x007ff000 64 #define INITRD_LOAD_ADDR 0x00800000 65 #define PROM_SIZE_MAX (1024 * 1024) 66 #define PROM_VADDR 0xffd00000 67 #define PROM_FILENAME "openbios-sparc32" 68 #define CFG_ADDR 0xd00000510ULL 69 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00) 70 #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01) 71 #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02) 72 73 #define MAX_CPUS 16 74 #define MAX_PILS 16 75 #define MAX_VSIMMS 4 76 77 #define ESCC_CLOCK 4915200 78 79 struct sun4m_hwdef { 80 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base; 81 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base; 82 hwaddr serial_base, fd_base; 83 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base; 84 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base; 85 hwaddr bpp_base, dbri_base, sx_base; 86 struct { 87 hwaddr reg_base, vram_base; 88 } vsimm[MAX_VSIMMS]; 89 hwaddr ecc_base; 90 uint64_t max_mem; 91 const char * const default_cpu_model; 92 uint32_t ecc_version; 93 uint32_t iommu_version; 94 uint16_t machine_id; 95 uint8_t nvram_machine_id; 96 }; 97 98 int DMA_get_channel_mode (int nchan) 99 { 100 return 0; 101 } 102 int DMA_read_memory (int nchan, void *buf, int pos, int size) 103 { 104 return 0; 105 } 106 int DMA_write_memory (int nchan, void *buf, int pos, int size) 107 { 108 return 0; 109 } 110 void DMA_hold_DREQ (int nchan) {} 111 void DMA_release_DREQ (int nchan) {} 112 void DMA_schedule(void) {} 113 114 void DMA_init(int high_page_enable) 115 { 116 } 117 118 void DMA_register_channel (int nchan, 119 DMA_transfer_handler transfer_handler, 120 void *opaque) 121 { 122 } 123 124 static void fw_cfg_boot_set(void *opaque, const char *boot_device, 125 Error **errp) 126 { 127 fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); 128 } 129 130 static void nvram_init(Nvram *nvram, uint8_t *macaddr, 131 const char *cmdline, const char *boot_devices, 132 ram_addr_t RAM_size, uint32_t kernel_size, 133 int width, int height, int depth, 134 int nvram_machine_id, const char *arch) 135 { 136 unsigned int i; 137 uint32_t start, end; 138 uint8_t image[0x1ff0]; 139 struct OpenBIOS_nvpart_v1 *part_header; 140 NvramClass *k = NVRAM_GET_CLASS(nvram); 141 142 memset(image, '\0', sizeof(image)); 143 144 start = 0; 145 146 // OpenBIOS nvram variables 147 // Variable partition 148 part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; 149 part_header->signature = OPENBIOS_PART_SYSTEM; 150 pstrcpy(part_header->name, sizeof(part_header->name), "system"); 151 152 end = start + sizeof(struct OpenBIOS_nvpart_v1); 153 for (i = 0; i < nb_prom_envs; i++) 154 end = OpenBIOS_set_var(image, end, prom_envs[i]); 155 156 // End marker 157 image[end++] = '\0'; 158 159 end = start + ((end - start + 15) & ~15); 160 OpenBIOS_finish_partition(part_header, end - start); 161 162 // free partition 163 start = end; 164 part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; 165 part_header->signature = OPENBIOS_PART_FREE; 166 pstrcpy(part_header->name, sizeof(part_header->name), "free"); 167 168 end = 0x1fd0; 169 OpenBIOS_finish_partition(part_header, end - start); 170 171 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 172 nvram_machine_id); 173 174 for (i = 0; i < sizeof(image); i++) { 175 (k->write)(nvram, i, image[i]); 176 } 177 } 178 179 static DeviceState *slavio_intctl; 180 181 void sun4m_hmp_info_pic(Monitor *mon, const QDict *qdict) 182 { 183 if (slavio_intctl) 184 slavio_pic_info(mon, slavio_intctl); 185 } 186 187 void sun4m_hmp_info_irq(Monitor *mon, const QDict *qdict) 188 { 189 if (slavio_intctl) 190 slavio_irq_info(mon, slavio_intctl); 191 } 192 193 void cpu_check_irqs(CPUSPARCState *env) 194 { 195 CPUState *cs; 196 197 if (env->pil_in && (env->interrupt_index == 0 || 198 (env->interrupt_index & ~15) == TT_EXTINT)) { 199 unsigned int i; 200 201 for (i = 15; i > 0; i--) { 202 if (env->pil_in & (1 << i)) { 203 int old_interrupt = env->interrupt_index; 204 205 env->interrupt_index = TT_EXTINT | i; 206 if (old_interrupt != env->interrupt_index) { 207 cs = CPU(sparc_env_get_cpu(env)); 208 trace_sun4m_cpu_interrupt(i); 209 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 210 } 211 break; 212 } 213 } 214 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { 215 cs = CPU(sparc_env_get_cpu(env)); 216 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15); 217 env->interrupt_index = 0; 218 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 219 } 220 } 221 222 static void cpu_kick_irq(SPARCCPU *cpu) 223 { 224 CPUSPARCState *env = &cpu->env; 225 CPUState *cs = CPU(cpu); 226 227 cs->halted = 0; 228 cpu_check_irqs(env); 229 qemu_cpu_kick(cs); 230 } 231 232 static void cpu_set_irq(void *opaque, int irq, int level) 233 { 234 SPARCCPU *cpu = opaque; 235 CPUSPARCState *env = &cpu->env; 236 237 if (level) { 238 trace_sun4m_cpu_set_irq_raise(irq); 239 env->pil_in |= 1 << irq; 240 cpu_kick_irq(cpu); 241 } else { 242 trace_sun4m_cpu_set_irq_lower(irq); 243 env->pil_in &= ~(1 << irq); 244 cpu_check_irqs(env); 245 } 246 } 247 248 static void dummy_cpu_set_irq(void *opaque, int irq, int level) 249 { 250 } 251 252 static void main_cpu_reset(void *opaque) 253 { 254 SPARCCPU *cpu = opaque; 255 CPUState *cs = CPU(cpu); 256 257 cpu_reset(cs); 258 cs->halted = 0; 259 } 260 261 static void secondary_cpu_reset(void *opaque) 262 { 263 SPARCCPU *cpu = opaque; 264 CPUState *cs = CPU(cpu); 265 266 cpu_reset(cs); 267 cs->halted = 1; 268 } 269 270 static void cpu_halt_signal(void *opaque, int irq, int level) 271 { 272 if (level && current_cpu) { 273 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT); 274 } 275 } 276 277 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 278 { 279 return addr - 0xf0000000ULL; 280 } 281 282 static unsigned long sun4m_load_kernel(const char *kernel_filename, 283 const char *initrd_filename, 284 ram_addr_t RAM_size) 285 { 286 int linux_boot; 287 unsigned int i; 288 long initrd_size, kernel_size; 289 uint8_t *ptr; 290 291 linux_boot = (kernel_filename != NULL); 292 293 kernel_size = 0; 294 if (linux_boot) { 295 int bswap_needed; 296 297 #ifdef BSWAP_NEEDED 298 bswap_needed = 1; 299 #else 300 bswap_needed = 0; 301 #endif 302 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, 303 NULL, NULL, NULL, 1, EM_SPARC, 0); 304 if (kernel_size < 0) 305 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, 306 RAM_size - KERNEL_LOAD_ADDR, bswap_needed, 307 TARGET_PAGE_SIZE); 308 if (kernel_size < 0) 309 kernel_size = load_image_targphys(kernel_filename, 310 KERNEL_LOAD_ADDR, 311 RAM_size - KERNEL_LOAD_ADDR); 312 if (kernel_size < 0) { 313 fprintf(stderr, "qemu: could not load kernel '%s'\n", 314 kernel_filename); 315 exit(1); 316 } 317 318 /* load initrd */ 319 initrd_size = 0; 320 if (initrd_filename) { 321 initrd_size = load_image_targphys(initrd_filename, 322 INITRD_LOAD_ADDR, 323 RAM_size - INITRD_LOAD_ADDR); 324 if (initrd_size < 0) { 325 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 326 initrd_filename); 327 exit(1); 328 } 329 } 330 if (initrd_size > 0) { 331 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { 332 ptr = rom_ptr(KERNEL_LOAD_ADDR + i); 333 if (ldl_p(ptr) == 0x48647253) { // HdrS 334 stl_p(ptr + 16, INITRD_LOAD_ADDR); 335 stl_p(ptr + 20, initrd_size); 336 break; 337 } 338 } 339 } 340 } 341 return kernel_size; 342 } 343 344 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq) 345 { 346 DeviceState *dev; 347 SysBusDevice *s; 348 349 dev = qdev_create(NULL, "iommu"); 350 qdev_prop_set_uint32(dev, "version", version); 351 qdev_init_nofail(dev); 352 s = SYS_BUS_DEVICE(dev); 353 sysbus_connect_irq(s, 0, irq); 354 sysbus_mmio_map(s, 0, addr); 355 356 return s; 357 } 358 359 static void *sparc32_dma_init(hwaddr daddr, qemu_irq parent_irq, 360 void *iommu, qemu_irq *dev_irq, int is_ledma) 361 { 362 DeviceState *dev; 363 SysBusDevice *s; 364 365 dev = qdev_create(NULL, "sparc32_dma"); 366 qdev_prop_set_ptr(dev, "iommu_opaque", iommu); 367 qdev_prop_set_uint32(dev, "is_ledma", is_ledma); 368 qdev_init_nofail(dev); 369 s = SYS_BUS_DEVICE(dev); 370 sysbus_connect_irq(s, 0, parent_irq); 371 *dev_irq = qdev_get_gpio_in(dev, 0); 372 sysbus_mmio_map(s, 0, daddr); 373 374 return s; 375 } 376 377 static void lance_init(NICInfo *nd, hwaddr leaddr, 378 void *dma_opaque, qemu_irq irq) 379 { 380 DeviceState *dev; 381 SysBusDevice *s; 382 qemu_irq reset; 383 384 qemu_check_nic_model(&nd_table[0], "lance"); 385 386 dev = qdev_create(NULL, "lance"); 387 qdev_set_nic_properties(dev, nd); 388 qdev_prop_set_ptr(dev, "dma", dma_opaque); 389 qdev_init_nofail(dev); 390 s = SYS_BUS_DEVICE(dev); 391 sysbus_mmio_map(s, 0, leaddr); 392 sysbus_connect_irq(s, 0, irq); 393 reset = qdev_get_gpio_in(dev, 0); 394 qdev_connect_gpio_out(dma_opaque, 0, reset); 395 } 396 397 static DeviceState *slavio_intctl_init(hwaddr addr, 398 hwaddr addrg, 399 qemu_irq **parent_irq) 400 { 401 DeviceState *dev; 402 SysBusDevice *s; 403 unsigned int i, j; 404 405 dev = qdev_create(NULL, "slavio_intctl"); 406 qdev_init_nofail(dev); 407 408 s = SYS_BUS_DEVICE(dev); 409 410 for (i = 0; i < MAX_CPUS; i++) { 411 for (j = 0; j < MAX_PILS; j++) { 412 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]); 413 } 414 } 415 sysbus_mmio_map(s, 0, addrg); 416 for (i = 0; i < MAX_CPUS; i++) { 417 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE); 418 } 419 420 return dev; 421 } 422 423 #define SYS_TIMER_OFFSET 0x10000ULL 424 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu) 425 426 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq, 427 qemu_irq *cpu_irqs, unsigned int num_cpus) 428 { 429 DeviceState *dev; 430 SysBusDevice *s; 431 unsigned int i; 432 433 dev = qdev_create(NULL, "slavio_timer"); 434 qdev_prop_set_uint32(dev, "num_cpus", num_cpus); 435 qdev_init_nofail(dev); 436 s = SYS_BUS_DEVICE(dev); 437 sysbus_connect_irq(s, 0, master_irq); 438 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET); 439 440 for (i = 0; i < MAX_CPUS; i++) { 441 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i)); 442 sysbus_connect_irq(s, i + 1, cpu_irqs[i]); 443 } 444 } 445 446 static qemu_irq slavio_system_powerdown; 447 448 static void slavio_powerdown_req(Notifier *n, void *opaque) 449 { 450 qemu_irq_raise(slavio_system_powerdown); 451 } 452 453 static Notifier slavio_system_powerdown_notifier = { 454 .notify = slavio_powerdown_req 455 }; 456 457 #define MISC_LEDS 0x01600000 458 #define MISC_CFG 0x01800000 459 #define MISC_DIAG 0x01a00000 460 #define MISC_MDM 0x01b00000 461 #define MISC_SYS 0x01f00000 462 463 static void slavio_misc_init(hwaddr base, 464 hwaddr aux1_base, 465 hwaddr aux2_base, qemu_irq irq, 466 qemu_irq fdc_tc) 467 { 468 DeviceState *dev; 469 SysBusDevice *s; 470 471 dev = qdev_create(NULL, "slavio_misc"); 472 qdev_init_nofail(dev); 473 s = SYS_BUS_DEVICE(dev); 474 if (base) { 475 /* 8 bit registers */ 476 /* Slavio control */ 477 sysbus_mmio_map(s, 0, base + MISC_CFG); 478 /* Diagnostics */ 479 sysbus_mmio_map(s, 1, base + MISC_DIAG); 480 /* Modem control */ 481 sysbus_mmio_map(s, 2, base + MISC_MDM); 482 /* 16 bit registers */ 483 /* ss600mp diag LEDs */ 484 sysbus_mmio_map(s, 3, base + MISC_LEDS); 485 /* 32 bit registers */ 486 /* System control */ 487 sysbus_mmio_map(s, 4, base + MISC_SYS); 488 } 489 if (aux1_base) { 490 /* AUX 1 (Misc System Functions) */ 491 sysbus_mmio_map(s, 5, aux1_base); 492 } 493 if (aux2_base) { 494 /* AUX 2 (Software Powerdown Control) */ 495 sysbus_mmio_map(s, 6, aux2_base); 496 } 497 sysbus_connect_irq(s, 0, irq); 498 sysbus_connect_irq(s, 1, fdc_tc); 499 slavio_system_powerdown = qdev_get_gpio_in(dev, 0); 500 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier); 501 } 502 503 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version) 504 { 505 DeviceState *dev; 506 SysBusDevice *s; 507 508 dev = qdev_create(NULL, "eccmemctl"); 509 qdev_prop_set_uint32(dev, "version", version); 510 qdev_init_nofail(dev); 511 s = SYS_BUS_DEVICE(dev); 512 sysbus_connect_irq(s, 0, irq); 513 sysbus_mmio_map(s, 0, base); 514 if (version == 0) { // SS-600MP only 515 sysbus_mmio_map(s, 1, base + 0x1000); 516 } 517 } 518 519 static void apc_init(hwaddr power_base, qemu_irq cpu_halt) 520 { 521 DeviceState *dev; 522 SysBusDevice *s; 523 524 dev = qdev_create(NULL, "apc"); 525 qdev_init_nofail(dev); 526 s = SYS_BUS_DEVICE(dev); 527 /* Power management (APC) XXX: not a Slavio device */ 528 sysbus_mmio_map(s, 0, power_base); 529 sysbus_connect_irq(s, 0, cpu_halt); 530 } 531 532 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 533 int height, int depth) 534 { 535 DeviceState *dev; 536 SysBusDevice *s; 537 538 dev = qdev_create(NULL, "SUNW,tcx"); 539 qdev_prop_set_uint32(dev, "vram_size", vram_size); 540 qdev_prop_set_uint16(dev, "width", width); 541 qdev_prop_set_uint16(dev, "height", height); 542 qdev_prop_set_uint16(dev, "depth", depth); 543 qdev_prop_set_uint64(dev, "prom_addr", addr); 544 qdev_init_nofail(dev); 545 s = SYS_BUS_DEVICE(dev); 546 547 /* 10/ROM : FCode ROM */ 548 sysbus_mmio_map(s, 0, addr); 549 /* 2/STIP : Stipple */ 550 sysbus_mmio_map(s, 1, addr + 0x04000000ULL); 551 /* 3/BLIT : Blitter */ 552 sysbus_mmio_map(s, 2, addr + 0x06000000ULL); 553 /* 5/RSTIP : Raw Stipple */ 554 sysbus_mmio_map(s, 3, addr + 0x0c000000ULL); 555 /* 6/RBLIT : Raw Blitter */ 556 sysbus_mmio_map(s, 4, addr + 0x0e000000ULL); 557 /* 7/TEC : Transform Engine */ 558 sysbus_mmio_map(s, 5, addr + 0x00700000ULL); 559 /* 8/CMAP : DAC */ 560 sysbus_mmio_map(s, 6, addr + 0x00200000ULL); 561 /* 9/THC : */ 562 if (depth == 8) { 563 sysbus_mmio_map(s, 7, addr + 0x00300000ULL); 564 } else { 565 sysbus_mmio_map(s, 7, addr + 0x00301000ULL); 566 } 567 /* 11/DHC : */ 568 sysbus_mmio_map(s, 8, addr + 0x00240000ULL); 569 /* 12/ALT : */ 570 sysbus_mmio_map(s, 9, addr + 0x00280000ULL); 571 /* 0/DFB8 : 8-bit plane */ 572 sysbus_mmio_map(s, 10, addr + 0x00800000ULL); 573 /* 1/DFB24 : 24bit plane */ 574 sysbus_mmio_map(s, 11, addr + 0x02000000ULL); 575 /* 4/RDFB32: Raw framebuffer. Control plane */ 576 sysbus_mmio_map(s, 12, addr + 0x0a000000ULL); 577 /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */ 578 if (depth == 8) { 579 sysbus_mmio_map(s, 13, addr + 0x00301000ULL); 580 } 581 582 sysbus_connect_irq(s, 0, irq); 583 } 584 585 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 586 int height, int depth) 587 { 588 DeviceState *dev; 589 SysBusDevice *s; 590 591 dev = qdev_create(NULL, "cgthree"); 592 qdev_prop_set_uint32(dev, "vram-size", vram_size); 593 qdev_prop_set_uint16(dev, "width", width); 594 qdev_prop_set_uint16(dev, "height", height); 595 qdev_prop_set_uint16(dev, "depth", depth); 596 qdev_prop_set_uint64(dev, "prom-addr", addr); 597 qdev_init_nofail(dev); 598 s = SYS_BUS_DEVICE(dev); 599 600 /* FCode ROM */ 601 sysbus_mmio_map(s, 0, addr); 602 /* DAC */ 603 sysbus_mmio_map(s, 1, addr + 0x400000ULL); 604 /* 8-bit plane */ 605 sysbus_mmio_map(s, 2, addr + 0x800000ULL); 606 607 sysbus_connect_irq(s, 0, irq); 608 } 609 610 /* NCR89C100/MACIO Internal ID register */ 611 612 #define TYPE_MACIO_ID_REGISTER "macio_idreg" 613 614 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 }; 615 616 static void idreg_init(hwaddr addr) 617 { 618 DeviceState *dev; 619 SysBusDevice *s; 620 621 dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER); 622 qdev_init_nofail(dev); 623 s = SYS_BUS_DEVICE(dev); 624 625 sysbus_mmio_map(s, 0, addr); 626 cpu_physical_memory_write_rom(&address_space_memory, 627 addr, idreg_data, sizeof(idreg_data)); 628 } 629 630 #define MACIO_ID_REGISTER(obj) \ 631 OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER) 632 633 typedef struct IDRegState { 634 SysBusDevice parent_obj; 635 636 MemoryRegion mem; 637 } IDRegState; 638 639 static int idreg_init1(SysBusDevice *dev) 640 { 641 IDRegState *s = MACIO_ID_REGISTER(dev); 642 643 memory_region_init_ram(&s->mem, OBJECT(s), 644 "sun4m.idreg", sizeof(idreg_data), &error_fatal); 645 vmstate_register_ram_global(&s->mem); 646 memory_region_set_readonly(&s->mem, true); 647 sysbus_init_mmio(dev, &s->mem); 648 return 0; 649 } 650 651 static void idreg_class_init(ObjectClass *klass, void *data) 652 { 653 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 654 655 k->init = idreg_init1; 656 } 657 658 static const TypeInfo idreg_info = { 659 .name = TYPE_MACIO_ID_REGISTER, 660 .parent = TYPE_SYS_BUS_DEVICE, 661 .instance_size = sizeof(IDRegState), 662 .class_init = idreg_class_init, 663 }; 664 665 #define TYPE_TCX_AFX "tcx_afx" 666 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX) 667 668 typedef struct AFXState { 669 SysBusDevice parent_obj; 670 671 MemoryRegion mem; 672 } AFXState; 673 674 /* SS-5 TCX AFX register */ 675 static void afx_init(hwaddr addr) 676 { 677 DeviceState *dev; 678 SysBusDevice *s; 679 680 dev = qdev_create(NULL, TYPE_TCX_AFX); 681 qdev_init_nofail(dev); 682 s = SYS_BUS_DEVICE(dev); 683 684 sysbus_mmio_map(s, 0, addr); 685 } 686 687 static int afx_init1(SysBusDevice *dev) 688 { 689 AFXState *s = TCX_AFX(dev); 690 691 memory_region_init_ram(&s->mem, OBJECT(s), "sun4m.afx", 4, &error_fatal); 692 vmstate_register_ram_global(&s->mem); 693 sysbus_init_mmio(dev, &s->mem); 694 return 0; 695 } 696 697 static void afx_class_init(ObjectClass *klass, void *data) 698 { 699 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 700 701 k->init = afx_init1; 702 } 703 704 static const TypeInfo afx_info = { 705 .name = TYPE_TCX_AFX, 706 .parent = TYPE_SYS_BUS_DEVICE, 707 .instance_size = sizeof(AFXState), 708 .class_init = afx_class_init, 709 }; 710 711 #define TYPE_OPENPROM "openprom" 712 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM) 713 714 typedef struct PROMState { 715 SysBusDevice parent_obj; 716 717 MemoryRegion prom; 718 } PROMState; 719 720 /* Boot PROM (OpenBIOS) */ 721 static uint64_t translate_prom_address(void *opaque, uint64_t addr) 722 { 723 hwaddr *base_addr = (hwaddr *)opaque; 724 return addr + *base_addr - PROM_VADDR; 725 } 726 727 static void prom_init(hwaddr addr, const char *bios_name) 728 { 729 DeviceState *dev; 730 SysBusDevice *s; 731 char *filename; 732 int ret; 733 734 dev = qdev_create(NULL, TYPE_OPENPROM); 735 qdev_init_nofail(dev); 736 s = SYS_BUS_DEVICE(dev); 737 738 sysbus_mmio_map(s, 0, addr); 739 740 /* load boot prom */ 741 if (bios_name == NULL) { 742 bios_name = PROM_FILENAME; 743 } 744 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 745 if (filename) { 746 ret = load_elf(filename, translate_prom_address, &addr, NULL, 747 NULL, NULL, 1, EM_SPARC, 0); 748 if (ret < 0 || ret > PROM_SIZE_MAX) { 749 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX); 750 } 751 g_free(filename); 752 } else { 753 ret = -1; 754 } 755 if (ret < 0 || ret > PROM_SIZE_MAX) { 756 fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name); 757 exit(1); 758 } 759 } 760 761 static int prom_init1(SysBusDevice *dev) 762 { 763 PROMState *s = OPENPROM(dev); 764 765 memory_region_init_ram(&s->prom, OBJECT(s), "sun4m.prom", PROM_SIZE_MAX, 766 &error_fatal); 767 vmstate_register_ram_global(&s->prom); 768 memory_region_set_readonly(&s->prom, true); 769 sysbus_init_mmio(dev, &s->prom); 770 return 0; 771 } 772 773 static Property prom_properties[] = { 774 {/* end of property list */}, 775 }; 776 777 static void prom_class_init(ObjectClass *klass, void *data) 778 { 779 DeviceClass *dc = DEVICE_CLASS(klass); 780 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 781 782 k->init = prom_init1; 783 dc->props = prom_properties; 784 } 785 786 static const TypeInfo prom_info = { 787 .name = TYPE_OPENPROM, 788 .parent = TYPE_SYS_BUS_DEVICE, 789 .instance_size = sizeof(PROMState), 790 .class_init = prom_class_init, 791 }; 792 793 #define TYPE_SUN4M_MEMORY "memory" 794 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY) 795 796 typedef struct RamDevice { 797 SysBusDevice parent_obj; 798 799 MemoryRegion ram; 800 uint64_t size; 801 } RamDevice; 802 803 /* System RAM */ 804 static int ram_init1(SysBusDevice *dev) 805 { 806 RamDevice *d = SUN4M_RAM(dev); 807 808 memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram", 809 d->size); 810 sysbus_init_mmio(dev, &d->ram); 811 return 0; 812 } 813 814 static void ram_init(hwaddr addr, ram_addr_t RAM_size, 815 uint64_t max_mem) 816 { 817 DeviceState *dev; 818 SysBusDevice *s; 819 RamDevice *d; 820 821 /* allocate RAM */ 822 if ((uint64_t)RAM_size > max_mem) { 823 fprintf(stderr, 824 "qemu: Too much memory for this machine: %d, maximum %d\n", 825 (unsigned int)(RAM_size / (1024 * 1024)), 826 (unsigned int)(max_mem / (1024 * 1024))); 827 exit(1); 828 } 829 dev = qdev_create(NULL, "memory"); 830 s = SYS_BUS_DEVICE(dev); 831 832 d = SUN4M_RAM(dev); 833 d->size = RAM_size; 834 qdev_init_nofail(dev); 835 836 sysbus_mmio_map(s, 0, addr); 837 } 838 839 static Property ram_properties[] = { 840 DEFINE_PROP_UINT64("size", RamDevice, size, 0), 841 DEFINE_PROP_END_OF_LIST(), 842 }; 843 844 static void ram_class_init(ObjectClass *klass, void *data) 845 { 846 DeviceClass *dc = DEVICE_CLASS(klass); 847 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 848 849 k->init = ram_init1; 850 dc->props = ram_properties; 851 } 852 853 static const TypeInfo ram_info = { 854 .name = TYPE_SUN4M_MEMORY, 855 .parent = TYPE_SYS_BUS_DEVICE, 856 .instance_size = sizeof(RamDevice), 857 .class_init = ram_class_init, 858 }; 859 860 static void cpu_devinit(const char *cpu_model, unsigned int id, 861 uint64_t prom_addr, qemu_irq **cpu_irqs) 862 { 863 CPUState *cs; 864 SPARCCPU *cpu; 865 CPUSPARCState *env; 866 867 cpu = cpu_sparc_init(cpu_model); 868 if (cpu == NULL) { 869 fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n"); 870 exit(1); 871 } 872 env = &cpu->env; 873 874 cpu_sparc_set_id(env, id); 875 if (id == 0) { 876 qemu_register_reset(main_cpu_reset, cpu); 877 } else { 878 qemu_register_reset(secondary_cpu_reset, cpu); 879 cs = CPU(cpu); 880 cs->halted = 1; 881 } 882 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS); 883 env->prom_addr = prom_addr; 884 } 885 886 static void dummy_fdc_tc(void *opaque, int irq, int level) 887 { 888 } 889 890 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, 891 MachineState *machine) 892 { 893 const char *cpu_model = machine->cpu_model; 894 unsigned int i; 895 void *iommu, *espdma, *ledma, *nvram; 896 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS], 897 espdma_irq, ledma_irq; 898 qemu_irq esp_reset, dma_enable; 899 qemu_irq fdc_tc; 900 unsigned long kernel_size; 901 DriveInfo *fd[MAX_FD]; 902 FWCfgState *fw_cfg; 903 unsigned int num_vsimms; 904 905 /* init CPUs */ 906 if (!cpu_model) 907 cpu_model = hwdef->default_cpu_model; 908 909 for(i = 0; i < smp_cpus; i++) { 910 cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]); 911 } 912 913 for (i = smp_cpus; i < MAX_CPUS; i++) 914 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); 915 916 917 /* set up devices */ 918 ram_init(0, machine->ram_size, hwdef->max_mem); 919 /* models without ECC don't trap when missing ram is accessed */ 920 if (!hwdef->ecc_base) { 921 empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size); 922 } 923 924 prom_init(hwdef->slavio_base, bios_name); 925 926 slavio_intctl = slavio_intctl_init(hwdef->intctl_base, 927 hwdef->intctl_base + 0x10000ULL, 928 cpu_irqs); 929 930 for (i = 0; i < 32; i++) { 931 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i); 932 } 933 for (i = 0; i < MAX_CPUS; i++) { 934 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i); 935 } 936 937 if (hwdef->idreg_base) { 938 idreg_init(hwdef->idreg_base); 939 } 940 941 if (hwdef->afx_base) { 942 afx_init(hwdef->afx_base); 943 } 944 945 iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version, 946 slavio_irq[30]); 947 948 if (hwdef->iommu_pad_base) { 949 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased. 950 Software shouldn't use aliased addresses, neither should it crash 951 when does. Using empty_slot instead of aliasing can help with 952 debugging such accesses */ 953 empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len); 954 } 955 956 espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[18], 957 iommu, &espdma_irq, 0); 958 959 ledma = sparc32_dma_init(hwdef->dma_base + 16ULL, 960 slavio_irq[16], iommu, &ledma_irq, 1); 961 962 if (graphic_depth != 8 && graphic_depth != 24) { 963 error_report("Unsupported depth: %d", graphic_depth); 964 exit (1); 965 } 966 num_vsimms = 0; 967 if (num_vsimms == 0) { 968 if (vga_interface_type == VGA_CG3) { 969 if (graphic_depth != 8) { 970 error_report("Unsupported depth: %d", graphic_depth); 971 exit(1); 972 } 973 974 if (!(graphic_width == 1024 && graphic_height == 768) && 975 !(graphic_width == 1152 && graphic_height == 900)) { 976 error_report("Unsupported resolution: %d x %d", graphic_width, 977 graphic_height); 978 exit(1); 979 } 980 981 /* sbus irq 5 */ 982 cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 983 graphic_width, graphic_height, graphic_depth); 984 } else { 985 /* If no display specified, default to TCX */ 986 if (graphic_depth != 8 && graphic_depth != 24) { 987 error_report("Unsupported depth: %d", graphic_depth); 988 exit(1); 989 } 990 991 if (!(graphic_width == 1024 && graphic_height == 768)) { 992 error_report("Unsupported resolution: %d x %d", 993 graphic_width, graphic_height); 994 exit(1); 995 } 996 997 tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 998 graphic_width, graphic_height, graphic_depth); 999 } 1000 } 1001 1002 for (i = num_vsimms; i < MAX_VSIMMS; i++) { 1003 /* vsimm registers probed by OBP */ 1004 if (hwdef->vsimm[i].reg_base) { 1005 empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000); 1006 } 1007 } 1008 1009 if (hwdef->sx_base) { 1010 empty_slot_init(hwdef->sx_base, 0x2000); 1011 } 1012 1013 lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq); 1014 1015 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8); 1016 1017 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus); 1018 1019 slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14], 1020 display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1); 1021 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device 1022 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */ 1023 escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15], 1024 serial_hds[0], serial_hds[1], ESCC_CLOCK, 1); 1025 1026 if (hwdef->apc_base) { 1027 apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0)); 1028 } 1029 1030 if (hwdef->fd_base) { 1031 /* there is zero or one floppy drive */ 1032 memset(fd, 0, sizeof(fd)); 1033 fd[0] = drive_get(IF_FLOPPY, 0, 0); 1034 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd, 1035 &fdc_tc); 1036 } else { 1037 fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0); 1038 } 1039 1040 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base, 1041 slavio_irq[30], fdc_tc); 1042 1043 if (drive_get_max_bus(IF_SCSI) > 0) { 1044 fprintf(stderr, "qemu: too many SCSI bus\n"); 1045 exit(1); 1046 } 1047 1048 esp_init(hwdef->esp_base, 2, 1049 espdma_memory_read, espdma_memory_write, 1050 espdma, espdma_irq, &esp_reset, &dma_enable); 1051 1052 qdev_connect_gpio_out(espdma, 0, esp_reset); 1053 qdev_connect_gpio_out(espdma, 1, dma_enable); 1054 1055 if (hwdef->cs_base) { 1056 sysbus_create_simple("SUNW,CS4231", hwdef->cs_base, 1057 slavio_irq[5]); 1058 } 1059 1060 if (hwdef->dbri_base) { 1061 /* ISDN chip with attached CS4215 audio codec */ 1062 /* prom space */ 1063 empty_slot_init(hwdef->dbri_base+0x1000, 0x30); 1064 /* reg space */ 1065 empty_slot_init(hwdef->dbri_base+0x10000, 0x100); 1066 } 1067 1068 if (hwdef->bpp_base) { 1069 /* parallel port */ 1070 empty_slot_init(hwdef->bpp_base, 0x20); 1071 } 1072 1073 kernel_size = sun4m_load_kernel(machine->kernel_filename, 1074 machine->initrd_filename, 1075 machine->ram_size); 1076 1077 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline, 1078 machine->boot_order, machine->ram_size, kernel_size, 1079 graphic_width, graphic_height, graphic_depth, 1080 hwdef->nvram_machine_id, "Sun4m"); 1081 1082 if (hwdef->ecc_base) 1083 ecc_init(hwdef->ecc_base, slavio_irq[28], 1084 hwdef->ecc_version); 1085 1086 fw_cfg = fw_cfg_init_mem(CFG_ADDR, CFG_ADDR + 2); 1087 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); 1088 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 1089 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); 1090 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); 1091 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width); 1092 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height); 1093 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); 1094 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1095 if (machine->kernel_cmdline) { 1096 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); 1097 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, 1098 machine->kernel_cmdline); 1099 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline); 1100 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 1101 strlen(machine->kernel_cmdline) + 1); 1102 } else { 1103 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); 1104 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); 1105 } 1106 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); 1107 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used 1108 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]); 1109 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); 1110 } 1111 1112 enum { 1113 ss5_id = 32, 1114 vger_id, 1115 lx_id, 1116 ss4_id, 1117 scls_id, 1118 sbook_id, 1119 ss10_id = 64, 1120 ss20_id, 1121 ss600mp_id, 1122 }; 1123 1124 static const struct sun4m_hwdef sun4m_hwdefs[] = { 1125 /* SS-5 */ 1126 { 1127 .iommu_base = 0x10000000, 1128 .iommu_pad_base = 0x10004000, 1129 .iommu_pad_len = 0x0fffb000, 1130 .tcx_base = 0x50000000, 1131 .cs_base = 0x6c000000, 1132 .slavio_base = 0x70000000, 1133 .ms_kb_base = 0x71000000, 1134 .serial_base = 0x71100000, 1135 .nvram_base = 0x71200000, 1136 .fd_base = 0x71400000, 1137 .counter_base = 0x71d00000, 1138 .intctl_base = 0x71e00000, 1139 .idreg_base = 0x78000000, 1140 .dma_base = 0x78400000, 1141 .esp_base = 0x78800000, 1142 .le_base = 0x78c00000, 1143 .apc_base = 0x6a000000, 1144 .afx_base = 0x6e000000, 1145 .aux1_base = 0x71900000, 1146 .aux2_base = 0x71910000, 1147 .nvram_machine_id = 0x80, 1148 .machine_id = ss5_id, 1149 .iommu_version = 0x05000000, 1150 .max_mem = 0x10000000, 1151 .default_cpu_model = "Fujitsu MB86904", 1152 }, 1153 /* SS-10 */ 1154 { 1155 .iommu_base = 0xfe0000000ULL, 1156 .tcx_base = 0xe20000000ULL, 1157 .slavio_base = 0xff0000000ULL, 1158 .ms_kb_base = 0xff1000000ULL, 1159 .serial_base = 0xff1100000ULL, 1160 .nvram_base = 0xff1200000ULL, 1161 .fd_base = 0xff1700000ULL, 1162 .counter_base = 0xff1300000ULL, 1163 .intctl_base = 0xff1400000ULL, 1164 .idreg_base = 0xef0000000ULL, 1165 .dma_base = 0xef0400000ULL, 1166 .esp_base = 0xef0800000ULL, 1167 .le_base = 0xef0c00000ULL, 1168 .apc_base = 0xefa000000ULL, // XXX should not exist 1169 .aux1_base = 0xff1800000ULL, 1170 .aux2_base = 0xff1a01000ULL, 1171 .ecc_base = 0xf00000000ULL, 1172 .ecc_version = 0x10000000, // version 0, implementation 1 1173 .nvram_machine_id = 0x72, 1174 .machine_id = ss10_id, 1175 .iommu_version = 0x03000000, 1176 .max_mem = 0xf00000000ULL, 1177 .default_cpu_model = "TI SuperSparc II", 1178 }, 1179 /* SS-600MP */ 1180 { 1181 .iommu_base = 0xfe0000000ULL, 1182 .tcx_base = 0xe20000000ULL, 1183 .slavio_base = 0xff0000000ULL, 1184 .ms_kb_base = 0xff1000000ULL, 1185 .serial_base = 0xff1100000ULL, 1186 .nvram_base = 0xff1200000ULL, 1187 .counter_base = 0xff1300000ULL, 1188 .intctl_base = 0xff1400000ULL, 1189 .dma_base = 0xef0081000ULL, 1190 .esp_base = 0xef0080000ULL, 1191 .le_base = 0xef0060000ULL, 1192 .apc_base = 0xefa000000ULL, // XXX should not exist 1193 .aux1_base = 0xff1800000ULL, 1194 .aux2_base = 0xff1a01000ULL, // XXX should not exist 1195 .ecc_base = 0xf00000000ULL, 1196 .ecc_version = 0x00000000, // version 0, implementation 0 1197 .nvram_machine_id = 0x71, 1198 .machine_id = ss600mp_id, 1199 .iommu_version = 0x01000000, 1200 .max_mem = 0xf00000000ULL, 1201 .default_cpu_model = "TI SuperSparc II", 1202 }, 1203 /* SS-20 */ 1204 { 1205 .iommu_base = 0xfe0000000ULL, 1206 .tcx_base = 0xe20000000ULL, 1207 .slavio_base = 0xff0000000ULL, 1208 .ms_kb_base = 0xff1000000ULL, 1209 .serial_base = 0xff1100000ULL, 1210 .nvram_base = 0xff1200000ULL, 1211 .fd_base = 0xff1700000ULL, 1212 .counter_base = 0xff1300000ULL, 1213 .intctl_base = 0xff1400000ULL, 1214 .idreg_base = 0xef0000000ULL, 1215 .dma_base = 0xef0400000ULL, 1216 .esp_base = 0xef0800000ULL, 1217 .le_base = 0xef0c00000ULL, 1218 .bpp_base = 0xef4800000ULL, 1219 .apc_base = 0xefa000000ULL, // XXX should not exist 1220 .aux1_base = 0xff1800000ULL, 1221 .aux2_base = 0xff1a01000ULL, 1222 .dbri_base = 0xee0000000ULL, 1223 .sx_base = 0xf80000000ULL, 1224 .vsimm = { 1225 { 1226 .reg_base = 0x9c000000ULL, 1227 .vram_base = 0xfc000000ULL 1228 }, { 1229 .reg_base = 0x90000000ULL, 1230 .vram_base = 0xf0000000ULL 1231 }, { 1232 .reg_base = 0x94000000ULL 1233 }, { 1234 .reg_base = 0x98000000ULL 1235 } 1236 }, 1237 .ecc_base = 0xf00000000ULL, 1238 .ecc_version = 0x20000000, // version 0, implementation 2 1239 .nvram_machine_id = 0x72, 1240 .machine_id = ss20_id, 1241 .iommu_version = 0x13000000, 1242 .max_mem = 0xf00000000ULL, 1243 .default_cpu_model = "TI SuperSparc II", 1244 }, 1245 /* Voyager */ 1246 { 1247 .iommu_base = 0x10000000, 1248 .tcx_base = 0x50000000, 1249 .slavio_base = 0x70000000, 1250 .ms_kb_base = 0x71000000, 1251 .serial_base = 0x71100000, 1252 .nvram_base = 0x71200000, 1253 .fd_base = 0x71400000, 1254 .counter_base = 0x71d00000, 1255 .intctl_base = 0x71e00000, 1256 .idreg_base = 0x78000000, 1257 .dma_base = 0x78400000, 1258 .esp_base = 0x78800000, 1259 .le_base = 0x78c00000, 1260 .apc_base = 0x71300000, // pmc 1261 .aux1_base = 0x71900000, 1262 .aux2_base = 0x71910000, 1263 .nvram_machine_id = 0x80, 1264 .machine_id = vger_id, 1265 .iommu_version = 0x05000000, 1266 .max_mem = 0x10000000, 1267 .default_cpu_model = "Fujitsu MB86904", 1268 }, 1269 /* LX */ 1270 { 1271 .iommu_base = 0x10000000, 1272 .iommu_pad_base = 0x10004000, 1273 .iommu_pad_len = 0x0fffb000, 1274 .tcx_base = 0x50000000, 1275 .slavio_base = 0x70000000, 1276 .ms_kb_base = 0x71000000, 1277 .serial_base = 0x71100000, 1278 .nvram_base = 0x71200000, 1279 .fd_base = 0x71400000, 1280 .counter_base = 0x71d00000, 1281 .intctl_base = 0x71e00000, 1282 .idreg_base = 0x78000000, 1283 .dma_base = 0x78400000, 1284 .esp_base = 0x78800000, 1285 .le_base = 0x78c00000, 1286 .aux1_base = 0x71900000, 1287 .aux2_base = 0x71910000, 1288 .nvram_machine_id = 0x80, 1289 .machine_id = lx_id, 1290 .iommu_version = 0x04000000, 1291 .max_mem = 0x10000000, 1292 .default_cpu_model = "TI MicroSparc I", 1293 }, 1294 /* SS-4 */ 1295 { 1296 .iommu_base = 0x10000000, 1297 .tcx_base = 0x50000000, 1298 .cs_base = 0x6c000000, 1299 .slavio_base = 0x70000000, 1300 .ms_kb_base = 0x71000000, 1301 .serial_base = 0x71100000, 1302 .nvram_base = 0x71200000, 1303 .fd_base = 0x71400000, 1304 .counter_base = 0x71d00000, 1305 .intctl_base = 0x71e00000, 1306 .idreg_base = 0x78000000, 1307 .dma_base = 0x78400000, 1308 .esp_base = 0x78800000, 1309 .le_base = 0x78c00000, 1310 .apc_base = 0x6a000000, 1311 .aux1_base = 0x71900000, 1312 .aux2_base = 0x71910000, 1313 .nvram_machine_id = 0x80, 1314 .machine_id = ss4_id, 1315 .iommu_version = 0x05000000, 1316 .max_mem = 0x10000000, 1317 .default_cpu_model = "Fujitsu MB86904", 1318 }, 1319 /* SPARCClassic */ 1320 { 1321 .iommu_base = 0x10000000, 1322 .tcx_base = 0x50000000, 1323 .slavio_base = 0x70000000, 1324 .ms_kb_base = 0x71000000, 1325 .serial_base = 0x71100000, 1326 .nvram_base = 0x71200000, 1327 .fd_base = 0x71400000, 1328 .counter_base = 0x71d00000, 1329 .intctl_base = 0x71e00000, 1330 .idreg_base = 0x78000000, 1331 .dma_base = 0x78400000, 1332 .esp_base = 0x78800000, 1333 .le_base = 0x78c00000, 1334 .apc_base = 0x6a000000, 1335 .aux1_base = 0x71900000, 1336 .aux2_base = 0x71910000, 1337 .nvram_machine_id = 0x80, 1338 .machine_id = scls_id, 1339 .iommu_version = 0x05000000, 1340 .max_mem = 0x10000000, 1341 .default_cpu_model = "TI MicroSparc I", 1342 }, 1343 /* SPARCbook */ 1344 { 1345 .iommu_base = 0x10000000, 1346 .tcx_base = 0x50000000, // XXX 1347 .slavio_base = 0x70000000, 1348 .ms_kb_base = 0x71000000, 1349 .serial_base = 0x71100000, 1350 .nvram_base = 0x71200000, 1351 .fd_base = 0x71400000, 1352 .counter_base = 0x71d00000, 1353 .intctl_base = 0x71e00000, 1354 .idreg_base = 0x78000000, 1355 .dma_base = 0x78400000, 1356 .esp_base = 0x78800000, 1357 .le_base = 0x78c00000, 1358 .apc_base = 0x6a000000, 1359 .aux1_base = 0x71900000, 1360 .aux2_base = 0x71910000, 1361 .nvram_machine_id = 0x80, 1362 .machine_id = sbook_id, 1363 .iommu_version = 0x05000000, 1364 .max_mem = 0x10000000, 1365 .default_cpu_model = "TI MicroSparc I", 1366 }, 1367 }; 1368 1369 /* SPARCstation 5 hardware initialisation */ 1370 static void ss5_init(MachineState *machine) 1371 { 1372 sun4m_hw_init(&sun4m_hwdefs[0], machine); 1373 } 1374 1375 /* SPARCstation 10 hardware initialisation */ 1376 static void ss10_init(MachineState *machine) 1377 { 1378 sun4m_hw_init(&sun4m_hwdefs[1], machine); 1379 } 1380 1381 /* SPARCserver 600MP hardware initialisation */ 1382 static void ss600mp_init(MachineState *machine) 1383 { 1384 sun4m_hw_init(&sun4m_hwdefs[2], machine); 1385 } 1386 1387 /* SPARCstation 20 hardware initialisation */ 1388 static void ss20_init(MachineState *machine) 1389 { 1390 sun4m_hw_init(&sun4m_hwdefs[3], machine); 1391 } 1392 1393 /* SPARCstation Voyager hardware initialisation */ 1394 static void vger_init(MachineState *machine) 1395 { 1396 sun4m_hw_init(&sun4m_hwdefs[4], machine); 1397 } 1398 1399 /* SPARCstation LX hardware initialisation */ 1400 static void ss_lx_init(MachineState *machine) 1401 { 1402 sun4m_hw_init(&sun4m_hwdefs[5], machine); 1403 } 1404 1405 /* SPARCstation 4 hardware initialisation */ 1406 static void ss4_init(MachineState *machine) 1407 { 1408 sun4m_hw_init(&sun4m_hwdefs[6], machine); 1409 } 1410 1411 /* SPARCClassic hardware initialisation */ 1412 static void scls_init(MachineState *machine) 1413 { 1414 sun4m_hw_init(&sun4m_hwdefs[7], machine); 1415 } 1416 1417 /* SPARCbook hardware initialisation */ 1418 static void sbook_init(MachineState *machine) 1419 { 1420 sun4m_hw_init(&sun4m_hwdefs[8], machine); 1421 } 1422 1423 static void ss5_class_init(ObjectClass *oc, void *data) 1424 { 1425 MachineClass *mc = MACHINE_CLASS(oc); 1426 1427 mc->desc = "Sun4m platform, SPARCstation 5"; 1428 mc->init = ss5_init; 1429 mc->block_default_type = IF_SCSI; 1430 mc->is_default = 1; 1431 mc->default_boot_order = "c"; 1432 } 1433 1434 static const TypeInfo ss5_type = { 1435 .name = MACHINE_TYPE_NAME("SS-5"), 1436 .parent = TYPE_MACHINE, 1437 .class_init = ss5_class_init, 1438 }; 1439 1440 static void ss10_class_init(ObjectClass *oc, void *data) 1441 { 1442 MachineClass *mc = MACHINE_CLASS(oc); 1443 1444 mc->desc = "Sun4m platform, SPARCstation 10"; 1445 mc->init = ss10_init; 1446 mc->block_default_type = IF_SCSI; 1447 mc->max_cpus = 4; 1448 mc->default_boot_order = "c"; 1449 } 1450 1451 static const TypeInfo ss10_type = { 1452 .name = MACHINE_TYPE_NAME("SS-10"), 1453 .parent = TYPE_MACHINE, 1454 .class_init = ss10_class_init, 1455 }; 1456 1457 static void ss600mp_class_init(ObjectClass *oc, void *data) 1458 { 1459 MachineClass *mc = MACHINE_CLASS(oc); 1460 1461 mc->desc = "Sun4m platform, SPARCserver 600MP"; 1462 mc->init = ss600mp_init; 1463 mc->block_default_type = IF_SCSI; 1464 mc->max_cpus = 4; 1465 mc->default_boot_order = "c"; 1466 } 1467 1468 static const TypeInfo ss600mp_type = { 1469 .name = MACHINE_TYPE_NAME("SS-600MP"), 1470 .parent = TYPE_MACHINE, 1471 .class_init = ss600mp_class_init, 1472 }; 1473 1474 static void ss20_class_init(ObjectClass *oc, void *data) 1475 { 1476 MachineClass *mc = MACHINE_CLASS(oc); 1477 1478 mc->desc = "Sun4m platform, SPARCstation 20"; 1479 mc->init = ss20_init; 1480 mc->block_default_type = IF_SCSI; 1481 mc->max_cpus = 4; 1482 mc->default_boot_order = "c"; 1483 } 1484 1485 static const TypeInfo ss20_type = { 1486 .name = MACHINE_TYPE_NAME("SS-20"), 1487 .parent = TYPE_MACHINE, 1488 .class_init = ss20_class_init, 1489 }; 1490 1491 static void voyager_class_init(ObjectClass *oc, void *data) 1492 { 1493 MachineClass *mc = MACHINE_CLASS(oc); 1494 1495 mc->desc = "Sun4m platform, SPARCstation Voyager"; 1496 mc->init = vger_init; 1497 mc->block_default_type = IF_SCSI; 1498 mc->default_boot_order = "c"; 1499 } 1500 1501 static const TypeInfo voyager_type = { 1502 .name = MACHINE_TYPE_NAME("Voyager"), 1503 .parent = TYPE_MACHINE, 1504 .class_init = voyager_class_init, 1505 }; 1506 1507 static void ss_lx_class_init(ObjectClass *oc, void *data) 1508 { 1509 MachineClass *mc = MACHINE_CLASS(oc); 1510 1511 mc->desc = "Sun4m platform, SPARCstation LX"; 1512 mc->init = ss_lx_init; 1513 mc->block_default_type = IF_SCSI; 1514 mc->default_boot_order = "c"; 1515 } 1516 1517 static const TypeInfo ss_lx_type = { 1518 .name = MACHINE_TYPE_NAME("LX"), 1519 .parent = TYPE_MACHINE, 1520 .class_init = ss_lx_class_init, 1521 }; 1522 1523 static void ss4_class_init(ObjectClass *oc, void *data) 1524 { 1525 MachineClass *mc = MACHINE_CLASS(oc); 1526 1527 mc->desc = "Sun4m platform, SPARCstation 4"; 1528 mc->init = ss4_init; 1529 mc->block_default_type = IF_SCSI; 1530 mc->default_boot_order = "c"; 1531 } 1532 1533 static const TypeInfo ss4_type = { 1534 .name = MACHINE_TYPE_NAME("SS-4"), 1535 .parent = TYPE_MACHINE, 1536 .class_init = ss4_class_init, 1537 }; 1538 1539 static void scls_class_init(ObjectClass *oc, void *data) 1540 { 1541 MachineClass *mc = MACHINE_CLASS(oc); 1542 1543 mc->desc = "Sun4m platform, SPARCClassic"; 1544 mc->init = scls_init; 1545 mc->block_default_type = IF_SCSI; 1546 mc->default_boot_order = "c"; 1547 } 1548 1549 static const TypeInfo scls_type = { 1550 .name = MACHINE_TYPE_NAME("SPARCClassic"), 1551 .parent = TYPE_MACHINE, 1552 .class_init = scls_class_init, 1553 }; 1554 1555 static void sbook_class_init(ObjectClass *oc, void *data) 1556 { 1557 MachineClass *mc = MACHINE_CLASS(oc); 1558 1559 mc->desc = "Sun4m platform, SPARCbook"; 1560 mc->init = sbook_init; 1561 mc->block_default_type = IF_SCSI; 1562 mc->default_boot_order = "c"; 1563 } 1564 1565 static const TypeInfo sbook_type = { 1566 .name = MACHINE_TYPE_NAME("SPARCbook"), 1567 .parent = TYPE_MACHINE, 1568 .class_init = sbook_class_init, 1569 }; 1570 1571 static void sun4m_register_types(void) 1572 { 1573 type_register_static(&idreg_info); 1574 type_register_static(&afx_info); 1575 type_register_static(&prom_info); 1576 type_register_static(&ram_info); 1577 } 1578 1579 static void sun4m_machine_init(void) 1580 { 1581 type_register_static(&ss5_type); 1582 type_register_static(&ss10_type); 1583 type_register_static(&ss600mp_type); 1584 type_register_static(&ss20_type); 1585 type_register_static(&voyager_type); 1586 type_register_static(&ss_lx_type); 1587 type_register_static(&ss4_type); 1588 type_register_static(&scls_type); 1589 type_register_static(&sbook_type); 1590 } 1591 1592 type_init(sun4m_register_types) 1593 machine_init(sun4m_machine_init) 1594