1 /* 2 * QEMU Sun4m & Sun4d & Sun4c System Emulator 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/sysbus.h" 25 #include "qemu/error-report.h" 26 #include "qemu/timer.h" 27 #include "hw/sparc/sun4m.h" 28 #include "hw/timer/m48t59.h" 29 #include "hw/sparc/sparc32_dma.h" 30 #include "hw/block/fdc.h" 31 #include "sysemu/sysemu.h" 32 #include "net/net.h" 33 #include "hw/boards.h" 34 #include "hw/nvram/openbios_firmware_abi.h" 35 #include "hw/scsi/esp.h" 36 #include "hw/i386/pc.h" 37 #include "hw/isa/isa.h" 38 #include "hw/nvram/fw_cfg.h" 39 #include "hw/char/escc.h" 40 #include "hw/empty_slot.h" 41 #include "hw/loader.h" 42 #include "elf.h" 43 #include "sysemu/block-backend.h" 44 #include "trace.h" 45 46 /* 47 * Sun4m architecture was used in the following machines: 48 * 49 * SPARCserver 6xxMP/xx 50 * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), 51 * SPARCclassic X (4/10) 52 * SPARCstation LX/ZX (4/30) 53 * SPARCstation Voyager 54 * SPARCstation 10/xx, SPARCserver 10/xx 55 * SPARCstation 5, SPARCserver 5 56 * SPARCstation 20/xx, SPARCserver 20 57 * SPARCstation 4 58 * 59 * See for example: http://www.sunhelp.org/faq/sunref1.html 60 */ 61 62 #define KERNEL_LOAD_ADDR 0x00004000 63 #define CMDLINE_ADDR 0x007ff000 64 #define INITRD_LOAD_ADDR 0x00800000 65 #define PROM_SIZE_MAX (1024 * 1024) 66 #define PROM_VADDR 0xffd00000 67 #define PROM_FILENAME "openbios-sparc32" 68 #define CFG_ADDR 0xd00000510ULL 69 #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00) 70 #define FW_CFG_SUN4M_WIDTH (FW_CFG_ARCH_LOCAL + 0x01) 71 #define FW_CFG_SUN4M_HEIGHT (FW_CFG_ARCH_LOCAL + 0x02) 72 73 #define MAX_CPUS 16 74 #define MAX_PILS 16 75 #define MAX_VSIMMS 4 76 77 #define ESCC_CLOCK 4915200 78 79 struct sun4m_hwdef { 80 hwaddr iommu_base, iommu_pad_base, iommu_pad_len, slavio_base; 81 hwaddr intctl_base, counter_base, nvram_base, ms_kb_base; 82 hwaddr serial_base, fd_base; 83 hwaddr afx_base, idreg_base, dma_base, esp_base, le_base; 84 hwaddr tcx_base, cs_base, apc_base, aux1_base, aux2_base; 85 hwaddr bpp_base, dbri_base, sx_base; 86 struct { 87 hwaddr reg_base, vram_base; 88 } vsimm[MAX_VSIMMS]; 89 hwaddr ecc_base; 90 uint64_t max_mem; 91 const char * const default_cpu_model; 92 uint32_t ecc_version; 93 uint32_t iommu_version; 94 uint16_t machine_id; 95 uint8_t nvram_machine_id; 96 }; 97 98 int DMA_get_channel_mode (int nchan) 99 { 100 return 0; 101 } 102 int DMA_read_memory (int nchan, void *buf, int pos, int size) 103 { 104 return 0; 105 } 106 int DMA_write_memory (int nchan, void *buf, int pos, int size) 107 { 108 return 0; 109 } 110 void DMA_hold_DREQ (int nchan) {} 111 void DMA_release_DREQ (int nchan) {} 112 void DMA_schedule(int nchan) {} 113 114 void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit) 115 { 116 } 117 118 void DMA_register_channel (int nchan, 119 DMA_transfer_handler transfer_handler, 120 void *opaque) 121 { 122 } 123 124 static int fw_cfg_boot_set(void *opaque, const char *boot_device) 125 { 126 fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); 127 return 0; 128 } 129 130 static void nvram_init(M48t59State *nvram, uint8_t *macaddr, 131 const char *cmdline, const char *boot_devices, 132 ram_addr_t RAM_size, uint32_t kernel_size, 133 int width, int height, int depth, 134 int nvram_machine_id, const char *arch) 135 { 136 unsigned int i; 137 uint32_t start, end; 138 uint8_t image[0x1ff0]; 139 struct OpenBIOS_nvpart_v1 *part_header; 140 141 memset(image, '\0', sizeof(image)); 142 143 start = 0; 144 145 // OpenBIOS nvram variables 146 // Variable partition 147 part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; 148 part_header->signature = OPENBIOS_PART_SYSTEM; 149 pstrcpy(part_header->name, sizeof(part_header->name), "system"); 150 151 end = start + sizeof(struct OpenBIOS_nvpart_v1); 152 for (i = 0; i < nb_prom_envs; i++) 153 end = OpenBIOS_set_var(image, end, prom_envs[i]); 154 155 // End marker 156 image[end++] = '\0'; 157 158 end = start + ((end - start + 15) & ~15); 159 OpenBIOS_finish_partition(part_header, end - start); 160 161 // free partition 162 start = end; 163 part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; 164 part_header->signature = OPENBIOS_PART_FREE; 165 pstrcpy(part_header->name, sizeof(part_header->name), "free"); 166 167 end = 0x1fd0; 168 OpenBIOS_finish_partition(part_header, end - start); 169 170 Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 171 nvram_machine_id); 172 173 for (i = 0; i < sizeof(image); i++) 174 m48t59_write(nvram, i, image[i]); 175 } 176 177 static DeviceState *slavio_intctl; 178 179 void sun4m_pic_info(Monitor *mon, const QDict *qdict) 180 { 181 if (slavio_intctl) 182 slavio_pic_info(mon, slavio_intctl); 183 } 184 185 void sun4m_irq_info(Monitor *mon, const QDict *qdict) 186 { 187 if (slavio_intctl) 188 slavio_irq_info(mon, slavio_intctl); 189 } 190 191 void cpu_check_irqs(CPUSPARCState *env) 192 { 193 CPUState *cs; 194 195 if (env->pil_in && (env->interrupt_index == 0 || 196 (env->interrupt_index & ~15) == TT_EXTINT)) { 197 unsigned int i; 198 199 for (i = 15; i > 0; i--) { 200 if (env->pil_in & (1 << i)) { 201 int old_interrupt = env->interrupt_index; 202 203 env->interrupt_index = TT_EXTINT | i; 204 if (old_interrupt != env->interrupt_index) { 205 cs = CPU(sparc_env_get_cpu(env)); 206 trace_sun4m_cpu_interrupt(i); 207 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 208 } 209 break; 210 } 211 } 212 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { 213 cs = CPU(sparc_env_get_cpu(env)); 214 trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15); 215 env->interrupt_index = 0; 216 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 217 } 218 } 219 220 static void cpu_kick_irq(SPARCCPU *cpu) 221 { 222 CPUSPARCState *env = &cpu->env; 223 CPUState *cs = CPU(cpu); 224 225 cs->halted = 0; 226 cpu_check_irqs(env); 227 qemu_cpu_kick(cs); 228 } 229 230 static void cpu_set_irq(void *opaque, int irq, int level) 231 { 232 SPARCCPU *cpu = opaque; 233 CPUSPARCState *env = &cpu->env; 234 235 if (level) { 236 trace_sun4m_cpu_set_irq_raise(irq); 237 env->pil_in |= 1 << irq; 238 cpu_kick_irq(cpu); 239 } else { 240 trace_sun4m_cpu_set_irq_lower(irq); 241 env->pil_in &= ~(1 << irq); 242 cpu_check_irqs(env); 243 } 244 } 245 246 static void dummy_cpu_set_irq(void *opaque, int irq, int level) 247 { 248 } 249 250 static void main_cpu_reset(void *opaque) 251 { 252 SPARCCPU *cpu = opaque; 253 CPUState *cs = CPU(cpu); 254 255 cpu_reset(cs); 256 cs->halted = 0; 257 } 258 259 static void secondary_cpu_reset(void *opaque) 260 { 261 SPARCCPU *cpu = opaque; 262 CPUState *cs = CPU(cpu); 263 264 cpu_reset(cs); 265 cs->halted = 1; 266 } 267 268 static void cpu_halt_signal(void *opaque, int irq, int level) 269 { 270 if (level && current_cpu) { 271 cpu_interrupt(current_cpu, CPU_INTERRUPT_HALT); 272 } 273 } 274 275 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 276 { 277 return addr - 0xf0000000ULL; 278 } 279 280 static unsigned long sun4m_load_kernel(const char *kernel_filename, 281 const char *initrd_filename, 282 ram_addr_t RAM_size) 283 { 284 int linux_boot; 285 unsigned int i; 286 long initrd_size, kernel_size; 287 uint8_t *ptr; 288 289 linux_boot = (kernel_filename != NULL); 290 291 kernel_size = 0; 292 if (linux_boot) { 293 int bswap_needed; 294 295 #ifdef BSWAP_NEEDED 296 bswap_needed = 1; 297 #else 298 bswap_needed = 0; 299 #endif 300 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, 301 NULL, NULL, NULL, 1, ELF_MACHINE, 0); 302 if (kernel_size < 0) 303 kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, 304 RAM_size - KERNEL_LOAD_ADDR, bswap_needed, 305 TARGET_PAGE_SIZE); 306 if (kernel_size < 0) 307 kernel_size = load_image_targphys(kernel_filename, 308 KERNEL_LOAD_ADDR, 309 RAM_size - KERNEL_LOAD_ADDR); 310 if (kernel_size < 0) { 311 fprintf(stderr, "qemu: could not load kernel '%s'\n", 312 kernel_filename); 313 exit(1); 314 } 315 316 /* load initrd */ 317 initrd_size = 0; 318 if (initrd_filename) { 319 initrd_size = load_image_targphys(initrd_filename, 320 INITRD_LOAD_ADDR, 321 RAM_size - INITRD_LOAD_ADDR); 322 if (initrd_size < 0) { 323 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 324 initrd_filename); 325 exit(1); 326 } 327 } 328 if (initrd_size > 0) { 329 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { 330 ptr = rom_ptr(KERNEL_LOAD_ADDR + i); 331 if (ldl_p(ptr) == 0x48647253) { // HdrS 332 stl_p(ptr + 16, INITRD_LOAD_ADDR); 333 stl_p(ptr + 20, initrd_size); 334 break; 335 } 336 } 337 } 338 } 339 return kernel_size; 340 } 341 342 static void *iommu_init(hwaddr addr, uint32_t version, qemu_irq irq) 343 { 344 DeviceState *dev; 345 SysBusDevice *s; 346 347 dev = qdev_create(NULL, "iommu"); 348 qdev_prop_set_uint32(dev, "version", version); 349 qdev_init_nofail(dev); 350 s = SYS_BUS_DEVICE(dev); 351 sysbus_connect_irq(s, 0, irq); 352 sysbus_mmio_map(s, 0, addr); 353 354 return s; 355 } 356 357 static void *sparc32_dma_init(hwaddr daddr, qemu_irq parent_irq, 358 void *iommu, qemu_irq *dev_irq, int is_ledma) 359 { 360 DeviceState *dev; 361 SysBusDevice *s; 362 363 dev = qdev_create(NULL, "sparc32_dma"); 364 qdev_prop_set_ptr(dev, "iommu_opaque", iommu); 365 qdev_prop_set_uint32(dev, "is_ledma", is_ledma); 366 qdev_init_nofail(dev); 367 s = SYS_BUS_DEVICE(dev); 368 sysbus_connect_irq(s, 0, parent_irq); 369 *dev_irq = qdev_get_gpio_in(dev, 0); 370 sysbus_mmio_map(s, 0, daddr); 371 372 return s; 373 } 374 375 static void lance_init(NICInfo *nd, hwaddr leaddr, 376 void *dma_opaque, qemu_irq irq) 377 { 378 DeviceState *dev; 379 SysBusDevice *s; 380 qemu_irq reset; 381 382 qemu_check_nic_model(&nd_table[0], "lance"); 383 384 dev = qdev_create(NULL, "lance"); 385 qdev_set_nic_properties(dev, nd); 386 qdev_prop_set_ptr(dev, "dma", dma_opaque); 387 qdev_init_nofail(dev); 388 s = SYS_BUS_DEVICE(dev); 389 sysbus_mmio_map(s, 0, leaddr); 390 sysbus_connect_irq(s, 0, irq); 391 reset = qdev_get_gpio_in(dev, 0); 392 qdev_connect_gpio_out(dma_opaque, 0, reset); 393 } 394 395 static DeviceState *slavio_intctl_init(hwaddr addr, 396 hwaddr addrg, 397 qemu_irq **parent_irq) 398 { 399 DeviceState *dev; 400 SysBusDevice *s; 401 unsigned int i, j; 402 403 dev = qdev_create(NULL, "slavio_intctl"); 404 qdev_init_nofail(dev); 405 406 s = SYS_BUS_DEVICE(dev); 407 408 for (i = 0; i < MAX_CPUS; i++) { 409 for (j = 0; j < MAX_PILS; j++) { 410 sysbus_connect_irq(s, i * MAX_PILS + j, parent_irq[i][j]); 411 } 412 } 413 sysbus_mmio_map(s, 0, addrg); 414 for (i = 0; i < MAX_CPUS; i++) { 415 sysbus_mmio_map(s, i + 1, addr + i * TARGET_PAGE_SIZE); 416 } 417 418 return dev; 419 } 420 421 #define SYS_TIMER_OFFSET 0x10000ULL 422 #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu) 423 424 static void slavio_timer_init_all(hwaddr addr, qemu_irq master_irq, 425 qemu_irq *cpu_irqs, unsigned int num_cpus) 426 { 427 DeviceState *dev; 428 SysBusDevice *s; 429 unsigned int i; 430 431 dev = qdev_create(NULL, "slavio_timer"); 432 qdev_prop_set_uint32(dev, "num_cpus", num_cpus); 433 qdev_init_nofail(dev); 434 s = SYS_BUS_DEVICE(dev); 435 sysbus_connect_irq(s, 0, master_irq); 436 sysbus_mmio_map(s, 0, addr + SYS_TIMER_OFFSET); 437 438 for (i = 0; i < MAX_CPUS; i++) { 439 sysbus_mmio_map(s, i + 1, addr + (hwaddr)CPU_TIMER_OFFSET(i)); 440 sysbus_connect_irq(s, i + 1, cpu_irqs[i]); 441 } 442 } 443 444 static qemu_irq slavio_system_powerdown; 445 446 static void slavio_powerdown_req(Notifier *n, void *opaque) 447 { 448 qemu_irq_raise(slavio_system_powerdown); 449 } 450 451 static Notifier slavio_system_powerdown_notifier = { 452 .notify = slavio_powerdown_req 453 }; 454 455 #define MISC_LEDS 0x01600000 456 #define MISC_CFG 0x01800000 457 #define MISC_DIAG 0x01a00000 458 #define MISC_MDM 0x01b00000 459 #define MISC_SYS 0x01f00000 460 461 static void slavio_misc_init(hwaddr base, 462 hwaddr aux1_base, 463 hwaddr aux2_base, qemu_irq irq, 464 qemu_irq fdc_tc) 465 { 466 DeviceState *dev; 467 SysBusDevice *s; 468 469 dev = qdev_create(NULL, "slavio_misc"); 470 qdev_init_nofail(dev); 471 s = SYS_BUS_DEVICE(dev); 472 if (base) { 473 /* 8 bit registers */ 474 /* Slavio control */ 475 sysbus_mmio_map(s, 0, base + MISC_CFG); 476 /* Diagnostics */ 477 sysbus_mmio_map(s, 1, base + MISC_DIAG); 478 /* Modem control */ 479 sysbus_mmio_map(s, 2, base + MISC_MDM); 480 /* 16 bit registers */ 481 /* ss600mp diag LEDs */ 482 sysbus_mmio_map(s, 3, base + MISC_LEDS); 483 /* 32 bit registers */ 484 /* System control */ 485 sysbus_mmio_map(s, 4, base + MISC_SYS); 486 } 487 if (aux1_base) { 488 /* AUX 1 (Misc System Functions) */ 489 sysbus_mmio_map(s, 5, aux1_base); 490 } 491 if (aux2_base) { 492 /* AUX 2 (Software Powerdown Control) */ 493 sysbus_mmio_map(s, 6, aux2_base); 494 } 495 sysbus_connect_irq(s, 0, irq); 496 sysbus_connect_irq(s, 1, fdc_tc); 497 slavio_system_powerdown = qdev_get_gpio_in(dev, 0); 498 qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier); 499 } 500 501 static void ecc_init(hwaddr base, qemu_irq irq, uint32_t version) 502 { 503 DeviceState *dev; 504 SysBusDevice *s; 505 506 dev = qdev_create(NULL, "eccmemctl"); 507 qdev_prop_set_uint32(dev, "version", version); 508 qdev_init_nofail(dev); 509 s = SYS_BUS_DEVICE(dev); 510 sysbus_connect_irq(s, 0, irq); 511 sysbus_mmio_map(s, 0, base); 512 if (version == 0) { // SS-600MP only 513 sysbus_mmio_map(s, 1, base + 0x1000); 514 } 515 } 516 517 static void apc_init(hwaddr power_base, qemu_irq cpu_halt) 518 { 519 DeviceState *dev; 520 SysBusDevice *s; 521 522 dev = qdev_create(NULL, "apc"); 523 qdev_init_nofail(dev); 524 s = SYS_BUS_DEVICE(dev); 525 /* Power management (APC) XXX: not a Slavio device */ 526 sysbus_mmio_map(s, 0, power_base); 527 sysbus_connect_irq(s, 0, cpu_halt); 528 } 529 530 static void tcx_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 531 int height, int depth) 532 { 533 DeviceState *dev; 534 SysBusDevice *s; 535 536 dev = qdev_create(NULL, "SUNW,tcx"); 537 qdev_prop_set_uint32(dev, "vram_size", vram_size); 538 qdev_prop_set_uint16(dev, "width", width); 539 qdev_prop_set_uint16(dev, "height", height); 540 qdev_prop_set_uint16(dev, "depth", depth); 541 qdev_prop_set_uint64(dev, "prom_addr", addr); 542 qdev_init_nofail(dev); 543 s = SYS_BUS_DEVICE(dev); 544 545 /* 10/ROM : FCode ROM */ 546 sysbus_mmio_map(s, 0, addr); 547 /* 2/STIP : Stipple */ 548 sysbus_mmio_map(s, 1, addr + 0x04000000ULL); 549 /* 3/BLIT : Blitter */ 550 sysbus_mmio_map(s, 2, addr + 0x06000000ULL); 551 /* 5/RSTIP : Raw Stipple */ 552 sysbus_mmio_map(s, 3, addr + 0x0c000000ULL); 553 /* 6/RBLIT : Raw Blitter */ 554 sysbus_mmio_map(s, 4, addr + 0x0e000000ULL); 555 /* 7/TEC : Transform Engine */ 556 sysbus_mmio_map(s, 5, addr + 0x00700000ULL); 557 /* 8/CMAP : DAC */ 558 sysbus_mmio_map(s, 6, addr + 0x00200000ULL); 559 /* 9/THC : */ 560 if (depth == 8) { 561 sysbus_mmio_map(s, 7, addr + 0x00300000ULL); 562 } else { 563 sysbus_mmio_map(s, 7, addr + 0x00301000ULL); 564 } 565 /* 11/DHC : */ 566 sysbus_mmio_map(s, 8, addr + 0x00240000ULL); 567 /* 12/ALT : */ 568 sysbus_mmio_map(s, 9, addr + 0x00280000ULL); 569 /* 0/DFB8 : 8-bit plane */ 570 sysbus_mmio_map(s, 10, addr + 0x00800000ULL); 571 /* 1/DFB24 : 24bit plane */ 572 sysbus_mmio_map(s, 11, addr + 0x02000000ULL); 573 /* 4/RDFB32: Raw framebuffer. Control plane */ 574 sysbus_mmio_map(s, 12, addr + 0x0a000000ULL); 575 /* 9/THC24bits : NetBSD writes here even with 8-bit display: dummy */ 576 if (depth == 8) { 577 sysbus_mmio_map(s, 13, addr + 0x00301000ULL); 578 } 579 580 sysbus_connect_irq(s, 0, irq); 581 } 582 583 static void cg3_init(hwaddr addr, qemu_irq irq, int vram_size, int width, 584 int height, int depth) 585 { 586 DeviceState *dev; 587 SysBusDevice *s; 588 589 dev = qdev_create(NULL, "cgthree"); 590 qdev_prop_set_uint32(dev, "vram-size", vram_size); 591 qdev_prop_set_uint16(dev, "width", width); 592 qdev_prop_set_uint16(dev, "height", height); 593 qdev_prop_set_uint16(dev, "depth", depth); 594 qdev_prop_set_uint64(dev, "prom-addr", addr); 595 qdev_init_nofail(dev); 596 s = SYS_BUS_DEVICE(dev); 597 598 /* FCode ROM */ 599 sysbus_mmio_map(s, 0, addr); 600 /* DAC */ 601 sysbus_mmio_map(s, 1, addr + 0x400000ULL); 602 /* 8-bit plane */ 603 sysbus_mmio_map(s, 2, addr + 0x800000ULL); 604 605 sysbus_connect_irq(s, 0, irq); 606 } 607 608 /* NCR89C100/MACIO Internal ID register */ 609 610 #define TYPE_MACIO_ID_REGISTER "macio_idreg" 611 612 static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 }; 613 614 static void idreg_init(hwaddr addr) 615 { 616 DeviceState *dev; 617 SysBusDevice *s; 618 619 dev = qdev_create(NULL, TYPE_MACIO_ID_REGISTER); 620 qdev_init_nofail(dev); 621 s = SYS_BUS_DEVICE(dev); 622 623 sysbus_mmio_map(s, 0, addr); 624 cpu_physical_memory_write_rom(&address_space_memory, 625 addr, idreg_data, sizeof(idreg_data)); 626 } 627 628 #define MACIO_ID_REGISTER(obj) \ 629 OBJECT_CHECK(IDRegState, (obj), TYPE_MACIO_ID_REGISTER) 630 631 typedef struct IDRegState { 632 SysBusDevice parent_obj; 633 634 MemoryRegion mem; 635 } IDRegState; 636 637 static int idreg_init1(SysBusDevice *dev) 638 { 639 IDRegState *s = MACIO_ID_REGISTER(dev); 640 641 memory_region_init_ram(&s->mem, OBJECT(s), 642 "sun4m.idreg", sizeof(idreg_data), &error_abort); 643 vmstate_register_ram_global(&s->mem); 644 memory_region_set_readonly(&s->mem, true); 645 sysbus_init_mmio(dev, &s->mem); 646 return 0; 647 } 648 649 static void idreg_class_init(ObjectClass *klass, void *data) 650 { 651 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 652 653 k->init = idreg_init1; 654 } 655 656 static const TypeInfo idreg_info = { 657 .name = TYPE_MACIO_ID_REGISTER, 658 .parent = TYPE_SYS_BUS_DEVICE, 659 .instance_size = sizeof(IDRegState), 660 .class_init = idreg_class_init, 661 }; 662 663 #define TYPE_TCX_AFX "tcx_afx" 664 #define TCX_AFX(obj) OBJECT_CHECK(AFXState, (obj), TYPE_TCX_AFX) 665 666 typedef struct AFXState { 667 SysBusDevice parent_obj; 668 669 MemoryRegion mem; 670 } AFXState; 671 672 /* SS-5 TCX AFX register */ 673 static void afx_init(hwaddr addr) 674 { 675 DeviceState *dev; 676 SysBusDevice *s; 677 678 dev = qdev_create(NULL, TYPE_TCX_AFX); 679 qdev_init_nofail(dev); 680 s = SYS_BUS_DEVICE(dev); 681 682 sysbus_mmio_map(s, 0, addr); 683 } 684 685 static int afx_init1(SysBusDevice *dev) 686 { 687 AFXState *s = TCX_AFX(dev); 688 689 memory_region_init_ram(&s->mem, OBJECT(s), "sun4m.afx", 4, &error_abort); 690 vmstate_register_ram_global(&s->mem); 691 sysbus_init_mmio(dev, &s->mem); 692 return 0; 693 } 694 695 static void afx_class_init(ObjectClass *klass, void *data) 696 { 697 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 698 699 k->init = afx_init1; 700 } 701 702 static const TypeInfo afx_info = { 703 .name = TYPE_TCX_AFX, 704 .parent = TYPE_SYS_BUS_DEVICE, 705 .instance_size = sizeof(AFXState), 706 .class_init = afx_class_init, 707 }; 708 709 #define TYPE_OPENPROM "openprom" 710 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM) 711 712 typedef struct PROMState { 713 SysBusDevice parent_obj; 714 715 MemoryRegion prom; 716 } PROMState; 717 718 /* Boot PROM (OpenBIOS) */ 719 static uint64_t translate_prom_address(void *opaque, uint64_t addr) 720 { 721 hwaddr *base_addr = (hwaddr *)opaque; 722 return addr + *base_addr - PROM_VADDR; 723 } 724 725 static void prom_init(hwaddr addr, const char *bios_name) 726 { 727 DeviceState *dev; 728 SysBusDevice *s; 729 char *filename; 730 int ret; 731 732 dev = qdev_create(NULL, TYPE_OPENPROM); 733 qdev_init_nofail(dev); 734 s = SYS_BUS_DEVICE(dev); 735 736 sysbus_mmio_map(s, 0, addr); 737 738 /* load boot prom */ 739 if (bios_name == NULL) { 740 bios_name = PROM_FILENAME; 741 } 742 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 743 if (filename) { 744 ret = load_elf(filename, translate_prom_address, &addr, NULL, 745 NULL, NULL, 1, ELF_MACHINE, 0); 746 if (ret < 0 || ret > PROM_SIZE_MAX) { 747 ret = load_image_targphys(filename, addr, PROM_SIZE_MAX); 748 } 749 g_free(filename); 750 } else { 751 ret = -1; 752 } 753 if (ret < 0 || ret > PROM_SIZE_MAX) { 754 fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name); 755 exit(1); 756 } 757 } 758 759 static int prom_init1(SysBusDevice *dev) 760 { 761 PROMState *s = OPENPROM(dev); 762 763 memory_region_init_ram(&s->prom, OBJECT(s), "sun4m.prom", PROM_SIZE_MAX, 764 &error_abort); 765 vmstate_register_ram_global(&s->prom); 766 memory_region_set_readonly(&s->prom, true); 767 sysbus_init_mmio(dev, &s->prom); 768 return 0; 769 } 770 771 static Property prom_properties[] = { 772 {/* end of property list */}, 773 }; 774 775 static void prom_class_init(ObjectClass *klass, void *data) 776 { 777 DeviceClass *dc = DEVICE_CLASS(klass); 778 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 779 780 k->init = prom_init1; 781 dc->props = prom_properties; 782 } 783 784 static const TypeInfo prom_info = { 785 .name = TYPE_OPENPROM, 786 .parent = TYPE_SYS_BUS_DEVICE, 787 .instance_size = sizeof(PROMState), 788 .class_init = prom_class_init, 789 }; 790 791 #define TYPE_SUN4M_MEMORY "memory" 792 #define SUN4M_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4M_MEMORY) 793 794 typedef struct RamDevice { 795 SysBusDevice parent_obj; 796 797 MemoryRegion ram; 798 uint64_t size; 799 } RamDevice; 800 801 /* System RAM */ 802 static int ram_init1(SysBusDevice *dev) 803 { 804 RamDevice *d = SUN4M_RAM(dev); 805 806 memory_region_init_ram(&d->ram, OBJECT(d), "sun4m.ram", d->size, 807 &error_abort); 808 vmstate_register_ram_global(&d->ram); 809 sysbus_init_mmio(dev, &d->ram); 810 return 0; 811 } 812 813 static void ram_init(hwaddr addr, ram_addr_t RAM_size, 814 uint64_t max_mem) 815 { 816 DeviceState *dev; 817 SysBusDevice *s; 818 RamDevice *d; 819 820 /* allocate RAM */ 821 if ((uint64_t)RAM_size > max_mem) { 822 fprintf(stderr, 823 "qemu: Too much memory for this machine: %d, maximum %d\n", 824 (unsigned int)(RAM_size / (1024 * 1024)), 825 (unsigned int)(max_mem / (1024 * 1024))); 826 exit(1); 827 } 828 dev = qdev_create(NULL, "memory"); 829 s = SYS_BUS_DEVICE(dev); 830 831 d = SUN4M_RAM(dev); 832 d->size = RAM_size; 833 qdev_init_nofail(dev); 834 835 sysbus_mmio_map(s, 0, addr); 836 } 837 838 static Property ram_properties[] = { 839 DEFINE_PROP_UINT64("size", RamDevice, size, 0), 840 DEFINE_PROP_END_OF_LIST(), 841 }; 842 843 static void ram_class_init(ObjectClass *klass, void *data) 844 { 845 DeviceClass *dc = DEVICE_CLASS(klass); 846 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass); 847 848 k->init = ram_init1; 849 dc->props = ram_properties; 850 } 851 852 static const TypeInfo ram_info = { 853 .name = TYPE_SUN4M_MEMORY, 854 .parent = TYPE_SYS_BUS_DEVICE, 855 .instance_size = sizeof(RamDevice), 856 .class_init = ram_class_init, 857 }; 858 859 static void cpu_devinit(const char *cpu_model, unsigned int id, 860 uint64_t prom_addr, qemu_irq **cpu_irqs) 861 { 862 CPUState *cs; 863 SPARCCPU *cpu; 864 CPUSPARCState *env; 865 866 cpu = cpu_sparc_init(cpu_model); 867 if (cpu == NULL) { 868 fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n"); 869 exit(1); 870 } 871 env = &cpu->env; 872 873 cpu_sparc_set_id(env, id); 874 if (id == 0) { 875 qemu_register_reset(main_cpu_reset, cpu); 876 } else { 877 qemu_register_reset(secondary_cpu_reset, cpu); 878 cs = CPU(cpu); 879 cs->halted = 1; 880 } 881 *cpu_irqs = qemu_allocate_irqs(cpu_set_irq, cpu, MAX_PILS); 882 env->prom_addr = prom_addr; 883 } 884 885 static void dummy_fdc_tc(void *opaque, int irq, int level) 886 { 887 } 888 889 static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, 890 MachineState *machine) 891 { 892 const char *cpu_model = machine->cpu_model; 893 unsigned int i; 894 void *iommu, *espdma, *ledma, *nvram; 895 qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS], 896 espdma_irq, ledma_irq; 897 qemu_irq esp_reset, dma_enable; 898 qemu_irq fdc_tc; 899 qemu_irq *cpu_halt; 900 unsigned long kernel_size; 901 DriveInfo *fd[MAX_FD]; 902 FWCfgState *fw_cfg; 903 unsigned int num_vsimms; 904 905 /* init CPUs */ 906 if (!cpu_model) 907 cpu_model = hwdef->default_cpu_model; 908 909 for(i = 0; i < smp_cpus; i++) { 910 cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]); 911 } 912 913 for (i = smp_cpus; i < MAX_CPUS; i++) 914 cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); 915 916 917 /* set up devices */ 918 ram_init(0, machine->ram_size, hwdef->max_mem); 919 /* models without ECC don't trap when missing ram is accessed */ 920 if (!hwdef->ecc_base) { 921 empty_slot_init(machine->ram_size, hwdef->max_mem - machine->ram_size); 922 } 923 924 prom_init(hwdef->slavio_base, bios_name); 925 926 slavio_intctl = slavio_intctl_init(hwdef->intctl_base, 927 hwdef->intctl_base + 0x10000ULL, 928 cpu_irqs); 929 930 for (i = 0; i < 32; i++) { 931 slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i); 932 } 933 for (i = 0; i < MAX_CPUS; i++) { 934 slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i); 935 } 936 937 if (hwdef->idreg_base) { 938 idreg_init(hwdef->idreg_base); 939 } 940 941 if (hwdef->afx_base) { 942 afx_init(hwdef->afx_base); 943 } 944 945 iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version, 946 slavio_irq[30]); 947 948 if (hwdef->iommu_pad_base) { 949 /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased. 950 Software shouldn't use aliased addresses, neither should it crash 951 when does. Using empty_slot instead of aliasing can help with 952 debugging such accesses */ 953 empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len); 954 } 955 956 espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[18], 957 iommu, &espdma_irq, 0); 958 959 ledma = sparc32_dma_init(hwdef->dma_base + 16ULL, 960 slavio_irq[16], iommu, &ledma_irq, 1); 961 962 if (graphic_depth != 8 && graphic_depth != 24) { 963 error_report("Unsupported depth: %d", graphic_depth); 964 exit (1); 965 } 966 num_vsimms = 0; 967 if (num_vsimms == 0) { 968 if (vga_interface_type == VGA_CG3) { 969 if (graphic_depth != 8) { 970 error_report("Unsupported depth: %d", graphic_depth); 971 exit(1); 972 } 973 974 if (!(graphic_width == 1024 && graphic_height == 768) && 975 !(graphic_width == 1152 && graphic_height == 900)) { 976 error_report("Unsupported resolution: %d x %d", graphic_width, 977 graphic_height); 978 exit(1); 979 } 980 981 /* sbus irq 5 */ 982 cg3_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 983 graphic_width, graphic_height, graphic_depth); 984 } else { 985 /* If no display specified, default to TCX */ 986 if (graphic_depth != 8 && graphic_depth != 24) { 987 error_report("Unsupported depth: %d", graphic_depth); 988 exit(1); 989 } 990 991 if (!(graphic_width == 1024 && graphic_height == 768)) { 992 error_report("Unsupported resolution: %d x %d", 993 graphic_width, graphic_height); 994 exit(1); 995 } 996 997 tcx_init(hwdef->tcx_base, slavio_irq[11], 0x00100000, 998 graphic_width, graphic_height, graphic_depth); 999 } 1000 } 1001 1002 for (i = num_vsimms; i < MAX_VSIMMS; i++) { 1003 /* vsimm registers probed by OBP */ 1004 if (hwdef->vsimm[i].reg_base) { 1005 empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000); 1006 } 1007 } 1008 1009 if (hwdef->sx_base) { 1010 empty_slot_init(hwdef->sx_base, 0x2000); 1011 } 1012 1013 lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq); 1014 1015 nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 8); 1016 1017 slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus); 1018 1019 slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14], 1020 display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1); 1021 /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device 1022 Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */ 1023 escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15], 1024 serial_hds[0], serial_hds[1], ESCC_CLOCK, 1); 1025 1026 cpu_halt = qemu_allocate_irqs(cpu_halt_signal, NULL, 1); 1027 if (hwdef->apc_base) { 1028 apc_init(hwdef->apc_base, cpu_halt[0]); 1029 } 1030 1031 if (hwdef->fd_base) { 1032 /* there is zero or one floppy drive */ 1033 memset(fd, 0, sizeof(fd)); 1034 fd[0] = drive_get(IF_FLOPPY, 0, 0); 1035 sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd, 1036 &fdc_tc); 1037 } else { 1038 fdc_tc = *qemu_allocate_irqs(dummy_fdc_tc, NULL, 1); 1039 } 1040 1041 slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base, 1042 slavio_irq[30], fdc_tc); 1043 1044 if (drive_get_max_bus(IF_SCSI) > 0) { 1045 fprintf(stderr, "qemu: too many SCSI bus\n"); 1046 exit(1); 1047 } 1048 1049 esp_init(hwdef->esp_base, 2, 1050 espdma_memory_read, espdma_memory_write, 1051 espdma, espdma_irq, &esp_reset, &dma_enable); 1052 1053 qdev_connect_gpio_out(espdma, 0, esp_reset); 1054 qdev_connect_gpio_out(espdma, 1, dma_enable); 1055 1056 if (hwdef->cs_base) { 1057 sysbus_create_simple("SUNW,CS4231", hwdef->cs_base, 1058 slavio_irq[5]); 1059 } 1060 1061 if (hwdef->dbri_base) { 1062 /* ISDN chip with attached CS4215 audio codec */ 1063 /* prom space */ 1064 empty_slot_init(hwdef->dbri_base+0x1000, 0x30); 1065 /* reg space */ 1066 empty_slot_init(hwdef->dbri_base+0x10000, 0x100); 1067 } 1068 1069 if (hwdef->bpp_base) { 1070 /* parallel port */ 1071 empty_slot_init(hwdef->bpp_base, 0x20); 1072 } 1073 1074 kernel_size = sun4m_load_kernel(machine->kernel_filename, 1075 machine->initrd_filename, 1076 machine->ram_size); 1077 1078 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, machine->kernel_cmdline, 1079 machine->boot_order, machine->ram_size, kernel_size, 1080 graphic_width, graphic_height, graphic_depth, 1081 hwdef->nvram_machine_id, "Sun4m"); 1082 1083 if (hwdef->ecc_base) 1084 ecc_init(hwdef->ecc_base, slavio_irq[28], 1085 hwdef->ecc_version); 1086 1087 fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2); 1088 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); 1089 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); 1090 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 1091 fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); 1092 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); 1093 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width); 1094 fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height); 1095 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); 1096 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1097 if (machine->kernel_cmdline) { 1098 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); 1099 pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, 1100 machine->kernel_cmdline); 1101 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline); 1102 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 1103 strlen(machine->kernel_cmdline) + 1); 1104 } else { 1105 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); 1106 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); 1107 } 1108 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); 1109 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used 1110 fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]); 1111 qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); 1112 } 1113 1114 enum { 1115 ss5_id = 32, 1116 vger_id, 1117 lx_id, 1118 ss4_id, 1119 scls_id, 1120 sbook_id, 1121 ss10_id = 64, 1122 ss20_id, 1123 ss600mp_id, 1124 }; 1125 1126 static const struct sun4m_hwdef sun4m_hwdefs[] = { 1127 /* SS-5 */ 1128 { 1129 .iommu_base = 0x10000000, 1130 .iommu_pad_base = 0x10004000, 1131 .iommu_pad_len = 0x0fffb000, 1132 .tcx_base = 0x50000000, 1133 .cs_base = 0x6c000000, 1134 .slavio_base = 0x70000000, 1135 .ms_kb_base = 0x71000000, 1136 .serial_base = 0x71100000, 1137 .nvram_base = 0x71200000, 1138 .fd_base = 0x71400000, 1139 .counter_base = 0x71d00000, 1140 .intctl_base = 0x71e00000, 1141 .idreg_base = 0x78000000, 1142 .dma_base = 0x78400000, 1143 .esp_base = 0x78800000, 1144 .le_base = 0x78c00000, 1145 .apc_base = 0x6a000000, 1146 .afx_base = 0x6e000000, 1147 .aux1_base = 0x71900000, 1148 .aux2_base = 0x71910000, 1149 .nvram_machine_id = 0x80, 1150 .machine_id = ss5_id, 1151 .iommu_version = 0x05000000, 1152 .max_mem = 0x10000000, 1153 .default_cpu_model = "Fujitsu MB86904", 1154 }, 1155 /* SS-10 */ 1156 { 1157 .iommu_base = 0xfe0000000ULL, 1158 .tcx_base = 0xe20000000ULL, 1159 .slavio_base = 0xff0000000ULL, 1160 .ms_kb_base = 0xff1000000ULL, 1161 .serial_base = 0xff1100000ULL, 1162 .nvram_base = 0xff1200000ULL, 1163 .fd_base = 0xff1700000ULL, 1164 .counter_base = 0xff1300000ULL, 1165 .intctl_base = 0xff1400000ULL, 1166 .idreg_base = 0xef0000000ULL, 1167 .dma_base = 0xef0400000ULL, 1168 .esp_base = 0xef0800000ULL, 1169 .le_base = 0xef0c00000ULL, 1170 .apc_base = 0xefa000000ULL, // XXX should not exist 1171 .aux1_base = 0xff1800000ULL, 1172 .aux2_base = 0xff1a01000ULL, 1173 .ecc_base = 0xf00000000ULL, 1174 .ecc_version = 0x10000000, // version 0, implementation 1 1175 .nvram_machine_id = 0x72, 1176 .machine_id = ss10_id, 1177 .iommu_version = 0x03000000, 1178 .max_mem = 0xf00000000ULL, 1179 .default_cpu_model = "TI SuperSparc II", 1180 }, 1181 /* SS-600MP */ 1182 { 1183 .iommu_base = 0xfe0000000ULL, 1184 .tcx_base = 0xe20000000ULL, 1185 .slavio_base = 0xff0000000ULL, 1186 .ms_kb_base = 0xff1000000ULL, 1187 .serial_base = 0xff1100000ULL, 1188 .nvram_base = 0xff1200000ULL, 1189 .counter_base = 0xff1300000ULL, 1190 .intctl_base = 0xff1400000ULL, 1191 .dma_base = 0xef0081000ULL, 1192 .esp_base = 0xef0080000ULL, 1193 .le_base = 0xef0060000ULL, 1194 .apc_base = 0xefa000000ULL, // XXX should not exist 1195 .aux1_base = 0xff1800000ULL, 1196 .aux2_base = 0xff1a01000ULL, // XXX should not exist 1197 .ecc_base = 0xf00000000ULL, 1198 .ecc_version = 0x00000000, // version 0, implementation 0 1199 .nvram_machine_id = 0x71, 1200 .machine_id = ss600mp_id, 1201 .iommu_version = 0x01000000, 1202 .max_mem = 0xf00000000ULL, 1203 .default_cpu_model = "TI SuperSparc II", 1204 }, 1205 /* SS-20 */ 1206 { 1207 .iommu_base = 0xfe0000000ULL, 1208 .tcx_base = 0xe20000000ULL, 1209 .slavio_base = 0xff0000000ULL, 1210 .ms_kb_base = 0xff1000000ULL, 1211 .serial_base = 0xff1100000ULL, 1212 .nvram_base = 0xff1200000ULL, 1213 .fd_base = 0xff1700000ULL, 1214 .counter_base = 0xff1300000ULL, 1215 .intctl_base = 0xff1400000ULL, 1216 .idreg_base = 0xef0000000ULL, 1217 .dma_base = 0xef0400000ULL, 1218 .esp_base = 0xef0800000ULL, 1219 .le_base = 0xef0c00000ULL, 1220 .bpp_base = 0xef4800000ULL, 1221 .apc_base = 0xefa000000ULL, // XXX should not exist 1222 .aux1_base = 0xff1800000ULL, 1223 .aux2_base = 0xff1a01000ULL, 1224 .dbri_base = 0xee0000000ULL, 1225 .sx_base = 0xf80000000ULL, 1226 .vsimm = { 1227 { 1228 .reg_base = 0x9c000000ULL, 1229 .vram_base = 0xfc000000ULL 1230 }, { 1231 .reg_base = 0x90000000ULL, 1232 .vram_base = 0xf0000000ULL 1233 }, { 1234 .reg_base = 0x94000000ULL 1235 }, { 1236 .reg_base = 0x98000000ULL 1237 } 1238 }, 1239 .ecc_base = 0xf00000000ULL, 1240 .ecc_version = 0x20000000, // version 0, implementation 2 1241 .nvram_machine_id = 0x72, 1242 .machine_id = ss20_id, 1243 .iommu_version = 0x13000000, 1244 .max_mem = 0xf00000000ULL, 1245 .default_cpu_model = "TI SuperSparc II", 1246 }, 1247 /* Voyager */ 1248 { 1249 .iommu_base = 0x10000000, 1250 .tcx_base = 0x50000000, 1251 .slavio_base = 0x70000000, 1252 .ms_kb_base = 0x71000000, 1253 .serial_base = 0x71100000, 1254 .nvram_base = 0x71200000, 1255 .fd_base = 0x71400000, 1256 .counter_base = 0x71d00000, 1257 .intctl_base = 0x71e00000, 1258 .idreg_base = 0x78000000, 1259 .dma_base = 0x78400000, 1260 .esp_base = 0x78800000, 1261 .le_base = 0x78c00000, 1262 .apc_base = 0x71300000, // pmc 1263 .aux1_base = 0x71900000, 1264 .aux2_base = 0x71910000, 1265 .nvram_machine_id = 0x80, 1266 .machine_id = vger_id, 1267 .iommu_version = 0x05000000, 1268 .max_mem = 0x10000000, 1269 .default_cpu_model = "Fujitsu MB86904", 1270 }, 1271 /* LX */ 1272 { 1273 .iommu_base = 0x10000000, 1274 .iommu_pad_base = 0x10004000, 1275 .iommu_pad_len = 0x0fffb000, 1276 .tcx_base = 0x50000000, 1277 .slavio_base = 0x70000000, 1278 .ms_kb_base = 0x71000000, 1279 .serial_base = 0x71100000, 1280 .nvram_base = 0x71200000, 1281 .fd_base = 0x71400000, 1282 .counter_base = 0x71d00000, 1283 .intctl_base = 0x71e00000, 1284 .idreg_base = 0x78000000, 1285 .dma_base = 0x78400000, 1286 .esp_base = 0x78800000, 1287 .le_base = 0x78c00000, 1288 .aux1_base = 0x71900000, 1289 .aux2_base = 0x71910000, 1290 .nvram_machine_id = 0x80, 1291 .machine_id = lx_id, 1292 .iommu_version = 0x04000000, 1293 .max_mem = 0x10000000, 1294 .default_cpu_model = "TI MicroSparc I", 1295 }, 1296 /* SS-4 */ 1297 { 1298 .iommu_base = 0x10000000, 1299 .tcx_base = 0x50000000, 1300 .cs_base = 0x6c000000, 1301 .slavio_base = 0x70000000, 1302 .ms_kb_base = 0x71000000, 1303 .serial_base = 0x71100000, 1304 .nvram_base = 0x71200000, 1305 .fd_base = 0x71400000, 1306 .counter_base = 0x71d00000, 1307 .intctl_base = 0x71e00000, 1308 .idreg_base = 0x78000000, 1309 .dma_base = 0x78400000, 1310 .esp_base = 0x78800000, 1311 .le_base = 0x78c00000, 1312 .apc_base = 0x6a000000, 1313 .aux1_base = 0x71900000, 1314 .aux2_base = 0x71910000, 1315 .nvram_machine_id = 0x80, 1316 .machine_id = ss4_id, 1317 .iommu_version = 0x05000000, 1318 .max_mem = 0x10000000, 1319 .default_cpu_model = "Fujitsu MB86904", 1320 }, 1321 /* SPARCClassic */ 1322 { 1323 .iommu_base = 0x10000000, 1324 .tcx_base = 0x50000000, 1325 .slavio_base = 0x70000000, 1326 .ms_kb_base = 0x71000000, 1327 .serial_base = 0x71100000, 1328 .nvram_base = 0x71200000, 1329 .fd_base = 0x71400000, 1330 .counter_base = 0x71d00000, 1331 .intctl_base = 0x71e00000, 1332 .idreg_base = 0x78000000, 1333 .dma_base = 0x78400000, 1334 .esp_base = 0x78800000, 1335 .le_base = 0x78c00000, 1336 .apc_base = 0x6a000000, 1337 .aux1_base = 0x71900000, 1338 .aux2_base = 0x71910000, 1339 .nvram_machine_id = 0x80, 1340 .machine_id = scls_id, 1341 .iommu_version = 0x05000000, 1342 .max_mem = 0x10000000, 1343 .default_cpu_model = "TI MicroSparc I", 1344 }, 1345 /* SPARCbook */ 1346 { 1347 .iommu_base = 0x10000000, 1348 .tcx_base = 0x50000000, // XXX 1349 .slavio_base = 0x70000000, 1350 .ms_kb_base = 0x71000000, 1351 .serial_base = 0x71100000, 1352 .nvram_base = 0x71200000, 1353 .fd_base = 0x71400000, 1354 .counter_base = 0x71d00000, 1355 .intctl_base = 0x71e00000, 1356 .idreg_base = 0x78000000, 1357 .dma_base = 0x78400000, 1358 .esp_base = 0x78800000, 1359 .le_base = 0x78c00000, 1360 .apc_base = 0x6a000000, 1361 .aux1_base = 0x71900000, 1362 .aux2_base = 0x71910000, 1363 .nvram_machine_id = 0x80, 1364 .machine_id = sbook_id, 1365 .iommu_version = 0x05000000, 1366 .max_mem = 0x10000000, 1367 .default_cpu_model = "TI MicroSparc I", 1368 }, 1369 }; 1370 1371 /* SPARCstation 5 hardware initialisation */ 1372 static void ss5_init(MachineState *machine) 1373 { 1374 sun4m_hw_init(&sun4m_hwdefs[0], machine); 1375 } 1376 1377 /* SPARCstation 10 hardware initialisation */ 1378 static void ss10_init(MachineState *machine) 1379 { 1380 sun4m_hw_init(&sun4m_hwdefs[1], machine); 1381 } 1382 1383 /* SPARCserver 600MP hardware initialisation */ 1384 static void ss600mp_init(MachineState *machine) 1385 { 1386 sun4m_hw_init(&sun4m_hwdefs[2], machine); 1387 } 1388 1389 /* SPARCstation 20 hardware initialisation */ 1390 static void ss20_init(MachineState *machine) 1391 { 1392 sun4m_hw_init(&sun4m_hwdefs[3], machine); 1393 } 1394 1395 /* SPARCstation Voyager hardware initialisation */ 1396 static void vger_init(MachineState *machine) 1397 { 1398 sun4m_hw_init(&sun4m_hwdefs[4], machine); 1399 } 1400 1401 /* SPARCstation LX hardware initialisation */ 1402 static void ss_lx_init(MachineState *machine) 1403 { 1404 sun4m_hw_init(&sun4m_hwdefs[5], machine); 1405 } 1406 1407 /* SPARCstation 4 hardware initialisation */ 1408 static void ss4_init(MachineState *machine) 1409 { 1410 sun4m_hw_init(&sun4m_hwdefs[6], machine); 1411 } 1412 1413 /* SPARCClassic hardware initialisation */ 1414 static void scls_init(MachineState *machine) 1415 { 1416 sun4m_hw_init(&sun4m_hwdefs[7], machine); 1417 } 1418 1419 /* SPARCbook hardware initialisation */ 1420 static void sbook_init(MachineState *machine) 1421 { 1422 sun4m_hw_init(&sun4m_hwdefs[8], machine); 1423 } 1424 1425 static QEMUMachine ss5_machine = { 1426 .name = "SS-5", 1427 .desc = "Sun4m platform, SPARCstation 5", 1428 .init = ss5_init, 1429 .block_default_type = IF_SCSI, 1430 .is_default = 1, 1431 .default_boot_order = "c", 1432 }; 1433 1434 static QEMUMachine ss10_machine = { 1435 .name = "SS-10", 1436 .desc = "Sun4m platform, SPARCstation 10", 1437 .init = ss10_init, 1438 .block_default_type = IF_SCSI, 1439 .max_cpus = 4, 1440 .default_boot_order = "c", 1441 }; 1442 1443 static QEMUMachine ss600mp_machine = { 1444 .name = "SS-600MP", 1445 .desc = "Sun4m platform, SPARCserver 600MP", 1446 .init = ss600mp_init, 1447 .block_default_type = IF_SCSI, 1448 .max_cpus = 4, 1449 .default_boot_order = "c", 1450 }; 1451 1452 static QEMUMachine ss20_machine = { 1453 .name = "SS-20", 1454 .desc = "Sun4m platform, SPARCstation 20", 1455 .init = ss20_init, 1456 .block_default_type = IF_SCSI, 1457 .max_cpus = 4, 1458 .default_boot_order = "c", 1459 }; 1460 1461 static QEMUMachine voyager_machine = { 1462 .name = "Voyager", 1463 .desc = "Sun4m platform, SPARCstation Voyager", 1464 .init = vger_init, 1465 .block_default_type = IF_SCSI, 1466 .default_boot_order = "c", 1467 }; 1468 1469 static QEMUMachine ss_lx_machine = { 1470 .name = "LX", 1471 .desc = "Sun4m platform, SPARCstation LX", 1472 .init = ss_lx_init, 1473 .block_default_type = IF_SCSI, 1474 .default_boot_order = "c", 1475 }; 1476 1477 static QEMUMachine ss4_machine = { 1478 .name = "SS-4", 1479 .desc = "Sun4m platform, SPARCstation 4", 1480 .init = ss4_init, 1481 .block_default_type = IF_SCSI, 1482 .default_boot_order = "c", 1483 }; 1484 1485 static QEMUMachine scls_machine = { 1486 .name = "SPARCClassic", 1487 .desc = "Sun4m platform, SPARCClassic", 1488 .init = scls_init, 1489 .block_default_type = IF_SCSI, 1490 .default_boot_order = "c", 1491 }; 1492 1493 static QEMUMachine sbook_machine = { 1494 .name = "SPARCbook", 1495 .desc = "Sun4m platform, SPARCbook", 1496 .init = sbook_init, 1497 .block_default_type = IF_SCSI, 1498 .default_boot_order = "c", 1499 }; 1500 1501 static void sun4m_register_types(void) 1502 { 1503 type_register_static(&idreg_info); 1504 type_register_static(&afx_info); 1505 type_register_static(&prom_info); 1506 type_register_static(&ram_info); 1507 } 1508 1509 static void sun4m_machine_init(void) 1510 { 1511 qemu_register_machine(&ss5_machine); 1512 qemu_register_machine(&ss10_machine); 1513 qemu_register_machine(&ss600mp_machine); 1514 qemu_register_machine(&ss20_machine); 1515 qemu_register_machine(&voyager_machine); 1516 qemu_register_machine(&ss_lx_machine); 1517 qemu_register_machine(&ss4_machine); 1518 qemu_register_machine(&scls_machine); 1519 qemu_register_machine(&sbook_machine); 1520 } 1521 1522 type_init(sun4m_register_types) 1523 machine_init(sun4m_machine_init); 1524