xref: /openbmc/qemu/hw/sparc/sun4m.c (revision 4fe6d78b)
1 /*
2  * QEMU Sun4m & Sun4d & Sun4c System Emulator
3  *
4  * Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu-common.h"
27 #include "cpu.h"
28 #include "hw/sysbus.h"
29 #include "qemu/error-report.h"
30 #include "qemu/timer.h"
31 #include "hw/sparc/sun4m_iommu.h"
32 #include "hw/timer/m48t59.h"
33 #include "hw/sparc/sparc32_dma.h"
34 #include "hw/block/fdc.h"
35 #include "sysemu/sysemu.h"
36 #include "net/net.h"
37 #include "hw/boards.h"
38 #include "hw/scsi/esp.h"
39 #include "hw/isa/isa.h"
40 #include "hw/nvram/sun_nvram.h"
41 #include "hw/nvram/chrp_nvram.h"
42 #include "hw/nvram/fw_cfg.h"
43 #include "hw/char/escc.h"
44 #include "hw/empty_slot.h"
45 #include "hw/loader.h"
46 #include "elf.h"
47 #include "sysemu/block-backend.h"
48 #include "trace.h"
49 #include "qemu/cutils.h"
50 
51 /*
52  * Sun4m architecture was used in the following machines:
53  *
54  * SPARCserver 6xxMP/xx
55  * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15),
56  * SPARCclassic X (4/10)
57  * SPARCstation LX/ZX (4/30)
58  * SPARCstation Voyager
59  * SPARCstation 10/xx, SPARCserver 10/xx
60  * SPARCstation 5, SPARCserver 5
61  * SPARCstation 20/xx, SPARCserver 20
62  * SPARCstation 4
63  *
64  * See for example: http://www.sunhelp.org/faq/sunref1.html
65  */
66 
67 #define KERNEL_LOAD_ADDR     0x00004000
68 #define CMDLINE_ADDR         0x007ff000
69 #define INITRD_LOAD_ADDR     0x00800000
70 #define PROM_SIZE_MAX        (1024 * 1024)
71 #define PROM_VADDR           0xffd00000
72 #define PROM_FILENAME        "openbios-sparc32"
73 #define CFG_ADDR             0xd00000510ULL
74 #define FW_CFG_SUN4M_DEPTH   (FW_CFG_ARCH_LOCAL + 0x00)
75 #define FW_CFG_SUN4M_WIDTH   (FW_CFG_ARCH_LOCAL + 0x01)
76 #define FW_CFG_SUN4M_HEIGHT  (FW_CFG_ARCH_LOCAL + 0x02)
77 
78 #define MAX_CPUS 16
79 #define MAX_PILS 16
80 #define MAX_VSIMMS 4
81 
82 #define ESCC_CLOCK 4915200
83 
84 struct sun4m_hwdef {
85     hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
86     hwaddr intctl_base, counter_base, nvram_base, ms_kb_base;
87     hwaddr serial_base, fd_base;
88     hwaddr afx_base, idreg_base, dma_base, esp_base, le_base;
89     hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base;
90     hwaddr bpp_base, dbri_base, sx_base;
91     struct {
92         hwaddr reg_base, vram_base;
93     } vsimm[MAX_VSIMMS];
94     hwaddr ecc_base;
95     uint64_t max_mem;
96     uint32_t ecc_version;
97     uint32_t iommu_version;
98     uint16_t machine_id;
99     uint8_t nvram_machine_id;
100 };
101 
102 void DMA_init(ISABus *bus, int high_page_enable)
103 {
104 }
105 
106 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
107                             Error **errp)
108 {
109     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
110 }
111 
112 static void nvram_init(Nvram *nvram, uint8_t *macaddr,
113                        const char *cmdline, const char *boot_devices,
114                        ram_addr_t RAM_size, uint32_t kernel_size,
115                        int width, int height, int depth,
116                        int nvram_machine_id, const char *arch)
117 {
118     unsigned int i;
119     int sysp_end;
120     uint8_t image[0x1ff0];
121     NvramClass *k = NVRAM_GET_CLASS(nvram);
122 
123     memset(image, '\0', sizeof(image));
124 
125     /* OpenBIOS nvram variables partition */
126     sysp_end = chrp_nvram_create_system_partition(image, 0);
127 
128     /* Free space partition */
129     chrp_nvram_create_free_partition(&image[sysp_end], 0x1fd0 - sysp_end);
130 
131     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr,
132                     nvram_machine_id);
133 
134     for (i = 0; i < sizeof(image); i++) {
135         (k->write)(nvram, i, image[i]);
136     }
137 }
138 
139 void cpu_check_irqs(CPUSPARCState *env)
140 {
141     CPUState *cs;
142 
143     /* We should be holding the BQL before we mess with IRQs */
144     g_assert(qemu_mutex_iothread_locked());
145 
146     if (env->pil_in && (env->interrupt_index == 0 ||
147                         (env->interrupt_index & ~15) == TT_EXTINT)) {
148         unsigned int i;
149 
150         for (i = 15; i > 0; i--) {
151             if (env->pil_in & (1 << i)) {
152                 int old_interrupt = env->interrupt_index;
153 
154                 env->interrupt_index = TT_EXTINT | i;
155                 if (old_interrupt != env->interrupt_index) {
156                     cs = CPU(sparc_env_get_cpu(env));
157                     trace_sun4m_cpu_interrupt(i);
158                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
159                 }
160                 break;
161             }
162         }
163     } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
164         cs = CPU(sparc_env_get_cpu(env));
165         trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
166         env->interrupt_index = 0;
167         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
168     }
169 }
170 
171 static void cpu_kick_irq(SPARCCPU *cpu)
172 {
173     CPUSPARCState *env = &cpu->env;
174     CPUState *cs = CPU(cpu);
175 
176     cs->halted = 0;
177     cpu_check_irqs(env);
178     qemu_cpu_kick(cs);
179 }
180 
181 static void cpu_set_irq(void *opaque, int irq, int level)
182 {
183     SPARCCPU *cpu = opaque;
184     CPUSPARCState *env = &cpu->env;
185 
186     if (level) {
187         trace_sun4m_cpu_set_irq_raise(irq);
188         env->pil_in |= 1 << irq;
189         cpu_kick_irq(cpu);
190     } else {
191         trace_sun4m_cpu_set_irq_lower(irq);
192         env->pil_in &= ~(1 << irq);
193         cpu_check_irqs(env);
194     }
195 }
196 
197 static void dummy_cpu_set_irq(void *opaque, int irq, int level)
198 {
199 }
200 
201 static void main_cpu_reset(void *opaque)
202 {
203     SPARCCPU *cpu = opaque;
204     CPUState *cs = CPU(cpu);
205 
206     cpu_reset(cs);
207     cs->halted = 0;
208 }
209 
210 static void secondary_cpu_reset(void *opaque)
211 {
212     SPARCCPU *cpu = opaque;
213     CPUState *cs = CPU(cpu);
214 
215     cpu_reset(cs);
216     cs->halted = 1;
217 }
218 
219 static void cpu_halt_signal(void *opaque, int irq, int level)
220 {
221     if (level && current_cpu) {
222         cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT);
223     }
224 }
225 
226 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
227 {
228     return addr - 0xf0000000ULL;
229 }
230 
231 static unsigned long sun4m_load_kernel(const char *kernel_filename,
232                                        const char *initrd_filename,
233                                        ram_addr_t RAM_size)
234 {
235     int linux_boot;
236     unsigned int i;
237     long initrd_size, kernel_size;
238     uint8_t *ptr;
239 
240     linux_boot = (kernel_filename != NULL);
241 
242     kernel_size = 0;
243     if (linux_boot) {
244         int bswap_needed;
245 
246 #ifdef BSWAP_NEEDED
247         bswap_needed = 1;
248 #else
249         bswap_needed = 0;
250 #endif
251         kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
252                                NULL, NULL, NULL, 1, EM_SPARC, 0, 0);
253         if (kernel_size < 0)
254             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
255                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
256                                     TARGET_PAGE_SIZE);
257         if (kernel_size < 0)
258             kernel_size = load_image_targphys(kernel_filename,
259                                               KERNEL_LOAD_ADDR,
260                                               RAM_size - KERNEL_LOAD_ADDR);
261         if (kernel_size < 0) {
262             fprintf(stderr, "qemu: could not load kernel '%s'\n",
263                     kernel_filename);
264             exit(1);
265         }
266 
267         /* load initrd */
268         initrd_size = 0;
269         if (initrd_filename) {
270             initrd_size = load_image_targphys(initrd_filename,
271                                               INITRD_LOAD_ADDR,
272                                               RAM_size - INITRD_LOAD_ADDR);
273             if (initrd_size < 0) {
274                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
275                         initrd_filename);
276                 exit(1);
277             }
278         }
279         if (initrd_size > 0) {
280             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
281                 ptr = rom_ptr(KERNEL_LOAD_ADDR + i);
282                 if (ldl_p(ptr) == 0x48647253) { // HdrS
283                     stl_p(ptr + 16, INITRD_LOAD_ADDR);
284                     stl_p(ptr + 20, initrd_size);
285                     break;
286                 }
287             }
288         }
289     }
290     return kernel_size;
291 }
292 
293 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq)
294 {
295     DeviceState *dev;
296     SysBusDevice *s;
297 
298     dev = qdev_create(NULL, TYPE_SUN4M_IOMMU);
299     qdev_prop_set_uint32(dev, "version", version);
300     qdev_init_nofail(dev);
301     s = SYS_BUS_DEVICE(dev);
302     sysbus_connect_irq(s, 0, irq);
303     sysbus_mmio_map(s, 0, addr);
304 
305     return s;
306 }
307 
308 static void *sparc32_dma_init(hwaddr dma_base,
309                               hwaddr esp_base, qemu_irq espdma_irq,
310                               hwaddr le_base, qemu_irq ledma_irq)
311 {
312     DeviceState *dma;
313     ESPDMADeviceState *espdma;
314     LEDMADeviceState *ledma;
315     SysBusESPState *esp;
316     SysBusPCNetState *lance;
317 
318     dma = qdev_create(NULL, TYPE_SPARC32_DMA);
319     qdev_init_nofail(dma);
320     sysbus_mmio_map(SYS_BUS_DEVICE(dma), 0, dma_base);
321 
322     espdma = SPARC32_ESPDMA_DEVICE(object_resolve_path_component(
323                                    OBJECT(dma), "espdma"));
324     sysbus_connect_irq(SYS_BUS_DEVICE(espdma), 0, espdma_irq);
325 
326     esp = ESP_STATE(object_resolve_path_component(OBJECT(espdma), "esp"));
327     sysbus_mmio_map(SYS_BUS_DEVICE(esp), 0, esp_base);
328 
329     ledma = SPARC32_LEDMA_DEVICE(object_resolve_path_component(
330                                  OBJECT(dma), "ledma"));
331     sysbus_connect_irq(SYS_BUS_DEVICE(ledma), 0, ledma_irq);
332 
333     lance = SYSBUS_PCNET(object_resolve_path_component(
334                          OBJECT(ledma), "lance"));
335     sysbus_mmio_map(SYS_BUS_DEVICE(lance), 0, le_base);
336 
337     return dma;
338 }
339 
340 static DeviceState *slavio_intctl_init(hwaddr addr,
341                                        hwaddr addrg,
342                                        qemu_irq **parent_irq)
343 {
344     DeviceState *dev;
345     SysBusDevice *s;
346     unsigned int i, j;
347 
348     dev = qdev_create(NULL, "slavio_intctl");
349     qdev_init_nofail(dev);
350 
351     s = SYS_BUS_DEVICE(dev);
352 
353     for (i = 0; i < MAX_CPUS; i++) {
354         for (j = 0; j < MAX_PILS; j++) {
355             sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]);
356         }
357     }
358     sysbus_mmio_map(s, 0, addrg);
359     for (i = 0; i < MAX_CPUS; i++) {
360         sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE);
361     }
362 
363     return dev;
364 }
365 
366 #define SYS_TIMER_OFFSET      0x10000ULL
367 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
368 
369 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq,
370                                   qemu_irq *cpu_irqs, unsigned int num_cpus)
371 {
372     DeviceState *dev;
373     SysBusDevice *s;
374     unsigned int i;
375 
376     dev = qdev_create(NULL, "slavio_timer");
377     qdev_prop_set_uint32(dev, "num_cpus", num_cpus);
378     qdev_init_nofail(dev);
379     s = SYS_BUS_DEVICE(dev);
380     sysbus_connect_irq(s, 0, master_irq);
381     sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET);
382 
383     for (i = 0; i < MAX_CPUS; i++) {
384         sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i));
385         sysbus_connect_irq(s, i + 1, cpu_irqs[i]);
386     }
387 }
388 
389 static qemu_irq  slavio_system_powerdown;
390 
391 static void slavio_powerdown_req(Notifier *n, void *opaque)
392 {
393     qemu_irq_raise(slavio_system_powerdown);
394 }
395 
396 static Notifier slavio_system_powerdown_notifier = {
397     .notify = slavio_powerdown_req
398 };
399 
400 #define MISC_LEDS 0x01600000
401 #define MISC_CFG  0x01800000
402 #define MISC_DIAG 0x01a00000
403 #define MISC_MDM  0x01b00000
404 #define MISC_SYS  0x01f00000
405 
406 static void slavio_misc_init(hwaddr base,
407                              hwaddr aux1_base,
408                              hwaddr aux2_base, qemu_irq irq,
409                              qemu_irq fdc_tc)
410 {
411     DeviceState *dev;
412     SysBusDevice *s;
413 
414     dev = qdev_create(NULL, "slavio_misc");
415     qdev_init_nofail(dev);
416     s = SYS_BUS_DEVICE(dev);
417     if (base) {
418         /* 8 bit registers */
419         /* Slavio control */
420         sysbus_mmio_map(s, 0, base + MISC_CFG);
421         /* Diagnostics */
422         sysbus_mmio_map(s, 1, base + MISC_DIAG);
423         /* Modem control */
424         sysbus_mmio_map(s, 2, base + MISC_MDM);
425         /* 16 bit registers */
426         /* ss600mp diag LEDs */
427         sysbus_mmio_map(s, 3, base + MISC_LEDS);
428         /* 32 bit registers */
429         /* System control */
430         sysbus_mmio_map(s, 4, base + MISC_SYS);
431     }
432     if (aux1_base) {
433         /* AUX 1 (Misc System Functions) */
434         sysbus_mmio_map(s, 5, aux1_base);
435     }
436     if (aux2_base) {
437         /* AUX 2 (Software Powerdown Control) */
438         sysbus_mmio_map(s, 6, aux2_base);
439     }
440     sysbus_connect_irq(s, 0, irq);
441     sysbus_connect_irq(s, 1, fdc_tc);
442     slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
443     qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
444 }
445 
446 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version)
447 {
448     DeviceState *dev;
449     SysBusDevice *s;
450 
451     dev = qdev_create(NULL, "eccmemctl");
452     qdev_prop_set_uint32(dev, "version", version);
453     qdev_init_nofail(dev);
454     s = SYS_BUS_DEVICE(dev);
455     sysbus_connect_irq(s, 0, irq);
456     sysbus_mmio_map(s, 0, base);
457     if (version == 0) { // SS-600MP only
458         sysbus_mmio_map(s, 1, base + 0x1000);
459     }
460 }
461 
462 static void apc_init(hwaddr power_base, qemu_irq cpu_halt)
463 {
464     DeviceState *dev;
465     SysBusDevice *s;
466 
467     dev = qdev_create(NULL, "apc");
468     qdev_init_nofail(dev);
469     s = SYS_BUS_DEVICE(dev);
470     /* Power management (APC) XXX: not a Slavio device */
471     sysbus_mmio_map(s, 0, power_base);
472     sysbus_connect_irq(s, 0, cpu_halt);
473 }
474 
475 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
476                      int height, int depth)
477 {
478     DeviceState *dev;
479     SysBusDevice *s;
480 
481     dev = qdev_create(NULL, "SUNW,tcx");
482     qdev_prop_set_uint32(dev, "vram_size", vram_size);
483     qdev_prop_set_uint16(dev, "width", width);
484     qdev_prop_set_uint16(dev, "height", height);
485     qdev_prop_set_uint16(dev, "depth", depth);
486     qdev_init_nofail(dev);
487     s = SYS_BUS_DEVICE(dev);
488 
489     /* 10/ROM : FCode ROM */
490     sysbus_mmio_map(s, 0, addr);
491     /* 2/STIP : Stipple */
492     sysbus_mmio_map(s, 1, addr + 0x04000000ULL);
493     /* 3/BLIT : Blitter */
494     sysbus_mmio_map(s, 2, addr + 0x06000000ULL);
495     /* 5/RSTIP : Raw Stipple */
496     sysbus_mmio_map(s, 3, addr + 0x0c000000ULL);
497     /* 6/RBLIT : Raw Blitter */
498     sysbus_mmio_map(s, 4, addr + 0x0e000000ULL);
499     /* 7/TEC : Transform Engine */
500     sysbus_mmio_map(s, 5, addr + 0x00700000ULL);
501     /* 8/CMAP  : DAC */
502     sysbus_mmio_map(s, 6, addr + 0x00200000ULL);
503     /* 9/THC : */
504     if (depth == 8) {
505         sysbus_mmio_map(s, 7, addr + 0x00300000ULL);
506     } else {
507         sysbus_mmio_map(s, 7, addr + 0x00301000ULL);
508     }
509     /* 11/DHC : */
510     sysbus_mmio_map(s, 8, addr + 0x00240000ULL);
511     /* 12/ALT : */
512     sysbus_mmio_map(s, 9, addr + 0x00280000ULL);
513     /* 0/DFB8 : 8-bit plane */
514     sysbus_mmio_map(s, 10, addr + 0x00800000ULL);
515     /* 1/DFB24 : 24bit plane */
516     sysbus_mmio_map(s, 11, addr + 0x02000000ULL);
517     /* 4/RDFB32: Raw framebuffer. Control plane */
518     sysbus_mmio_map(s, 12, addr + 0x0a000000ULL);
519     /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */
520     if (depth == 8) {
521         sysbus_mmio_map(s, 13, addr + 0x00301000ULL);
522     }
523 
524     sysbus_connect_irq(s, 0, irq);
525 }
526 
527 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width,
528                      int height, int depth)
529 {
530     DeviceState *dev;
531     SysBusDevice *s;
532 
533     dev = qdev_create(NULL, "cgthree");
534     qdev_prop_set_uint32(dev, "vram-size", vram_size);
535     qdev_prop_set_uint16(dev, "width", width);
536     qdev_prop_set_uint16(dev, "height", height);
537     qdev_prop_set_uint16(dev, "depth", depth);
538     qdev_init_nofail(dev);
539     s = SYS_BUS_DEVICE(dev);
540 
541     /* FCode ROM */
542     sysbus_mmio_map(s, 0, addr);
543     /* DAC */
544     sysbus_mmio_map(s, 1, addr + 0x400000ULL);
545     /* 8-bit plane */
546     sysbus_mmio_map(s, 2, addr + 0x800000ULL);
547 
548     sysbus_connect_irq(s, 0, irq);
549 }
550 
551 /* NCR89C100/MACIO Internal ID register */
552 
553 #define TYPE_MACIO_ID_REGISTER "macio_idreg"
554 
555 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 };
556 
557 static void idreg_init(hwaddr addr)
558 {
559     DeviceState *dev;
560     SysBusDevice *s;
561 
562     dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER);
563     qdev_init_nofail(dev);
564     s = SYS_BUS_DEVICE(dev);
565 
566     sysbus_mmio_map(s, 0, addr);
567     cpu_physical_memory_write_rom(&address_space_memory,
568                                   addr, idreg_data, sizeof(idreg_data));
569 }
570 
571 #define MACIO_ID_REGISTER(obj) \
572     OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER)
573 
574 typedef struct IDRegState {
575     SysBusDevice parent_obj;
576 
577     MemoryRegion mem;
578 } IDRegState;
579 
580 static void idreg_init1(Object *obj)
581 {
582     IDRegState *s = MACIO_ID_REGISTER(obj);
583     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
584 
585     memory_region_init_ram_nomigrate(&s->mem, obj,
586                            "sun4m.idreg", sizeof(idreg_data), &error_fatal);
587     vmstate_register_ram_global(&s->mem);
588     memory_region_set_readonly(&s->mem, true);
589     sysbus_init_mmio(dev, &s->mem);
590 }
591 
592 static const TypeInfo idreg_info = {
593     .name          = TYPE_MACIO_ID_REGISTER,
594     .parent        = TYPE_SYS_BUS_DEVICE,
595     .instance_size = sizeof(IDRegState),
596     .instance_init = idreg_init1,
597 };
598 
599 #define TYPE_TCX_AFX "tcx_afx"
600 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX)
601 
602 typedef struct AFXState {
603     SysBusDevice parent_obj;
604 
605     MemoryRegion mem;
606 } AFXState;
607 
608 /* SS-5 TCX AFX register */
609 static void afx_init(hwaddr addr)
610 {
611     DeviceState *dev;
612     SysBusDevice *s;
613 
614     dev = qdev_create(NULL, TYPE_TCX_AFX);
615     qdev_init_nofail(dev);
616     s = SYS_BUS_DEVICE(dev);
617 
618     sysbus_mmio_map(s, 0, addr);
619 }
620 
621 static void afx_init1(Object *obj)
622 {
623     AFXState *s = TCX_AFX(obj);
624     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
625 
626     memory_region_init_ram_nomigrate(&s->mem, obj, "sun4m.afx", 4, &error_fatal);
627     vmstate_register_ram_global(&s->mem);
628     sysbus_init_mmio(dev, &s->mem);
629 }
630 
631 static const TypeInfo afx_info = {
632     .name          = TYPE_TCX_AFX,
633     .parent        = TYPE_SYS_BUS_DEVICE,
634     .instance_size = sizeof(AFXState),
635     .instance_init = afx_init1,
636 };
637 
638 #define TYPE_OPENPROM "openprom"
639 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
640 
641 typedef struct PROMState {
642     SysBusDevice parent_obj;
643 
644     MemoryRegion prom;
645 } PROMState;
646 
647 /* Boot PROM (OpenBIOS) */
648 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
649 {
650     hwaddr *base_addr = (hwaddr *)opaque;
651     return addr + *base_addr - PROM_VADDR;
652 }
653 
654 static void prom_init(hwaddr addr, const char *bios_name)
655 {
656     DeviceState *dev;
657     SysBusDevice *s;
658     char *filename;
659     int ret;
660 
661     dev = qdev_create(NULL, TYPE_OPENPROM);
662     qdev_init_nofail(dev);
663     s = SYS_BUS_DEVICE(dev);
664 
665     sysbus_mmio_map(s, 0, addr);
666 
667     /* load boot prom */
668     if (bios_name == NULL) {
669         bios_name = PROM_FILENAME;
670     }
671     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
672     if (filename) {
673         ret = load_elf(filename, translate_prom_address, &addr, NULL,
674                        NULL, NULL, 1, EM_SPARC, 0, 0);
675         if (ret < 0 || ret > PROM_SIZE_MAX) {
676             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
677         }
678         g_free(filename);
679     } else {
680         ret = -1;
681     }
682     if (ret < 0 || ret > PROM_SIZE_MAX) {
683         fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
684         exit(1);
685     }
686 }
687 
688 static void prom_init1(Object *obj)
689 {
690     PROMState *s = OPENPROM(obj);
691     SysBusDevice *dev = SYS_BUS_DEVICE(obj);
692 
693     memory_region_init_ram_nomigrate(&s->prom, obj, "sun4m.prom", PROM_SIZE_MAX,
694                            &error_fatal);
695     vmstate_register_ram_global(&s->prom);
696     memory_region_set_readonly(&s->prom, true);
697     sysbus_init_mmio(dev, &s->prom);
698 }
699 
700 static Property prom_properties[] = {
701     {/* end of property list */},
702 };
703 
704 static void prom_class_init(ObjectClass *klass, void *data)
705 {
706     DeviceClass *dc = DEVICE_CLASS(klass);
707 
708     dc->props = prom_properties;
709 }
710 
711 static const TypeInfo prom_info = {
712     .name          = TYPE_OPENPROM,
713     .parent        = TYPE_SYS_BUS_DEVICE,
714     .instance_size = sizeof(PROMState),
715     .class_init    = prom_class_init,
716     .instance_init = prom_init1,
717 };
718 
719 #define TYPE_SUN4M_MEMORY "memory"
720 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY)
721 
722 typedef struct RamDevice {
723     SysBusDevice parent_obj;
724 
725     MemoryRegion ram;
726     uint64_t size;
727 } RamDevice;
728 
729 /* System RAM */
730 static void ram_realize(DeviceState *dev, Error **errp)
731 {
732     RamDevice *d = SUN4M_RAM(dev);
733     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
734 
735     memory_region_allocate_system_memory(&d->ram, OBJECT(d), "sun4m.ram",
736                                          d->size);
737     sysbus_init_mmio(sbd, &d->ram);
738 }
739 
740 static void ram_init(hwaddr addr, ram_addr_t RAM_size,
741                      uint64_t max_mem)
742 {
743     DeviceState *dev;
744     SysBusDevice *s;
745     RamDevice *d;
746 
747     /* allocate RAM */
748     if ((uint64_t)RAM_size > max_mem) {
749         fprintf(stderr,
750                 "qemu: Too much memory for this machine: %d, maximum %d\n",
751                 (unsigned int)(RAM_size / (1024 * 1024)),
752                 (unsigned int)(max_mem / (1024 * 1024)));
753         exit(1);
754     }
755     dev = qdev_create(NULL, "memory");
756     s = SYS_BUS_DEVICE(dev);
757 
758     d = SUN4M_RAM(dev);
759     d->size = RAM_size;
760     qdev_init_nofail(dev);
761 
762     sysbus_mmio_map(s, 0, addr);
763 }
764 
765 static Property ram_properties[] = {
766     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
767     DEFINE_PROP_END_OF_LIST(),
768 };
769 
770 static void ram_class_init(ObjectClass *klass, void *data)
771 {
772     DeviceClass *dc = DEVICE_CLASS(klass);
773 
774     dc->realize = ram_realize;
775     dc->props = ram_properties;
776 }
777 
778 static const TypeInfo ram_info = {
779     .name          = TYPE_SUN4M_MEMORY,
780     .parent        = TYPE_SYS_BUS_DEVICE,
781     .instance_size = sizeof(RamDevice),
782     .class_init    = ram_class_init,
783 };
784 
785 static void cpu_devinit(const char *cpu_type, unsigned int id,
786                         uint64_t prom_addr, qemu_irq **cpu_irqs)
787 {
788     CPUState *cs;
789     SPARCCPU *cpu;
790     CPUSPARCState *env;
791 
792     cpu = SPARC_CPU(cpu_create(cpu_type));
793     env = &cpu->env;
794 
795     cpu_sparc_set_id(env, id);
796     if (id == 0) {
797         qemu_register_reset(main_cpu_reset, cpu);
798     } else {
799         qemu_register_reset(secondary_cpu_reset, cpu);
800         cs = CPU(cpu);
801         cs->halted = 1;
802     }
803     *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS);
804     env->prom_addr = prom_addr;
805 }
806 
807 static void dummy_fdc_tc(void *opaque, int irq, int level)
808 {
809 }
810 
811 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef,
812                           MachineState *machine)
813 {
814     DeviceState *slavio_intctl;
815     unsigned int i;
816     void *nvram;
817     qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS];
818     qemu_irq fdc_tc;
819     unsigned long kernel_size;
820     DriveInfo *fd[MAX_FD];
821     FWCfgState *fw_cfg;
822     unsigned int num_vsimms;
823 
824     /* init CPUs */
825     for(i = 0; i < smp_cpus; i++) {
826         cpu_devinit(machine->cpu_type, i, hwdef->slavio_base, &cpu_irqs[i]);
827     }
828 
829     for (i = smp_cpus; i < MAX_CPUS; i++)
830         cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS);
831 
832 
833     /* set up devices */
834     ram_init(0, machine->ram_size, hwdef->max_mem);
835     /* models without ECC don't trap when missing ram is accessed */
836     if (!hwdef->ecc_base) {
837         empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size);
838     }
839 
840     prom_init(hwdef->slavio_base, bios_name);
841 
842     slavio_intctl = slavio_intctl_init(hwdef->intctl_base,
843                                        hwdef->intctl_base + 0x10000ULL,
844                                        cpu_irqs);
845 
846     for (i = 0; i < 32; i++) {
847         slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i);
848     }
849     for (i = 0; i < MAX_CPUS; i++) {
850         slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i);
851     }
852 
853     if (hwdef->idreg_base) {
854         idreg_init(hwdef->idreg_base);
855     }
856 
857     if (hwdef->afx_base) {
858         afx_init(hwdef->afx_base);
859     }
860 
861     iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]);
862 
863     if (hwdef->iommu_pad_base) {
864         /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
865            Software shouldn't use aliased addresses, neither should it crash
866            when does. Using empty_slot instead of aliasing can help with
867            debugging such accesses */
868         empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
869     }
870 
871     sparc32_dma_init(hwdef->dma_base,
872                      hwdef->esp_base, slavio_irq[18],
873                      hwdef->le_base, slavio_irq[16]);
874 
875     if (graphic_depth != 8 && graphic_depth != 24) {
876         error_report("Unsupported depth: %d", graphic_depth);
877         exit (1);
878     }
879     num_vsimms = 0;
880     if (num_vsimms == 0) {
881         if (vga_interface_type == VGA_CG3) {
882             if (graphic_depth != 8) {
883                 error_report("Unsupported depth: %d", graphic_depth);
884                 exit(1);
885             }
886 
887             if (!(graphic_width == 1024 && graphic_height == 768) &&
888                 !(graphic_width == 1152 && graphic_height == 900)) {
889                 error_report("Unsupported resolution: %d x %d", graphic_width,
890                              graphic_height);
891                 exit(1);
892             }
893 
894             /* sbus irq 5 */
895             cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
896                      graphic_width, graphic_height, graphic_depth);
897         } else {
898             /* If no display specified, default to TCX */
899             if (graphic_depth != 8 && graphic_depth != 24) {
900                 error_report("Unsupported depth: %d", graphic_depth);
901                 exit(1);
902             }
903 
904             if (!(graphic_width == 1024 && graphic_height == 768)) {
905                 error_report("Unsupported resolution: %d x %d",
906                              graphic_width, graphic_height);
907                 exit(1);
908             }
909 
910             tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000,
911                      graphic_width, graphic_height, graphic_depth);
912         }
913     }
914 
915     for (i = num_vsimms; i < MAX_VSIMMS; i++) {
916         /* vsimm registers probed by OBP */
917         if (hwdef->vsimm[i].reg_base) {
918             empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
919         }
920     }
921 
922     if (hwdef->sx_base) {
923         empty_slot_init(hwdef->sx_base, 0x2000);
924     }
925 
926     nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 1968, 8);
927 
928     slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus);
929 
930     slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14],
931                               !machine->enable_graphics, ESCC_CLOCK, 1);
932     /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
933        Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
934     escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15],
935               serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
936 
937     if (hwdef->apc_base) {
938         apc_init(hwdef->apc_base, qemu_allocate_irq(cpu_halt_signal, NULL, 0));
939     }
940 
941     if (hwdef->fd_base) {
942         /* there is zero or one floppy drive */
943         memset(fd, 0, sizeof(fd));
944         fd[0] = drive_get(IF_FLOPPY, 0, 0);
945         sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
946                           &fdc_tc);
947     } else {
948         fdc_tc = qemu_allocate_irq(dummy_fdc_tc, NULL, 0);
949     }
950 
951     slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
952                      slavio_irq[30], fdc_tc);
953 
954     if (hwdef->cs_base) {
955         sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
956                              slavio_irq[5]);
957     }
958 
959     if (hwdef->dbri_base) {
960         /* ISDN chip with attached CS4215 audio codec */
961         /* prom space */
962         empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
963         /* reg space */
964         empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
965     }
966 
967     if (hwdef->bpp_base) {
968         /* parallel port */
969         empty_slot_init(hwdef->bpp_base, 0x20);
970     }
971 
972     kernel_size = sun4m_load_kernel(machine->kernel_filename,
973                                     machine->initrd_filename,
974                                     machine->ram_size);
975 
976     nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline,
977                machine->boot_order, machine->ram_size, kernel_size,
978                graphic_width, graphic_height, graphic_depth,
979                hwdef->nvram_machine_id, "Sun4m");
980 
981     if (hwdef->ecc_base)
982         ecc_init(hwdef->ecc_base, slavio_irq[28],
983                  hwdef->ecc_version);
984 
985     fw_cfg = fw_cfg_init_mem(CFG_ADDR, CFG_ADDR + 2);
986     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
987     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
988     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
989     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
990     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth);
991     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width);
992     fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height);
993     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR);
994     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
995     if (machine->kernel_cmdline) {
996         fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR);
997         pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE,
998                          machine->kernel_cmdline);
999         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
1000         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1001                        strlen(machine->kernel_cmdline) + 1);
1002     } else {
1003         fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
1004         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
1005     }
1006     fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
1007     fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
1008     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
1009     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
1010 }
1011 
1012 enum {
1013     ss5_id = 32,
1014     vger_id,
1015     lx_id,
1016     ss4_id,
1017     scls_id,
1018     sbook_id,
1019     ss10_id = 64,
1020     ss20_id,
1021     ss600mp_id,
1022 };
1023 
1024 static const struct sun4m_hwdef sun4m_hwdefs[] = {
1025     /* SS-5 */
1026     {
1027         .iommu_base   = 0x10000000,
1028         .iommu_pad_base = 0x10004000,
1029         .iommu_pad_len  = 0x0fffb000,
1030         .tcx_base     = 0x50000000,
1031         .cs_base      = 0x6c000000,
1032         .slavio_base  = 0x70000000,
1033         .ms_kb_base   = 0x71000000,
1034         .serial_base  = 0x71100000,
1035         .nvram_base   = 0x71200000,
1036         .fd_base      = 0x71400000,
1037         .counter_base = 0x71d00000,
1038         .intctl_base  = 0x71e00000,
1039         .idreg_base   = 0x78000000,
1040         .dma_base     = 0x78400000,
1041         .esp_base     = 0x78800000,
1042         .le_base      = 0x78c00000,
1043         .apc_base     = 0x6a000000,
1044         .afx_base     = 0x6e000000,
1045         .aux1_base    = 0x71900000,
1046         .aux2_base    = 0x71910000,
1047         .nvram_machine_id = 0x80,
1048         .machine_id = ss5_id,
1049         .iommu_version = 0x05000000,
1050         .max_mem = 0x10000000,
1051     },
1052     /* SS-10 */
1053     {
1054         .iommu_base   = 0xfe0000000ULL,
1055         .tcx_base     = 0xe20000000ULL,
1056         .slavio_base  = 0xff0000000ULL,
1057         .ms_kb_base   = 0xff1000000ULL,
1058         .serial_base  = 0xff1100000ULL,
1059         .nvram_base   = 0xff1200000ULL,
1060         .fd_base      = 0xff1700000ULL,
1061         .counter_base = 0xff1300000ULL,
1062         .intctl_base  = 0xff1400000ULL,
1063         .idreg_base   = 0xef0000000ULL,
1064         .dma_base     = 0xef0400000ULL,
1065         .esp_base     = 0xef0800000ULL,
1066         .le_base      = 0xef0c00000ULL,
1067         .apc_base     = 0xefa000000ULL, // XXX should not exist
1068         .aux1_base    = 0xff1800000ULL,
1069         .aux2_base    = 0xff1a01000ULL,
1070         .ecc_base     = 0xf00000000ULL,
1071         .ecc_version  = 0x10000000, // version 0, implementation 1
1072         .nvram_machine_id = 0x72,
1073         .machine_id = ss10_id,
1074         .iommu_version = 0x03000000,
1075         .max_mem = 0xf00000000ULL,
1076     },
1077     /* SS-600MP */
1078     {
1079         .iommu_base   = 0xfe0000000ULL,
1080         .tcx_base     = 0xe20000000ULL,
1081         .slavio_base  = 0xff0000000ULL,
1082         .ms_kb_base   = 0xff1000000ULL,
1083         .serial_base  = 0xff1100000ULL,
1084         .nvram_base   = 0xff1200000ULL,
1085         .counter_base = 0xff1300000ULL,
1086         .intctl_base  = 0xff1400000ULL,
1087         .dma_base     = 0xef0081000ULL,
1088         .esp_base     = 0xef0080000ULL,
1089         .le_base      = 0xef0060000ULL,
1090         .apc_base     = 0xefa000000ULL, // XXX should not exist
1091         .aux1_base    = 0xff1800000ULL,
1092         .aux2_base    = 0xff1a01000ULL, // XXX should not exist
1093         .ecc_base     = 0xf00000000ULL,
1094         .ecc_version  = 0x00000000, // version 0, implementation 0
1095         .nvram_machine_id = 0x71,
1096         .machine_id = ss600mp_id,
1097         .iommu_version = 0x01000000,
1098         .max_mem = 0xf00000000ULL,
1099     },
1100     /* SS-20 */
1101     {
1102         .iommu_base   = 0xfe0000000ULL,
1103         .tcx_base     = 0xe20000000ULL,
1104         .slavio_base  = 0xff0000000ULL,
1105         .ms_kb_base   = 0xff1000000ULL,
1106         .serial_base  = 0xff1100000ULL,
1107         .nvram_base   = 0xff1200000ULL,
1108         .fd_base      = 0xff1700000ULL,
1109         .counter_base = 0xff1300000ULL,
1110         .intctl_base  = 0xff1400000ULL,
1111         .idreg_base   = 0xef0000000ULL,
1112         .dma_base     = 0xef0400000ULL,
1113         .esp_base     = 0xef0800000ULL,
1114         .le_base      = 0xef0c00000ULL,
1115         .bpp_base     = 0xef4800000ULL,
1116         .apc_base     = 0xefa000000ULL, // XXX should not exist
1117         .aux1_base    = 0xff1800000ULL,
1118         .aux2_base    = 0xff1a01000ULL,
1119         .dbri_base    = 0xee0000000ULL,
1120         .sx_base      = 0xf80000000ULL,
1121         .vsimm        = {
1122             {
1123                 .reg_base  = 0x9c000000ULL,
1124                 .vram_base = 0xfc000000ULL
1125             }, {
1126                 .reg_base  = 0x90000000ULL,
1127                 .vram_base = 0xf0000000ULL
1128             }, {
1129                 .reg_base  = 0x94000000ULL
1130             }, {
1131                 .reg_base  = 0x98000000ULL
1132             }
1133         },
1134         .ecc_base     = 0xf00000000ULL,
1135         .ecc_version  = 0x20000000, // version 0, implementation 2
1136         .nvram_machine_id = 0x72,
1137         .machine_id = ss20_id,
1138         .iommu_version = 0x13000000,
1139         .max_mem = 0xf00000000ULL,
1140     },
1141     /* Voyager */
1142     {
1143         .iommu_base   = 0x10000000,
1144         .tcx_base     = 0x50000000,
1145         .slavio_base  = 0x70000000,
1146         .ms_kb_base   = 0x71000000,
1147         .serial_base  = 0x71100000,
1148         .nvram_base   = 0x71200000,
1149         .fd_base      = 0x71400000,
1150         .counter_base = 0x71d00000,
1151         .intctl_base  = 0x71e00000,
1152         .idreg_base   = 0x78000000,
1153         .dma_base     = 0x78400000,
1154         .esp_base     = 0x78800000,
1155         .le_base      = 0x78c00000,
1156         .apc_base     = 0x71300000, // pmc
1157         .aux1_base    = 0x71900000,
1158         .aux2_base    = 0x71910000,
1159         .nvram_machine_id = 0x80,
1160         .machine_id = vger_id,
1161         .iommu_version = 0x05000000,
1162         .max_mem = 0x10000000,
1163     },
1164     /* LX */
1165     {
1166         .iommu_base   = 0x10000000,
1167         .iommu_pad_base = 0x10004000,
1168         .iommu_pad_len  = 0x0fffb000,
1169         .tcx_base     = 0x50000000,
1170         .slavio_base  = 0x70000000,
1171         .ms_kb_base   = 0x71000000,
1172         .serial_base  = 0x71100000,
1173         .nvram_base   = 0x71200000,
1174         .fd_base      = 0x71400000,
1175         .counter_base = 0x71d00000,
1176         .intctl_base  = 0x71e00000,
1177         .idreg_base   = 0x78000000,
1178         .dma_base     = 0x78400000,
1179         .esp_base     = 0x78800000,
1180         .le_base      = 0x78c00000,
1181         .aux1_base    = 0x71900000,
1182         .aux2_base    = 0x71910000,
1183         .nvram_machine_id = 0x80,
1184         .machine_id = lx_id,
1185         .iommu_version = 0x04000000,
1186         .max_mem = 0x10000000,
1187     },
1188     /* SS-4 */
1189     {
1190         .iommu_base   = 0x10000000,
1191         .tcx_base     = 0x50000000,
1192         .cs_base      = 0x6c000000,
1193         .slavio_base  = 0x70000000,
1194         .ms_kb_base   = 0x71000000,
1195         .serial_base  = 0x71100000,
1196         .nvram_base   = 0x71200000,
1197         .fd_base      = 0x71400000,
1198         .counter_base = 0x71d00000,
1199         .intctl_base  = 0x71e00000,
1200         .idreg_base   = 0x78000000,
1201         .dma_base     = 0x78400000,
1202         .esp_base     = 0x78800000,
1203         .le_base      = 0x78c00000,
1204         .apc_base     = 0x6a000000,
1205         .aux1_base    = 0x71900000,
1206         .aux2_base    = 0x71910000,
1207         .nvram_machine_id = 0x80,
1208         .machine_id = ss4_id,
1209         .iommu_version = 0x05000000,
1210         .max_mem = 0x10000000,
1211     },
1212     /* SPARCClassic */
1213     {
1214         .iommu_base   = 0x10000000,
1215         .tcx_base     = 0x50000000,
1216         .slavio_base  = 0x70000000,
1217         .ms_kb_base   = 0x71000000,
1218         .serial_base  = 0x71100000,
1219         .nvram_base   = 0x71200000,
1220         .fd_base      = 0x71400000,
1221         .counter_base = 0x71d00000,
1222         .intctl_base  = 0x71e00000,
1223         .idreg_base   = 0x78000000,
1224         .dma_base     = 0x78400000,
1225         .esp_base     = 0x78800000,
1226         .le_base      = 0x78c00000,
1227         .apc_base     = 0x6a000000,
1228         .aux1_base    = 0x71900000,
1229         .aux2_base    = 0x71910000,
1230         .nvram_machine_id = 0x80,
1231         .machine_id = scls_id,
1232         .iommu_version = 0x05000000,
1233         .max_mem = 0x10000000,
1234     },
1235     /* SPARCbook */
1236     {
1237         .iommu_base   = 0x10000000,
1238         .tcx_base     = 0x50000000, // XXX
1239         .slavio_base  = 0x70000000,
1240         .ms_kb_base   = 0x71000000,
1241         .serial_base  = 0x71100000,
1242         .nvram_base   = 0x71200000,
1243         .fd_base      = 0x71400000,
1244         .counter_base = 0x71d00000,
1245         .intctl_base  = 0x71e00000,
1246         .idreg_base   = 0x78000000,
1247         .dma_base     = 0x78400000,
1248         .esp_base     = 0x78800000,
1249         .le_base      = 0x78c00000,
1250         .apc_base     = 0x6a000000,
1251         .aux1_base    = 0x71900000,
1252         .aux2_base    = 0x71910000,
1253         .nvram_machine_id = 0x80,
1254         .machine_id = sbook_id,
1255         .iommu_version = 0x05000000,
1256         .max_mem = 0x10000000,
1257     },
1258 };
1259 
1260 /* SPARCstation 5 hardware initialisation */
1261 static void ss5_init(MachineState *machine)
1262 {
1263     sun4m_hw_init(&sun4m_hwdefs[0], machine);
1264 }
1265 
1266 /* SPARCstation 10 hardware initialisation */
1267 static void ss10_init(MachineState *machine)
1268 {
1269     sun4m_hw_init(&sun4m_hwdefs[1], machine);
1270 }
1271 
1272 /* SPARCserver 600MP hardware initialisation */
1273 static void ss600mp_init(MachineState *machine)
1274 {
1275     sun4m_hw_init(&sun4m_hwdefs[2], machine);
1276 }
1277 
1278 /* SPARCstation 20 hardware initialisation */
1279 static void ss20_init(MachineState *machine)
1280 {
1281     sun4m_hw_init(&sun4m_hwdefs[3], machine);
1282 }
1283 
1284 /* SPARCstation Voyager hardware initialisation */
1285 static void vger_init(MachineState *machine)
1286 {
1287     sun4m_hw_init(&sun4m_hwdefs[4], machine);
1288 }
1289 
1290 /* SPARCstation LX hardware initialisation */
1291 static void ss_lx_init(MachineState *machine)
1292 {
1293     sun4m_hw_init(&sun4m_hwdefs[5], machine);
1294 }
1295 
1296 /* SPARCstation 4 hardware initialisation */
1297 static void ss4_init(MachineState *machine)
1298 {
1299     sun4m_hw_init(&sun4m_hwdefs[6], machine);
1300 }
1301 
1302 /* SPARCClassic hardware initialisation */
1303 static void scls_init(MachineState *machine)
1304 {
1305     sun4m_hw_init(&sun4m_hwdefs[7], machine);
1306 }
1307 
1308 /* SPARCbook hardware initialisation */
1309 static void sbook_init(MachineState *machine)
1310 {
1311     sun4m_hw_init(&sun4m_hwdefs[8], machine);
1312 }
1313 
1314 static void ss5_class_init(ObjectClass *oc, void *data)
1315 {
1316     MachineClass *mc = MACHINE_CLASS(oc);
1317 
1318     mc->desc = "Sun4m platform, SPARCstation 5";
1319     mc->init = ss5_init;
1320     mc->block_default_type = IF_SCSI;
1321     mc->is_default = 1;
1322     mc->default_boot_order = "c";
1323     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1324 }
1325 
1326 static const TypeInfo ss5_type = {
1327     .name = MACHINE_TYPE_NAME("SS-5"),
1328     .parent = TYPE_MACHINE,
1329     .class_init = ss5_class_init,
1330 };
1331 
1332 static void ss10_class_init(ObjectClass *oc, void *data)
1333 {
1334     MachineClass *mc = MACHINE_CLASS(oc);
1335 
1336     mc->desc = "Sun4m platform, SPARCstation 10";
1337     mc->init = ss10_init;
1338     mc->block_default_type = IF_SCSI;
1339     mc->max_cpus = 4;
1340     mc->default_boot_order = "c";
1341     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1342 }
1343 
1344 static const TypeInfo ss10_type = {
1345     .name = MACHINE_TYPE_NAME("SS-10"),
1346     .parent = TYPE_MACHINE,
1347     .class_init = ss10_class_init,
1348 };
1349 
1350 static void ss600mp_class_init(ObjectClass *oc, void *data)
1351 {
1352     MachineClass *mc = MACHINE_CLASS(oc);
1353 
1354     mc->desc = "Sun4m platform, SPARCserver 600MP";
1355     mc->init = ss600mp_init;
1356     mc->block_default_type = IF_SCSI;
1357     mc->max_cpus = 4;
1358     mc->default_boot_order = "c";
1359     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1360 }
1361 
1362 static const TypeInfo ss600mp_type = {
1363     .name = MACHINE_TYPE_NAME("SS-600MP"),
1364     .parent = TYPE_MACHINE,
1365     .class_init = ss600mp_class_init,
1366 };
1367 
1368 static void ss20_class_init(ObjectClass *oc, void *data)
1369 {
1370     MachineClass *mc = MACHINE_CLASS(oc);
1371 
1372     mc->desc = "Sun4m platform, SPARCstation 20";
1373     mc->init = ss20_init;
1374     mc->block_default_type = IF_SCSI;
1375     mc->max_cpus = 4;
1376     mc->default_boot_order = "c";
1377     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-SuperSparc-II");
1378 }
1379 
1380 static const TypeInfo ss20_type = {
1381     .name = MACHINE_TYPE_NAME("SS-20"),
1382     .parent = TYPE_MACHINE,
1383     .class_init = ss20_class_init,
1384 };
1385 
1386 static void voyager_class_init(ObjectClass *oc, void *data)
1387 {
1388     MachineClass *mc = MACHINE_CLASS(oc);
1389 
1390     mc->desc = "Sun4m platform, SPARCstation Voyager";
1391     mc->init = vger_init;
1392     mc->block_default_type = IF_SCSI;
1393     mc->default_boot_order = "c";
1394     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1395 }
1396 
1397 static const TypeInfo voyager_type = {
1398     .name = MACHINE_TYPE_NAME("Voyager"),
1399     .parent = TYPE_MACHINE,
1400     .class_init = voyager_class_init,
1401 };
1402 
1403 static void ss_lx_class_init(ObjectClass *oc, void *data)
1404 {
1405     MachineClass *mc = MACHINE_CLASS(oc);
1406 
1407     mc->desc = "Sun4m platform, SPARCstation LX";
1408     mc->init = ss_lx_init;
1409     mc->block_default_type = IF_SCSI;
1410     mc->default_boot_order = "c";
1411     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1412 }
1413 
1414 static const TypeInfo ss_lx_type = {
1415     .name = MACHINE_TYPE_NAME("LX"),
1416     .parent = TYPE_MACHINE,
1417     .class_init = ss_lx_class_init,
1418 };
1419 
1420 static void ss4_class_init(ObjectClass *oc, void *data)
1421 {
1422     MachineClass *mc = MACHINE_CLASS(oc);
1423 
1424     mc->desc = "Sun4m platform, SPARCstation 4";
1425     mc->init = ss4_init;
1426     mc->block_default_type = IF_SCSI;
1427     mc->default_boot_order = "c";
1428     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("Fujitsu-MB86904");
1429 }
1430 
1431 static const TypeInfo ss4_type = {
1432     .name = MACHINE_TYPE_NAME("SS-4"),
1433     .parent = TYPE_MACHINE,
1434     .class_init = ss4_class_init,
1435 };
1436 
1437 static void scls_class_init(ObjectClass *oc, void *data)
1438 {
1439     MachineClass *mc = MACHINE_CLASS(oc);
1440 
1441     mc->desc = "Sun4m platform, SPARCClassic";
1442     mc->init = scls_init;
1443     mc->block_default_type = IF_SCSI;
1444     mc->default_boot_order = "c";
1445     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1446 }
1447 
1448 static const TypeInfo scls_type = {
1449     .name = MACHINE_TYPE_NAME("SPARCClassic"),
1450     .parent = TYPE_MACHINE,
1451     .class_init = scls_class_init,
1452 };
1453 
1454 static void sbook_class_init(ObjectClass *oc, void *data)
1455 {
1456     MachineClass *mc = MACHINE_CLASS(oc);
1457 
1458     mc->desc = "Sun4m platform, SPARCbook";
1459     mc->init = sbook_init;
1460     mc->block_default_type = IF_SCSI;
1461     mc->default_boot_order = "c";
1462     mc->default_cpu_type = SPARC_CPU_TYPE_NAME("TI-MicroSparc-I");
1463 }
1464 
1465 static const TypeInfo sbook_type = {
1466     .name = MACHINE_TYPE_NAME("SPARCbook"),
1467     .parent = TYPE_MACHINE,
1468     .class_init = sbook_class_init,
1469 };
1470 
1471 static void sun4m_register_types(void)
1472 {
1473     type_register_static(&idreg_info);
1474     type_register_static(&afx_info);
1475     type_register_static(&prom_info);
1476     type_register_static(&ram_info);
1477 
1478     type_register_static(&ss5_type);
1479     type_register_static(&ss10_type);
1480     type_register_static(&ss600mp_type);
1481     type_register_static(&ss20_type);
1482     type_register_static(&voyager_type);
1483     type_register_static(&ss_lx_type);
1484     type_register_static(&ss4_type);
1485     type_register_static(&scls_type);
1486     type_register_static(&sbook_type);
1487 }
1488 
1489 type_init(sun4m_register_types)
1490