1 /* 2 * QEMU Leon3 System Emulator 3 * 4 * Copyright (c) 2010-2019 AdaCore 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/units.h" 27 #include "qemu/error-report.h" 28 #include "qapi/error.h" 29 #include "qemu-common.h" 30 #include "cpu.h" 31 #include "hw/irq.h" 32 #include "qemu/timer.h" 33 #include "hw/ptimer.h" 34 #include "sysemu/sysemu.h" 35 #include "sysemu/qtest.h" 36 #include "sysemu/reset.h" 37 #include "hw/boards.h" 38 #include "hw/loader.h" 39 #include "elf.h" 40 #include "trace.h" 41 #include "exec/address-spaces.h" 42 43 #include "hw/sparc/grlib.h" 44 #include "hw/misc/grlib_ahb_apb_pnp.h" 45 46 /* Default system clock. */ 47 #define CPU_CLK (40 * 1000 * 1000) 48 49 #define LEON3_PROM_FILENAME "u-boot.bin" 50 #define LEON3_PROM_OFFSET (0x00000000) 51 #define LEON3_RAM_OFFSET (0x40000000) 52 53 #define MAX_PILS 16 54 55 #define LEON3_UART_OFFSET (0x80000100) 56 #define LEON3_UART_IRQ (3) 57 58 #define LEON3_IRQMP_OFFSET (0x80000200) 59 60 #define LEON3_TIMER_OFFSET (0x80000300) 61 #define LEON3_TIMER_IRQ (6) 62 #define LEON3_TIMER_COUNT (2) 63 64 #define LEON3_APB_PNP_OFFSET (0x800FF000) 65 #define LEON3_AHB_PNP_OFFSET (0xFFFFF000) 66 67 typedef struct ResetData { 68 SPARCCPU *cpu; 69 uint32_t entry; /* save kernel entry in case of reset */ 70 target_ulong sp; /* initial stack pointer */ 71 } ResetData; 72 73 static uint32_t *gen_store_u32(uint32_t *code, hwaddr addr, uint32_t val) 74 { 75 stl_p(code++, 0x82100000); /* mov %g0, %g1 */ 76 stl_p(code++, 0x84100000); /* mov %g0, %g2 */ 77 stl_p(code++, 0x03000000 + 78 extract32(addr, 10, 22)); 79 /* sethi %hi(addr), %g1 */ 80 stl_p(code++, 0x82106000 + 81 extract32(addr, 0, 10)); 82 /* or %g1, addr, %g1 */ 83 stl_p(code++, 0x05000000 + 84 extract32(val, 10, 22)); 85 /* sethi %hi(val), %g2 */ 86 stl_p(code++, 0x8410a000 + 87 extract32(val, 0, 10)); 88 /* or %g2, val, %g2 */ 89 stl_p(code++, 0xc4204000); /* st %g2, [ %g1 ] */ 90 91 return code; 92 } 93 94 /* 95 * When loading a kernel in RAM the machine is expected to be in a different 96 * state (eg: initialized by the bootloader). This little code reproduces 97 * this behavior. 98 */ 99 static void write_bootloader(CPUSPARCState *env, uint8_t *base, 100 hwaddr kernel_addr) 101 { 102 uint32_t *p = (uint32_t *) base; 103 104 /* Initialize the UARTs */ 105 /* *UART_CONTROL = UART_RECEIVE_ENABLE | UART_TRANSMIT_ENABLE; */ 106 p = gen_store_u32(p, 0x80000108, 3); 107 108 /* Initialize the TIMER 0 */ 109 /* *GPTIMER_SCALER_RELOAD = 40 - 1; */ 110 p = gen_store_u32(p, 0x80000304, 39); 111 /* *GPTIMER0_COUNTER_RELOAD = 0xFFFE; */ 112 p = gen_store_u32(p, 0x80000314, 0xFFFFFFFE); 113 /* *GPTIMER0_CONFIG = GPTIMER_ENABLE | GPTIMER_RESTART; */ 114 p = gen_store_u32(p, 0x80000318, 3); 115 116 /* JUMP to the entry point */ 117 stl_p(p++, 0x82100000); /* mov %g0, %g1 */ 118 stl_p(p++, 0x03000000 + extract32(kernel_addr, 10, 22)); 119 /* sethi %hi(kernel_addr), %g1 */ 120 stl_p(p++, 0x82106000 + extract32(kernel_addr, 0, 10)); 121 /* or kernel_addr, %g1 */ 122 stl_p(p++, 0x81c04000); /* jmp %g1 */ 123 stl_p(p++, 0x01000000); /* nop */ 124 } 125 126 static void main_cpu_reset(void *opaque) 127 { 128 ResetData *s = (ResetData *)opaque; 129 CPUState *cpu = CPU(s->cpu); 130 CPUSPARCState *env = &s->cpu->env; 131 132 cpu_reset(cpu); 133 134 cpu->halted = 0; 135 env->pc = s->entry; 136 env->npc = s->entry + 4; 137 env->regbase[6] = s->sp; 138 } 139 140 void leon3_irq_ack(void *irq_manager, int intno) 141 { 142 grlib_irqmp_ack((DeviceState *)irq_manager, intno); 143 } 144 145 static void leon3_set_pil_in(void *opaque, uint32_t pil_in) 146 { 147 CPUSPARCState *env = (CPUSPARCState *)opaque; 148 CPUState *cs; 149 150 assert(env != NULL); 151 152 env->pil_in = pil_in; 153 154 if (env->pil_in && (env->interrupt_index == 0 || 155 (env->interrupt_index & ~15) == TT_EXTINT)) { 156 unsigned int i; 157 158 for (i = 15; i > 0; i--) { 159 if (env->pil_in & (1 << i)) { 160 int old_interrupt = env->interrupt_index; 161 162 env->interrupt_index = TT_EXTINT | i; 163 if (old_interrupt != env->interrupt_index) { 164 cs = env_cpu(env); 165 trace_leon3_set_irq(i); 166 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 167 } 168 break; 169 } 170 } 171 } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { 172 cs = env_cpu(env); 173 trace_leon3_reset_irq(env->interrupt_index & 15); 174 env->interrupt_index = 0; 175 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 176 } 177 } 178 179 static void leon3_generic_hw_init(MachineState *machine) 180 { 181 ram_addr_t ram_size = machine->ram_size; 182 const char *kernel_filename = machine->kernel_filename; 183 SPARCCPU *cpu; 184 CPUSPARCState *env; 185 MemoryRegion *address_space_mem = get_system_memory(); 186 MemoryRegion *ram = g_new(MemoryRegion, 1); 187 MemoryRegion *prom = g_new(MemoryRegion, 1); 188 int ret; 189 char *filename; 190 qemu_irq *cpu_irqs = NULL; 191 int bios_size; 192 int prom_size; 193 ResetData *reset_info; 194 DeviceState *dev; 195 int i; 196 AHBPnp *ahb_pnp; 197 APBPnp *apb_pnp; 198 199 /* Init CPU */ 200 cpu = SPARC_CPU(cpu_create(machine->cpu_type)); 201 env = &cpu->env; 202 203 cpu_sparc_set_id(env, 0); 204 205 /* Reset data */ 206 reset_info = g_malloc0(sizeof(ResetData)); 207 reset_info->cpu = cpu; 208 reset_info->sp = LEON3_RAM_OFFSET + ram_size; 209 qemu_register_reset(main_cpu_reset, reset_info); 210 211 ahb_pnp = GRLIB_AHB_PNP(object_new(TYPE_GRLIB_AHB_PNP)); 212 object_property_set_bool(OBJECT(ahb_pnp), true, "realized", &error_fatal); 213 sysbus_mmio_map(SYS_BUS_DEVICE(ahb_pnp), 0, LEON3_AHB_PNP_OFFSET); 214 grlib_ahb_pnp_add_entry(ahb_pnp, 0, 0, GRLIB_VENDOR_GAISLER, 215 GRLIB_LEON3_DEV, GRLIB_AHB_MASTER, 216 GRLIB_CPU_AREA); 217 218 apb_pnp = GRLIB_APB_PNP(object_new(TYPE_GRLIB_APB_PNP)); 219 object_property_set_bool(OBJECT(apb_pnp), true, "realized", &error_fatal); 220 sysbus_mmio_map(SYS_BUS_DEVICE(apb_pnp), 0, LEON3_APB_PNP_OFFSET); 221 grlib_ahb_pnp_add_entry(ahb_pnp, LEON3_APB_PNP_OFFSET, 0xFFF, 222 GRLIB_VENDOR_GAISLER, GRLIB_APBMST_DEV, 223 GRLIB_AHB_SLAVE, GRLIB_AHBMEM_AREA); 224 225 /* Allocate IRQ manager */ 226 dev = qdev_create(NULL, TYPE_GRLIB_IRQMP); 227 qdev_prop_set_ptr(dev, "set_pil_in", leon3_set_pil_in); 228 qdev_prop_set_ptr(dev, "set_pil_in_opaque", env); 229 qdev_init_nofail(dev); 230 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_IRQMP_OFFSET); 231 env->irq_manager = dev; 232 env->qemu_irq_ack = leon3_irq_manager; 233 cpu_irqs = qemu_allocate_irqs(grlib_irqmp_set_irq, dev, MAX_PILS); 234 grlib_apb_pnp_add_entry(apb_pnp, LEON3_IRQMP_OFFSET, 0xFFF, 235 GRLIB_VENDOR_GAISLER, GRLIB_IRQMP_DEV, 236 2, 0, GRLIB_APBIO_AREA); 237 238 /* Allocate RAM */ 239 if (ram_size > 1 * GiB) { 240 error_report("Too much memory for this machine: %" PRId64 "MB," 241 " maximum 1G", 242 ram_size / MiB); 243 exit(1); 244 } 245 246 memory_region_allocate_system_memory(ram, NULL, "leon3.ram", ram_size); 247 memory_region_add_subregion(address_space_mem, LEON3_RAM_OFFSET, ram); 248 249 /* Allocate BIOS */ 250 prom_size = 8 * MiB; 251 memory_region_init_ram(prom, NULL, "Leon3.bios", prom_size, &error_fatal); 252 memory_region_set_readonly(prom, true); 253 memory_region_add_subregion(address_space_mem, LEON3_PROM_OFFSET, prom); 254 255 /* Load boot prom */ 256 if (bios_name == NULL) { 257 bios_name = LEON3_PROM_FILENAME; 258 } 259 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 260 261 if (filename) { 262 bios_size = get_image_size(filename); 263 } else { 264 bios_size = -1; 265 } 266 267 if (bios_size > prom_size) { 268 error_report("could not load prom '%s': file too big", filename); 269 exit(1); 270 } 271 272 if (bios_size > 0) { 273 ret = load_image_targphys(filename, LEON3_PROM_OFFSET, bios_size); 274 if (ret < 0 || ret > prom_size) { 275 error_report("could not load prom '%s'", filename); 276 exit(1); 277 } 278 } else if (kernel_filename == NULL && !qtest_enabled()) { 279 error_report("Can't read bios image '%s'", filename 280 ? filename 281 : LEON3_PROM_FILENAME); 282 exit(1); 283 } 284 g_free(filename); 285 286 /* Can directly load an application. */ 287 if (kernel_filename != NULL) { 288 long kernel_size; 289 uint64_t entry; 290 291 kernel_size = load_elf(kernel_filename, NULL, NULL, NULL, 292 &entry, NULL, NULL, 293 1 /* big endian */, EM_SPARC, 0, 0); 294 if (kernel_size < 0) { 295 kernel_size = load_uimage(kernel_filename, NULL, &entry, 296 NULL, NULL, NULL); 297 } 298 if (kernel_size < 0) { 299 error_report("could not load kernel '%s'", kernel_filename); 300 exit(1); 301 } 302 if (bios_size <= 0) { 303 /* 304 * If there is no bios/monitor just start the application but put 305 * the machine in an initialized state through a little 306 * bootloader. 307 */ 308 uint8_t *bootloader_entry; 309 310 bootloader_entry = memory_region_get_ram_ptr(prom); 311 write_bootloader(env, bootloader_entry, entry); 312 env->pc = LEON3_PROM_OFFSET; 313 env->npc = LEON3_PROM_OFFSET + 4; 314 reset_info->entry = LEON3_PROM_OFFSET; 315 } 316 } 317 318 /* Allocate timers */ 319 dev = qdev_create(NULL, TYPE_GRLIB_GPTIMER); 320 qdev_prop_set_uint32(dev, "nr-timers", LEON3_TIMER_COUNT); 321 qdev_prop_set_uint32(dev, "frequency", CPU_CLK); 322 qdev_prop_set_uint32(dev, "irq-line", LEON3_TIMER_IRQ); 323 qdev_init_nofail(dev); 324 325 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_TIMER_OFFSET); 326 for (i = 0; i < LEON3_TIMER_COUNT; i++) { 327 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, 328 cpu_irqs[LEON3_TIMER_IRQ + i]); 329 } 330 331 grlib_apb_pnp_add_entry(apb_pnp, LEON3_TIMER_OFFSET, 0xFFF, 332 GRLIB_VENDOR_GAISLER, GRLIB_GPTIMER_DEV, 333 0, LEON3_TIMER_IRQ, GRLIB_APBIO_AREA); 334 335 /* Allocate uart */ 336 if (serial_hd(0)) { 337 dev = qdev_create(NULL, TYPE_GRLIB_APB_UART); 338 qdev_prop_set_chr(dev, "chrdev", serial_hd(0)); 339 qdev_init_nofail(dev); 340 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, LEON3_UART_OFFSET); 341 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, cpu_irqs[LEON3_UART_IRQ]); 342 grlib_apb_pnp_add_entry(apb_pnp, LEON3_UART_OFFSET, 0xFFF, 343 GRLIB_VENDOR_GAISLER, GRLIB_APBUART_DEV, 1, 344 LEON3_UART_IRQ, GRLIB_APBIO_AREA); 345 } 346 } 347 348 static void leon3_generic_machine_init(MachineClass *mc) 349 { 350 mc->desc = "Leon-3 generic"; 351 mc->init = leon3_generic_hw_init; 352 mc->default_cpu_type = SPARC_CPU_TYPE_NAME("LEON3"); 353 } 354 355 DEFINE_MACHINE("leon3_generic", leon3_generic_machine_init) 356