xref: /openbmc/qemu/hw/sd/sdhci.c (revision ed7f5f1d)
1 /*
2  * SD Association Host Standard Specification v2.0 controller emulation
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  * Mitsyanko Igor <i.mitsyanko@samsung.com>
6  * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
7  *
8  * Based on MMC controller for Samsung S5PC1xx-based board emulation
9  * by Alexey Merkulov and Vladimir Monakhov.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
19  * See the GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License along
22  * with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "sysemu/block-backend.h"
28 #include "sysemu/blockdev.h"
29 #include "sysemu/dma.h"
30 #include "qemu/timer.h"
31 #include "qemu/bitops.h"
32 #include "sdhci-internal.h"
33 
34 /* host controller debug messages */
35 #ifndef SDHC_DEBUG
36 #define SDHC_DEBUG                        0
37 #endif
38 
39 #define DPRINT_L1(fmt, args...) \
40     do { \
41         if (SDHC_DEBUG) { \
42             fprintf(stderr, "QEMU SDHC: " fmt, ## args); \
43         } \
44     } while (0)
45 #define DPRINT_L2(fmt, args...) \
46     do { \
47         if (SDHC_DEBUG > 1) { \
48             fprintf(stderr, "QEMU SDHC: " fmt, ## args); \
49         } \
50     } while (0)
51 #define ERRPRINT(fmt, args...) \
52     do { \
53         if (SDHC_DEBUG) { \
54             fprintf(stderr, "QEMU SDHC ERROR: " fmt, ## args); \
55         } \
56     } while (0)
57 
58 /* Default SD/MMC host controller features information, which will be
59  * presented in CAPABILITIES register of generic SD host controller at reset.
60  * If not stated otherwise:
61  * 0 - not supported, 1 - supported, other - prohibited.
62  */
63 #define SDHC_CAPAB_64BITBUS       0ul        /* 64-bit System Bus Support */
64 #define SDHC_CAPAB_18V            1ul        /* Voltage support 1.8v */
65 #define SDHC_CAPAB_30V            0ul        /* Voltage support 3.0v */
66 #define SDHC_CAPAB_33V            1ul        /* Voltage support 3.3v */
67 #define SDHC_CAPAB_SUSPRESUME     0ul        /* Suspend/resume support */
68 #define SDHC_CAPAB_SDMA           1ul        /* SDMA support */
69 #define SDHC_CAPAB_HIGHSPEED      1ul        /* High speed support */
70 #define SDHC_CAPAB_ADMA1          1ul        /* ADMA1 support */
71 #define SDHC_CAPAB_ADMA2          1ul        /* ADMA2 support */
72 /* Maximum host controller R/W buffers size
73  * Possible values: 512, 1024, 2048 bytes */
74 #define SDHC_CAPAB_MAXBLOCKLENGTH 512ul
75 /* Maximum clock frequency for SDclock in MHz
76  * value in range 10-63 MHz, 0 - not defined */
77 #define SDHC_CAPAB_BASECLKFREQ    52ul
78 #define SDHC_CAPAB_TOUNIT         1ul  /* Timeout clock unit 0 - kHz, 1 - MHz */
79 /* Timeout clock frequency 1-63, 0 - not defined */
80 #define SDHC_CAPAB_TOCLKFREQ      52ul
81 
82 /* Now check all parameters and calculate CAPABILITIES REGISTER value */
83 #if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 ||     \
84     SDHC_CAPAB_33V > 1 || SDHC_CAPAB_SUSPRESUME > 1 || SDHC_CAPAB_SDMA > 1 ||  \
85     SDHC_CAPAB_HIGHSPEED > 1 || SDHC_CAPAB_ADMA2 > 1 || SDHC_CAPAB_ADMA1 > 1 ||\
86     SDHC_CAPAB_TOUNIT > 1
87 #error Capabilities features can have value 0 or 1 only!
88 #endif
89 
90 #if SDHC_CAPAB_MAXBLOCKLENGTH == 512
91 #define MAX_BLOCK_LENGTH 0ul
92 #elif SDHC_CAPAB_MAXBLOCKLENGTH == 1024
93 #define MAX_BLOCK_LENGTH 1ul
94 #elif SDHC_CAPAB_MAXBLOCKLENGTH == 2048
95 #define MAX_BLOCK_LENGTH 2ul
96 #else
97 #error Max host controller block size can have value 512, 1024 or 2048 only!
98 #endif
99 
100 #if (SDHC_CAPAB_BASECLKFREQ > 0 && SDHC_CAPAB_BASECLKFREQ < 10) || \
101     SDHC_CAPAB_BASECLKFREQ > 63
102 #error SDclock frequency can have value in range 0, 10-63 only!
103 #endif
104 
105 #if SDHC_CAPAB_TOCLKFREQ > 63
106 #error Timeout clock frequency can have value in range 0-63 only!
107 #endif
108 
109 #define SDHC_CAPAB_REG_DEFAULT                                 \
110    ((SDHC_CAPAB_64BITBUS << 28) | (SDHC_CAPAB_18V << 26) |     \
111     (SDHC_CAPAB_30V << 25) | (SDHC_CAPAB_33V << 24) |          \
112     (SDHC_CAPAB_SUSPRESUME << 23) | (SDHC_CAPAB_SDMA << 22) |  \
113     (SDHC_CAPAB_HIGHSPEED << 21) | (SDHC_CAPAB_ADMA1 << 20) |  \
114     (SDHC_CAPAB_ADMA2 << 19) | (MAX_BLOCK_LENGTH << 16) |      \
115     (SDHC_CAPAB_BASECLKFREQ << 8) | (SDHC_CAPAB_TOUNIT << 7) | \
116     (SDHC_CAPAB_TOCLKFREQ))
117 
118 #define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))
119 
120 static uint8_t sdhci_slotint(SDHCIState *s)
121 {
122     return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
123          ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
124          ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
125 }
126 
127 static inline void sdhci_update_irq(SDHCIState *s)
128 {
129     qemu_set_irq(s->irq, sdhci_slotint(s));
130 }
131 
132 static void sdhci_raise_insertion_irq(void *opaque)
133 {
134     SDHCIState *s = (SDHCIState *)opaque;
135 
136     if (s->norintsts & SDHC_NIS_REMOVE) {
137         timer_mod(s->insert_timer,
138                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
139     } else {
140         s->prnsts = 0x1ff0000;
141         if (s->norintstsen & SDHC_NISEN_INSERT) {
142             s->norintsts |= SDHC_NIS_INSERT;
143         }
144         sdhci_update_irq(s);
145     }
146 }
147 
148 static void sdhci_insert_eject_cb(void *opaque, int irq, int level)
149 {
150     SDHCIState *s = (SDHCIState *)opaque;
151     DPRINT_L1("Card state changed: %s!\n", level ? "insert" : "eject");
152 
153     if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
154         /* Give target some time to notice card ejection */
155         timer_mod(s->insert_timer,
156                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
157     } else {
158         if (level) {
159             s->prnsts = 0x1ff0000;
160             if (s->norintstsen & SDHC_NISEN_INSERT) {
161                 s->norintsts |= SDHC_NIS_INSERT;
162             }
163         } else {
164             s->prnsts = 0x1fa0000;
165             s->pwrcon &= ~SDHC_POWER_ON;
166             s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
167             if (s->norintstsen & SDHC_NISEN_REMOVE) {
168                 s->norintsts |= SDHC_NIS_REMOVE;
169             }
170         }
171         sdhci_update_irq(s);
172     }
173 }
174 
175 static void sdhci_card_readonly_cb(void *opaque, int irq, int level)
176 {
177     SDHCIState *s = (SDHCIState *)opaque;
178 
179     if (level) {
180         s->prnsts &= ~SDHC_WRITE_PROTECT;
181     } else {
182         /* Write enabled */
183         s->prnsts |= SDHC_WRITE_PROTECT;
184     }
185 }
186 
187 static void sdhci_reset(SDHCIState *s)
188 {
189     timer_del(s->insert_timer);
190     timer_del(s->transfer_timer);
191     /* Set all registers to 0. Capabilities registers are not cleared
192      * and assumed to always preserve their value, given to them during
193      * initialization */
194     memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
195 
196     if (!s->noeject_quirk) {
197         sd_set_cb(s->card, s->ro_cb, s->eject_cb);
198     }
199     s->data_count = 0;
200     s->stopped_state = sdhc_not_stopped;
201 }
202 
203 static void sdhci_data_transfer(void *opaque);
204 
205 static void sdhci_send_command(SDHCIState *s)
206 {
207     SDRequest request;
208     uint8_t response[16];
209     int rlen;
210 
211     s->errintsts = 0;
212     s->acmd12errsts = 0;
213     request.cmd = s->cmdreg >> 8;
214     request.arg = s->argument;
215     DPRINT_L1("sending CMD%u ARG[0x%08x]\n", request.cmd, request.arg);
216     rlen = sd_do_command(s->card, &request, response);
217 
218     if (s->cmdreg & SDHC_CMD_RESPONSE) {
219         if (rlen == 4) {
220             s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
221                            (response[2] << 8)  |  response[3];
222             s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
223             DPRINT_L1("Response: RSPREG[31..0]=0x%08x\n", s->rspreg[0]);
224         } else if (rlen == 16) {
225             s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
226                            (response[13] << 8) |  response[14];
227             s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
228                            (response[9] << 8)  |  response[10];
229             s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
230                            (response[5] << 8)  |  response[6];
231             s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
232                             response[2];
233             DPRINT_L1("Response received:\n RSPREG[127..96]=0x%08x, RSPREG[95.."
234                   "64]=0x%08x,\n RSPREG[63..32]=0x%08x, RSPREG[31..0]=0x%08x\n",
235                   s->rspreg[3], s->rspreg[2], s->rspreg[1], s->rspreg[0]);
236         } else {
237             ERRPRINT("Timeout waiting for command response\n");
238             if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
239                 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
240                 s->norintsts |= SDHC_NIS_ERR;
241             }
242         }
243 
244         if ((s->norintstsen & SDHC_NISEN_TRSCMP) &&
245             (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
246             s->norintsts |= SDHC_NIS_TRSCMP;
247         }
248     }
249 
250     if (s->norintstsen & SDHC_NISEN_CMDCMP) {
251         s->norintsts |= SDHC_NIS_CMDCMP;
252     }
253 
254     sdhci_update_irq(s);
255 
256     if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
257         s->data_count = 0;
258         sdhci_data_transfer(s);
259     }
260 }
261 
262 static void sdhci_end_transfer(SDHCIState *s)
263 {
264     /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
265     if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
266         SDRequest request;
267         uint8_t response[16];
268 
269         request.cmd = 0x0C;
270         request.arg = 0;
271         DPRINT_L1("Automatically issue CMD%d %08x\n", request.cmd, request.arg);
272         sd_do_command(s->card, &request, response);
273         /* Auto CMD12 response goes to the upper Response register */
274         s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
275                 (response[2] << 8) | response[3];
276     }
277 
278     s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
279             SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
280             SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
281 
282     if (s->norintstsen & SDHC_NISEN_TRSCMP) {
283         s->norintsts |= SDHC_NIS_TRSCMP;
284     }
285 
286     sdhci_update_irq(s);
287 }
288 
289 /*
290  * Programmed i/o data transfer
291  */
292 
293 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
294 static void sdhci_read_block_from_card(SDHCIState *s)
295 {
296     int index = 0;
297 
298     if ((s->trnmod & SDHC_TRNS_MULTI) &&
299             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
300         return;
301     }
302 
303     for (index = 0; index < (s->blksize & 0x0fff); index++) {
304         s->fifo_buffer[index] = sd_read_data(s->card);
305     }
306 
307     /* New data now available for READ through Buffer Port Register */
308     s->prnsts |= SDHC_DATA_AVAILABLE;
309     if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
310         s->norintsts |= SDHC_NIS_RBUFRDY;
311     }
312 
313     /* Clear DAT line active status if that was the last block */
314     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
315             ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
316         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
317     }
318 
319     /* If stop at block gap request was set and it's not the last block of
320      * data - generate Block Event interrupt */
321     if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
322             s->blkcnt != 1)    {
323         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
324         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
325             s->norintsts |= SDHC_EIS_BLKGAP;
326         }
327     }
328 
329     sdhci_update_irq(s);
330 }
331 
332 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
333 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
334 {
335     uint32_t value = 0;
336     int i;
337 
338     /* first check that a valid data exists in host controller input buffer */
339     if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
340         ERRPRINT("Trying to read from empty buffer\n");
341         return 0;
342     }
343 
344     for (i = 0; i < size; i++) {
345         value |= s->fifo_buffer[s->data_count] << i * 8;
346         s->data_count++;
347         /* check if we've read all valid data (blksize bytes) from buffer */
348         if ((s->data_count) >= (s->blksize & 0x0fff)) {
349             DPRINT_L2("All %u bytes of data have been read from input buffer\n",
350                     s->data_count);
351             s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
352             s->data_count = 0;  /* next buff read must start at position [0] */
353 
354             if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
355                 s->blkcnt--;
356             }
357 
358             /* if that was the last block of data */
359             if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
360                 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
361                  /* stop at gap request */
362                 (s->stopped_state == sdhc_gap_read &&
363                  !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
364                 sdhci_end_transfer(s);
365             } else { /* if there are more data, read next block from card */
366                 sdhci_read_block_from_card(s);
367             }
368             break;
369         }
370     }
371 
372     return value;
373 }
374 
375 /* Write data from host controller FIFO to card */
376 static void sdhci_write_block_to_card(SDHCIState *s)
377 {
378     int index = 0;
379 
380     if (s->prnsts & SDHC_SPACE_AVAILABLE) {
381         if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
382             s->norintsts |= SDHC_NIS_WBUFRDY;
383         }
384         sdhci_update_irq(s);
385         return;
386     }
387 
388     if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
389         if (s->blkcnt == 0) {
390             return;
391         } else {
392             s->blkcnt--;
393         }
394     }
395 
396     for (index = 0; index < (s->blksize & 0x0fff); index++) {
397         sd_write_data(s->card, s->fifo_buffer[index]);
398     }
399 
400     /* Next data can be written through BUFFER DATORT register */
401     s->prnsts |= SDHC_SPACE_AVAILABLE;
402 
403     /* Finish transfer if that was the last block of data */
404     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
405             ((s->trnmod & SDHC_TRNS_MULTI) &&
406             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
407         sdhci_end_transfer(s);
408     } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
409         s->norintsts |= SDHC_NIS_WBUFRDY;
410     }
411 
412     /* Generate Block Gap Event if requested and if not the last block */
413     if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
414             s->blkcnt > 0) {
415         s->prnsts &= ~SDHC_DOING_WRITE;
416         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
417             s->norintsts |= SDHC_EIS_BLKGAP;
418         }
419         sdhci_end_transfer(s);
420     }
421 
422     sdhci_update_irq(s);
423 }
424 
425 /* Write @size bytes of @value data to host controller @s Buffer Data Port
426  * register */
427 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
428 {
429     unsigned i;
430 
431     /* Check that there is free space left in a buffer */
432     if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
433         ERRPRINT("Can't write to data buffer: buffer full\n");
434         return;
435     }
436 
437     for (i = 0; i < size; i++) {
438         s->fifo_buffer[s->data_count] = value & 0xFF;
439         s->data_count++;
440         value >>= 8;
441         if (s->data_count >= (s->blksize & 0x0fff)) {
442             DPRINT_L2("write buffer filled with %u bytes of data\n",
443                     s->data_count);
444             s->data_count = 0;
445             s->prnsts &= ~SDHC_SPACE_AVAILABLE;
446             if (s->prnsts & SDHC_DOING_WRITE) {
447                 sdhci_write_block_to_card(s);
448             }
449         }
450     }
451 }
452 
453 /*
454  * Single DMA data transfer
455  */
456 
457 /* Multi block SDMA transfer */
458 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
459 {
460     bool page_aligned = false;
461     unsigned int n, begin;
462     const uint16_t block_size = s->blksize & 0x0fff;
463     uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12);
464     uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
465 
466     /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
467      * possible stop at page boundary if initial address is not page aligned,
468      * allow them to work properly */
469     if ((s->sdmasysad % boundary_chk) == 0) {
470         page_aligned = true;
471     }
472 
473     if (s->trnmod & SDHC_TRNS_READ) {
474         s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
475                 SDHC_DAT_LINE_ACTIVE;
476         while (s->blkcnt) {
477             if (s->data_count == 0) {
478                 for (n = 0; n < block_size; n++) {
479                     s->fifo_buffer[n] = sd_read_data(s->card);
480                 }
481             }
482             begin = s->data_count;
483             if (((boundary_count + begin) < block_size) && page_aligned) {
484                 s->data_count = boundary_count + begin;
485                 boundary_count = 0;
486              } else {
487                 s->data_count = block_size;
488                 boundary_count -= block_size - begin;
489                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
490                     s->blkcnt--;
491                 }
492             }
493             dma_memory_write(&address_space_memory, s->sdmasysad,
494                              &s->fifo_buffer[begin], s->data_count - begin);
495             s->sdmasysad += s->data_count - begin;
496             if (s->data_count == block_size) {
497                 s->data_count = 0;
498             }
499             if (page_aligned && boundary_count == 0) {
500                 break;
501             }
502         }
503     } else {
504         s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
505                 SDHC_DAT_LINE_ACTIVE;
506         while (s->blkcnt) {
507             begin = s->data_count;
508             if (((boundary_count + begin) < block_size) && page_aligned) {
509                 s->data_count = boundary_count + begin;
510                 boundary_count = 0;
511              } else {
512                 s->data_count = block_size;
513                 boundary_count -= block_size - begin;
514             }
515             dma_memory_read(&address_space_memory, s->sdmasysad,
516                             &s->fifo_buffer[begin], s->data_count);
517             s->sdmasysad += s->data_count - begin;
518             if (s->data_count == block_size) {
519                 for (n = 0; n < block_size; n++) {
520                     sd_write_data(s->card, s->fifo_buffer[n]);
521                 }
522                 s->data_count = 0;
523                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
524                     s->blkcnt--;
525                 }
526             }
527             if (page_aligned && boundary_count == 0) {
528                 break;
529             }
530         }
531     }
532 
533     if (s->blkcnt == 0) {
534         sdhci_end_transfer(s);
535     } else {
536         if (s->norintstsen & SDHC_NISEN_DMA) {
537             s->norintsts |= SDHC_NIS_DMA;
538         }
539         sdhci_update_irq(s);
540     }
541 }
542 
543 /* single block SDMA transfer */
544 
545 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
546 {
547     int n;
548     uint32_t datacnt = s->blksize & 0x0fff;
549 
550     if (s->trnmod & SDHC_TRNS_READ) {
551         for (n = 0; n < datacnt; n++) {
552             s->fifo_buffer[n] = sd_read_data(s->card);
553         }
554         dma_memory_write(&address_space_memory, s->sdmasysad, s->fifo_buffer,
555                          datacnt);
556     } else {
557         dma_memory_read(&address_space_memory, s->sdmasysad, s->fifo_buffer,
558                         datacnt);
559         for (n = 0; n < datacnt; n++) {
560             sd_write_data(s->card, s->fifo_buffer[n]);
561         }
562     }
563 
564     if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
565         s->blkcnt--;
566     }
567 
568     sdhci_end_transfer(s);
569 }
570 
571 typedef struct ADMADescr {
572     hwaddr addr;
573     uint16_t length;
574     uint8_t attr;
575     uint8_t incr;
576 } ADMADescr;
577 
578 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
579 {
580     uint32_t adma1 = 0;
581     uint64_t adma2 = 0;
582     hwaddr entry_addr = (hwaddr)s->admasysaddr;
583     switch (SDHC_DMA_TYPE(s->hostctl)) {
584     case SDHC_CTRL_ADMA2_32:
585         dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma2,
586                         sizeof(adma2));
587         adma2 = le64_to_cpu(adma2);
588         /* The spec does not specify endianness of descriptor table.
589          * We currently assume that it is LE.
590          */
591         dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
592         dscr->length = (uint16_t)extract64(adma2, 16, 16);
593         dscr->attr = (uint8_t)extract64(adma2, 0, 7);
594         dscr->incr = 8;
595         break;
596     case SDHC_CTRL_ADMA1_32:
597         dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma1,
598                         sizeof(adma1));
599         adma1 = le32_to_cpu(adma1);
600         dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
601         dscr->attr = (uint8_t)extract32(adma1, 0, 7);
602         dscr->incr = 4;
603         if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
604             dscr->length = (uint16_t)extract32(adma1, 12, 16);
605         } else {
606             dscr->length = 4096;
607         }
608         break;
609     case SDHC_CTRL_ADMA2_64:
610         dma_memory_read(&address_space_memory, entry_addr,
611                         (uint8_t *)(&dscr->attr), 1);
612         dma_memory_read(&address_space_memory, entry_addr + 2,
613                         (uint8_t *)(&dscr->length), 2);
614         dscr->length = le16_to_cpu(dscr->length);
615         dma_memory_read(&address_space_memory, entry_addr + 4,
616                         (uint8_t *)(&dscr->addr), 8);
617         dscr->attr = le64_to_cpu(dscr->attr);
618         dscr->attr &= 0xfffffff8;
619         dscr->incr = 12;
620         break;
621     }
622 }
623 
624 /* Advanced DMA data transfer */
625 
626 static void sdhci_do_adma(SDHCIState *s)
627 {
628     unsigned int n, begin, length;
629     const uint16_t block_size = s->blksize & 0x0fff;
630     ADMADescr dscr;
631     int i;
632 
633     for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
634         s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
635 
636         get_adma_description(s, &dscr);
637         DPRINT_L2("ADMA loop: addr=" TARGET_FMT_plx ", len=%d, attr=%x\n",
638                 dscr.addr, dscr.length, dscr.attr);
639 
640         if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
641             /* Indicate that error occurred in ST_FDS state */
642             s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
643             s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
644 
645             /* Generate ADMA error interrupt */
646             if (s->errintstsen & SDHC_EISEN_ADMAERR) {
647                 s->errintsts |= SDHC_EIS_ADMAERR;
648                 s->norintsts |= SDHC_NIS_ERR;
649             }
650 
651             sdhci_update_irq(s);
652             return;
653         }
654 
655         length = dscr.length ? dscr.length : 65536;
656 
657         switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
658         case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */
659 
660             if (s->trnmod & SDHC_TRNS_READ) {
661                 while (length) {
662                     if (s->data_count == 0) {
663                         for (n = 0; n < block_size; n++) {
664                             s->fifo_buffer[n] = sd_read_data(s->card);
665                         }
666                     }
667                     begin = s->data_count;
668                     if ((length + begin) < block_size) {
669                         s->data_count = length + begin;
670                         length = 0;
671                      } else {
672                         s->data_count = block_size;
673                         length -= block_size - begin;
674                     }
675                     dma_memory_write(&address_space_memory, dscr.addr,
676                                      &s->fifo_buffer[begin],
677                                      s->data_count - begin);
678                     dscr.addr += s->data_count - begin;
679                     if (s->data_count == block_size) {
680                         s->data_count = 0;
681                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
682                             s->blkcnt--;
683                             if (s->blkcnt == 0) {
684                                 break;
685                             }
686                         }
687                     }
688                 }
689             } else {
690                 while (length) {
691                     begin = s->data_count;
692                     if ((length + begin) < block_size) {
693                         s->data_count = length + begin;
694                         length = 0;
695                      } else {
696                         s->data_count = block_size;
697                         length -= block_size - begin;
698                     }
699                     dma_memory_read(&address_space_memory, dscr.addr,
700                                     &s->fifo_buffer[begin],
701                                     s->data_count - begin);
702                     dscr.addr += s->data_count - begin;
703                     if (s->data_count == block_size) {
704                         for (n = 0; n < block_size; n++) {
705                             sd_write_data(s->card, s->fifo_buffer[n]);
706                         }
707                         s->data_count = 0;
708                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
709                             s->blkcnt--;
710                             if (s->blkcnt == 0) {
711                                 break;
712                             }
713                         }
714                     }
715                 }
716             }
717             s->admasysaddr += dscr.incr;
718             break;
719         case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
720             s->admasysaddr = dscr.addr;
721             DPRINT_L1("ADMA link: admasysaddr=0x%" PRIx64 "\n",
722                       s->admasysaddr);
723             break;
724         default:
725             s->admasysaddr += dscr.incr;
726             break;
727         }
728 
729         if (dscr.attr & SDHC_ADMA_ATTR_INT) {
730             DPRINT_L1("ADMA interrupt: admasysaddr=0x%" PRIx64 "\n",
731                       s->admasysaddr);
732             if (s->norintstsen & SDHC_NISEN_DMA) {
733                 s->norintsts |= SDHC_NIS_DMA;
734             }
735 
736             sdhci_update_irq(s);
737         }
738 
739         /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
740         if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
741                     (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
742             DPRINT_L2("ADMA transfer completed\n");
743             if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
744                 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
745                 s->blkcnt != 0)) {
746                 ERRPRINT("SD/MMC host ADMA length mismatch\n");
747                 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
748                         SDHC_ADMAERR_STATE_ST_TFR;
749                 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
750                     ERRPRINT("Set ADMA error flag\n");
751                     s->errintsts |= SDHC_EIS_ADMAERR;
752                     s->norintsts |= SDHC_NIS_ERR;
753                 }
754 
755                 sdhci_update_irq(s);
756             }
757             sdhci_end_transfer(s);
758             return;
759         }
760 
761     }
762 
763     /* we have unfinished business - reschedule to continue ADMA */
764     timer_mod(s->transfer_timer,
765                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
766 }
767 
768 /* Perform data transfer according to controller configuration */
769 
770 static void sdhci_data_transfer(void *opaque)
771 {
772     SDHCIState *s = (SDHCIState *)opaque;
773 
774     if (s->trnmod & SDHC_TRNS_DMA) {
775         switch (SDHC_DMA_TYPE(s->hostctl)) {
776         case SDHC_CTRL_SDMA:
777             if ((s->trnmod & SDHC_TRNS_MULTI) &&
778                     (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || s->blkcnt == 0)) {
779                 break;
780             }
781 
782             if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
783                 sdhci_sdma_transfer_single_block(s);
784             } else {
785                 sdhci_sdma_transfer_multi_blocks(s);
786             }
787 
788             break;
789         case SDHC_CTRL_ADMA1_32:
790             if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
791                 ERRPRINT("ADMA1 not supported\n");
792                 break;
793             }
794 
795             sdhci_do_adma(s);
796             break;
797         case SDHC_CTRL_ADMA2_32:
798             if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
799                 ERRPRINT("ADMA2 not supported\n");
800                 break;
801             }
802 
803             sdhci_do_adma(s);
804             break;
805         case SDHC_CTRL_ADMA2_64:
806             if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
807                     !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
808                 ERRPRINT("64 bit ADMA not supported\n");
809                 break;
810             }
811 
812             sdhci_do_adma(s);
813             break;
814         default:
815             ERRPRINT("Unsupported DMA type\n");
816             break;
817         }
818     } else {
819         if ((s->trnmod & SDHC_TRNS_READ) && sd_data_ready(s->card)) {
820             s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
821                     SDHC_DAT_LINE_ACTIVE;
822             sdhci_read_block_from_card(s);
823         } else {
824             s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
825                     SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
826             sdhci_write_block_to_card(s);
827         }
828     }
829 }
830 
831 static bool sdhci_can_issue_command(SDHCIState *s)
832 {
833     if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
834         (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
835         ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
836         ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
837         !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
838         return false;
839     }
840 
841     return true;
842 }
843 
844 /* The Buffer Data Port register must be accessed in sequential and
845  * continuous manner */
846 static inline bool
847 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
848 {
849     if ((s->data_count & 0x3) != byte_num) {
850         ERRPRINT("Non-sequential access to Buffer Data Port register"
851                 "is prohibited\n");
852         return false;
853     }
854     return true;
855 }
856 
857 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
858 {
859     SDHCIState *s = (SDHCIState *)opaque;
860     uint32_t ret = 0;
861 
862     switch (offset & ~0x3) {
863     case SDHC_SYSAD:
864         ret = s->sdmasysad;
865         break;
866     case SDHC_BLKSIZE:
867         ret = s->blksize | (s->blkcnt << 16);
868         break;
869     case SDHC_ARGUMENT:
870         ret = s->argument;
871         break;
872     case SDHC_TRNMOD:
873         ret = s->trnmod | (s->cmdreg << 16);
874         break;
875     case SDHC_RSPREG0 ... SDHC_RSPREG3:
876         ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
877         break;
878     case  SDHC_BDATA:
879         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
880             ret = sdhci_read_dataport(s, size);
881             DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset,
882                       ret, ret);
883             return ret;
884         }
885         break;
886     case SDHC_PRNSTS:
887         ret = s->prnsts;
888         break;
889     case SDHC_HOSTCTL:
890         ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
891               (s->wakcon << 24);
892         break;
893     case SDHC_CLKCON:
894         ret = s->clkcon | (s->timeoutcon << 16);
895         break;
896     case SDHC_NORINTSTS:
897         ret = s->norintsts | (s->errintsts << 16);
898         break;
899     case SDHC_NORINTSTSEN:
900         ret = s->norintstsen | (s->errintstsen << 16);
901         break;
902     case SDHC_NORINTSIGEN:
903         ret = s->norintsigen | (s->errintsigen << 16);
904         break;
905     case SDHC_ACMD12ERRSTS:
906         ret = s->acmd12errsts;
907         break;
908     case SDHC_CAPAREG:
909         ret = s->capareg;
910         break;
911     case SDHC_MAXCURR:
912         ret = s->maxcurr;
913         break;
914     case SDHC_ADMAERR:
915         ret =  s->admaerr;
916         break;
917     case SDHC_ADMASYSADDR:
918         ret = (uint32_t)s->admasysaddr;
919         break;
920     case SDHC_ADMASYSADDR + 4:
921         ret = (uint32_t)(s->admasysaddr >> 32);
922         break;
923     case SDHC_SLOT_INT_STATUS:
924         ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s);
925         break;
926     default:
927         ERRPRINT("bad %ub read: addr[0x%04x]\n", size, (int)offset);
928         break;
929     }
930 
931     ret >>= (offset & 0x3) * 8;
932     ret &= (1ULL << (size * 8)) - 1;
933     DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset, ret, ret);
934     return ret;
935 }
936 
937 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
938 {
939     if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
940         return;
941     }
942     s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
943 
944     if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
945             (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
946         if (s->stopped_state == sdhc_gap_read) {
947             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
948             sdhci_read_block_from_card(s);
949         } else {
950             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
951             sdhci_write_block_to_card(s);
952         }
953         s->stopped_state = sdhc_not_stopped;
954     } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
955         if (s->prnsts & SDHC_DOING_READ) {
956             s->stopped_state = sdhc_gap_read;
957         } else if (s->prnsts & SDHC_DOING_WRITE) {
958             s->stopped_state = sdhc_gap_write;
959         }
960     }
961 }
962 
963 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
964 {
965     switch (value) {
966     case SDHC_RESET_ALL:
967         sdhci_reset(s);
968         break;
969     case SDHC_RESET_CMD:
970         s->prnsts &= ~SDHC_CMD_INHIBIT;
971         s->norintsts &= ~SDHC_NIS_CMDCMP;
972         break;
973     case SDHC_RESET_DATA:
974         s->data_count = 0;
975         s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
976                 SDHC_DOING_READ | SDHC_DOING_WRITE |
977                 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
978         s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
979         s->stopped_state = sdhc_not_stopped;
980         s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
981                 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
982         break;
983     }
984 }
985 
986 static void
987 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
988 {
989     SDHCIState *s = (SDHCIState *)opaque;
990     unsigned shift =  8 * (offset & 0x3);
991     uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
992     uint32_t value = val;
993     value <<= shift;
994 
995     switch (offset & ~0x3) {
996     case SDHC_SYSAD:
997         s->sdmasysad = (s->sdmasysad & mask) | value;
998         MASKED_WRITE(s->sdmasysad, mask, value);
999         /* Writing to last byte of sdmasysad might trigger transfer */
1000         if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1001                 s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
1002             sdhci_sdma_transfer_multi_blocks(s);
1003         }
1004         break;
1005     case SDHC_BLKSIZE:
1006         if (!TRANSFERRING_DATA(s->prnsts)) {
1007             MASKED_WRITE(s->blksize, mask, value);
1008             MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1009         }
1010 
1011         /* Limit block size to the maximum buffer size */
1012         if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1013             qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
1014                           "the maximum buffer 0x%x", __func__, s->blksize,
1015                           s->buf_maxsz);
1016 
1017             s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1018         }
1019 
1020         break;
1021     case SDHC_ARGUMENT:
1022         MASKED_WRITE(s->argument, mask, value);
1023         break;
1024     case SDHC_TRNMOD:
1025         /* DMA can be enabled only if it is supported as indicated by
1026          * capabilities register */
1027         if (!(s->capareg & SDHC_CAN_DO_DMA)) {
1028             value &= ~SDHC_TRNS_DMA;
1029         }
1030         MASKED_WRITE(s->trnmod, mask, value);
1031         MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1032 
1033         /* Writing to the upper byte of CMDREG triggers SD command generation */
1034         if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1035             break;
1036         }
1037 
1038         sdhci_send_command(s);
1039         break;
1040     case  SDHC_BDATA:
1041         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1042             sdhci_write_dataport(s, value >> shift, size);
1043         }
1044         break;
1045     case SDHC_HOSTCTL:
1046         if (!(mask & 0xFF0000)) {
1047             sdhci_blkgap_write(s, value >> 16);
1048         }
1049         MASKED_WRITE(s->hostctl, mask, value);
1050         MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1051         MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1052         if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1053                 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1054             s->pwrcon &= ~SDHC_POWER_ON;
1055         }
1056         break;
1057     case SDHC_CLKCON:
1058         if (!(mask & 0xFF000000)) {
1059             sdhci_reset_write(s, value >> 24);
1060         }
1061         MASKED_WRITE(s->clkcon, mask, value);
1062         MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1063         if (s->clkcon & SDHC_CLOCK_INT_EN) {
1064             s->clkcon |= SDHC_CLOCK_INT_STABLE;
1065         } else {
1066             s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1067         }
1068         break;
1069     case SDHC_NORINTSTS:
1070         if (s->norintstsen & SDHC_NISEN_CARDINT) {
1071             value &= ~SDHC_NIS_CARDINT;
1072         }
1073         s->norintsts &= mask | ~value;
1074         s->errintsts &= (mask >> 16) | ~(value >> 16);
1075         if (s->errintsts) {
1076             s->norintsts |= SDHC_NIS_ERR;
1077         } else {
1078             s->norintsts &= ~SDHC_NIS_ERR;
1079         }
1080         sdhci_update_irq(s);
1081         break;
1082     case SDHC_NORINTSTSEN:
1083         MASKED_WRITE(s->norintstsen, mask, value);
1084         MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1085         s->norintsts &= s->norintstsen;
1086         s->errintsts &= s->errintstsen;
1087         if (s->errintsts) {
1088             s->norintsts |= SDHC_NIS_ERR;
1089         } else {
1090             s->norintsts &= ~SDHC_NIS_ERR;
1091         }
1092         sdhci_update_irq(s);
1093         break;
1094     case SDHC_NORINTSIGEN:
1095         MASKED_WRITE(s->norintsigen, mask, value);
1096         MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1097         sdhci_update_irq(s);
1098         break;
1099     case SDHC_ADMAERR:
1100         MASKED_WRITE(s->admaerr, mask, value);
1101         break;
1102     case SDHC_ADMASYSADDR:
1103         s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1104                 (uint64_t)mask)) | (uint64_t)value;
1105         break;
1106     case SDHC_ADMASYSADDR + 4:
1107         s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1108                 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1109         break;
1110     case SDHC_FEAER:
1111         s->acmd12errsts |= value;
1112         s->errintsts |= (value >> 16) & s->errintstsen;
1113         if (s->acmd12errsts) {
1114             s->errintsts |= SDHC_EIS_CMD12ERR;
1115         }
1116         if (s->errintsts) {
1117             s->norintsts |= SDHC_NIS_ERR;
1118         }
1119         sdhci_update_irq(s);
1120         break;
1121     default:
1122         ERRPRINT("bad %ub write offset: addr[0x%04x] <- %u(0x%x)\n",
1123                  size, (int)offset, value >> shift, value >> shift);
1124         break;
1125     }
1126     DPRINT_L2("write %ub: addr[0x%04x] <- %u(0x%x)\n",
1127               size, (int)offset, value >> shift, value >> shift);
1128 }
1129 
1130 static const MemoryRegionOps sdhci_mmio_ops = {
1131     .read = sdhci_read,
1132     .write = sdhci_write,
1133     .valid = {
1134         .min_access_size = 1,
1135         .max_access_size = 4,
1136         .unaligned = false
1137     },
1138     .endianness = DEVICE_LITTLE_ENDIAN,
1139 };
1140 
1141 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
1142 {
1143     switch (SDHC_CAPAB_BLOCKSIZE(s->capareg)) {
1144     case 0:
1145         return 512;
1146     case 1:
1147         return 1024;
1148     case 2:
1149         return 2048;
1150     default:
1151         hw_error("SDHC: unsupported value for maximum block size\n");
1152         return 0;
1153     }
1154 }
1155 
1156 static void sdhci_initfn(SDHCIState *s, BlockBackend *blk)
1157 {
1158     s->card = sd_init(blk, false);
1159     if (s->card == NULL) {
1160         exit(1);
1161     }
1162     s->eject_cb = qemu_allocate_irq(sdhci_insert_eject_cb, s, 0);
1163     s->ro_cb = qemu_allocate_irq(sdhci_card_readonly_cb, s, 0);
1164     sd_set_cb(s->card, s->ro_cb, s->eject_cb);
1165 
1166     s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1167     s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1168 }
1169 
1170 static void sdhci_uninitfn(SDHCIState *s)
1171 {
1172     timer_del(s->insert_timer);
1173     timer_free(s->insert_timer);
1174     timer_del(s->transfer_timer);
1175     timer_free(s->transfer_timer);
1176     qemu_free_irq(s->eject_cb);
1177     qemu_free_irq(s->ro_cb);
1178 
1179     g_free(s->fifo_buffer);
1180     s->fifo_buffer = NULL;
1181 }
1182 
1183 const VMStateDescription sdhci_vmstate = {
1184     .name = "sdhci",
1185     .version_id = 1,
1186     .minimum_version_id = 1,
1187     .fields = (VMStateField[]) {
1188         VMSTATE_UINT32(sdmasysad, SDHCIState),
1189         VMSTATE_UINT16(blksize, SDHCIState),
1190         VMSTATE_UINT16(blkcnt, SDHCIState),
1191         VMSTATE_UINT32(argument, SDHCIState),
1192         VMSTATE_UINT16(trnmod, SDHCIState),
1193         VMSTATE_UINT16(cmdreg, SDHCIState),
1194         VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1195         VMSTATE_UINT32(prnsts, SDHCIState),
1196         VMSTATE_UINT8(hostctl, SDHCIState),
1197         VMSTATE_UINT8(pwrcon, SDHCIState),
1198         VMSTATE_UINT8(blkgap, SDHCIState),
1199         VMSTATE_UINT8(wakcon, SDHCIState),
1200         VMSTATE_UINT16(clkcon, SDHCIState),
1201         VMSTATE_UINT8(timeoutcon, SDHCIState),
1202         VMSTATE_UINT8(admaerr, SDHCIState),
1203         VMSTATE_UINT16(norintsts, SDHCIState),
1204         VMSTATE_UINT16(errintsts, SDHCIState),
1205         VMSTATE_UINT16(norintstsen, SDHCIState),
1206         VMSTATE_UINT16(errintstsen, SDHCIState),
1207         VMSTATE_UINT16(norintsigen, SDHCIState),
1208         VMSTATE_UINT16(errintsigen, SDHCIState),
1209         VMSTATE_UINT16(acmd12errsts, SDHCIState),
1210         VMSTATE_UINT16(data_count, SDHCIState),
1211         VMSTATE_UINT64(admasysaddr, SDHCIState),
1212         VMSTATE_UINT8(stopped_state, SDHCIState),
1213         VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, 0, buf_maxsz),
1214         VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1215         VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1216         VMSTATE_END_OF_LIST()
1217     }
1218 };
1219 
1220 /* Capabilities registers provide information on supported features of this
1221  * specific host controller implementation */
1222 static Property sdhci_pci_properties[] = {
1223     /*
1224      * We currently fuse controller and card into a single device
1225      * model, but we intend to separate them.  For that purpose, the
1226      * properties that belong to the card are marked as experimental.
1227      */
1228     DEFINE_PROP_DRIVE("x-drive", SDHCIState, blk),
1229     DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
1230             SDHC_CAPAB_REG_DEFAULT),
1231     DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
1232     DEFINE_PROP_END_OF_LIST(),
1233 };
1234 
1235 static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1236 {
1237     SDHCIState *s = PCI_SDHCI(dev);
1238     dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
1239     dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
1240     sdhci_initfn(s, s->blk);
1241     s->buf_maxsz = sdhci_get_fifolen(s);
1242     s->fifo_buffer = g_malloc0(s->buf_maxsz);
1243     s->irq = pci_allocate_irq(dev);
1244     memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1245             SDHC_REGISTERS_MAP_SIZE);
1246     pci_register_bar(dev, 0, 0, &s->iomem);
1247 }
1248 
1249 static void sdhci_pci_exit(PCIDevice *dev)
1250 {
1251     SDHCIState *s = PCI_SDHCI(dev);
1252     sdhci_uninitfn(s);
1253 }
1254 
1255 static void sdhci_pci_class_init(ObjectClass *klass, void *data)
1256 {
1257     DeviceClass *dc = DEVICE_CLASS(klass);
1258     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1259 
1260     k->realize = sdhci_pci_realize;
1261     k->exit = sdhci_pci_exit;
1262     k->vendor_id = PCI_VENDOR_ID_REDHAT;
1263     k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
1264     k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1265     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1266     dc->vmsd = &sdhci_vmstate;
1267     dc->props = sdhci_pci_properties;
1268 }
1269 
1270 static const TypeInfo sdhci_pci_info = {
1271     .name = TYPE_PCI_SDHCI,
1272     .parent = TYPE_PCI_DEVICE,
1273     .instance_size = sizeof(SDHCIState),
1274     .class_init = sdhci_pci_class_init,
1275 };
1276 
1277 static Property sdhci_sysbus_properties[] = {
1278     DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
1279             SDHC_CAPAB_REG_DEFAULT),
1280     DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
1281     DEFINE_PROP_BOOL("noeject-quirk", SDHCIState, noeject_quirk, false),
1282     DEFINE_PROP_END_OF_LIST(),
1283 };
1284 
1285 static void sdhci_sysbus_init(Object *obj)
1286 {
1287     SDHCIState *s = SYSBUS_SDHCI(obj);
1288     DriveInfo *di;
1289 
1290     /* FIXME use a qdev drive property instead of drive_get_next() */
1291     di = drive_get_next(IF_SD);
1292     sdhci_initfn(s, di ? blk_by_legacy_dinfo(di) : NULL);
1293 }
1294 
1295 static void sdhci_sysbus_finalize(Object *obj)
1296 {
1297     SDHCIState *s = SYSBUS_SDHCI(obj);
1298     sdhci_uninitfn(s);
1299 }
1300 
1301 static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1302 {
1303     SDHCIState *s = SYSBUS_SDHCI(dev);
1304     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1305 
1306     s->buf_maxsz = sdhci_get_fifolen(s);
1307     s->fifo_buffer = g_malloc0(s->buf_maxsz);
1308     sysbus_init_irq(sbd, &s->irq);
1309     memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1310             SDHC_REGISTERS_MAP_SIZE);
1311     sysbus_init_mmio(sbd, &s->iomem);
1312 }
1313 
1314 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1315 {
1316     DeviceClass *dc = DEVICE_CLASS(klass);
1317 
1318     dc->vmsd = &sdhci_vmstate;
1319     dc->props = sdhci_sysbus_properties;
1320     dc->realize = sdhci_sysbus_realize;
1321     /* Reason: instance_init() method uses drive_get_next() */
1322     dc->cannot_instantiate_with_device_add_yet = true;
1323 }
1324 
1325 static const TypeInfo sdhci_sysbus_info = {
1326     .name = TYPE_SYSBUS_SDHCI,
1327     .parent = TYPE_SYS_BUS_DEVICE,
1328     .instance_size = sizeof(SDHCIState),
1329     .instance_init = sdhci_sysbus_init,
1330     .instance_finalize = sdhci_sysbus_finalize,
1331     .class_init = sdhci_sysbus_class_init,
1332 };
1333 
1334 static void sdhci_register_types(void)
1335 {
1336     type_register_static(&sdhci_pci_info);
1337     type_register_static(&sdhci_sysbus_info);
1338 }
1339 
1340 type_init(sdhci_register_types)
1341