1 /* 2 * SD Association Host Standard Specification v2.0 controller emulation 3 * 4 * Copyright (c) 2011 Samsung Electronics Co., Ltd. 5 * Mitsyanko Igor <i.mitsyanko@samsung.com> 6 * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com> 7 * 8 * Based on MMC controller for Samsung S5PC1xx-based board emulation 9 * by Alexey Merkulov and Vladimir Monakhov. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms of the GNU General Public License as published by the 13 * Free Software Foundation; either version 2 of the License, or (at your 14 * option) any later version. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 19 * See the GNU General Public License for more details. 20 * 21 * You should have received a copy of the GNU General Public License along 22 * with this program; if not, see <http://www.gnu.org/licenses/>. 23 */ 24 25 #include "hw/hw.h" 26 #include "sysemu/blockdev.h" 27 #include "sysemu/dma.h" 28 #include "qemu/timer.h" 29 #include "block/block_int.h" 30 #include "qemu/bitops.h" 31 32 #include "sdhci.h" 33 34 /* host controller debug messages */ 35 #ifndef SDHC_DEBUG 36 #define SDHC_DEBUG 0 37 #endif 38 39 #if SDHC_DEBUG == 0 40 #define DPRINT_L1(fmt, args...) do { } while (0) 41 #define DPRINT_L2(fmt, args...) do { } while (0) 42 #define ERRPRINT(fmt, args...) do { } while (0) 43 #elif SDHC_DEBUG == 1 44 #define DPRINT_L1(fmt, args...) \ 45 do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0) 46 #define DPRINT_L2(fmt, args...) do { } while (0) 47 #define ERRPRINT(fmt, args...) \ 48 do {fprintf(stderr, "QEMU SDHC ERROR: "fmt, ## args); } while (0) 49 #else 50 #define DPRINT_L1(fmt, args...) \ 51 do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0) 52 #define DPRINT_L2(fmt, args...) \ 53 do {fprintf(stderr, "QEMU SDHC: "fmt, ## args); } while (0) 54 #define ERRPRINT(fmt, args...) \ 55 do {fprintf(stderr, "QEMU SDHC ERROR: "fmt, ## args); } while (0) 56 #endif 57 58 /* Default SD/MMC host controller features information, which will be 59 * presented in CAPABILITIES register of generic SD host controller at reset. 60 * If not stated otherwise: 61 * 0 - not supported, 1 - supported, other - prohibited. 62 */ 63 #define SDHC_CAPAB_64BITBUS 0ul /* 64-bit System Bus Support */ 64 #define SDHC_CAPAB_18V 1ul /* Voltage support 1.8v */ 65 #define SDHC_CAPAB_30V 0ul /* Voltage support 3.0v */ 66 #define SDHC_CAPAB_33V 1ul /* Voltage support 3.3v */ 67 #define SDHC_CAPAB_SUSPRESUME 0ul /* Suspend/resume support */ 68 #define SDHC_CAPAB_SDMA 1ul /* SDMA support */ 69 #define SDHC_CAPAB_HIGHSPEED 1ul /* High speed support */ 70 #define SDHC_CAPAB_ADMA1 1ul /* ADMA1 support */ 71 #define SDHC_CAPAB_ADMA2 1ul /* ADMA2 support */ 72 /* Maximum host controller R/W buffers size 73 * Possible values: 512, 1024, 2048 bytes */ 74 #define SDHC_CAPAB_MAXBLOCKLENGTH 512ul 75 /* Maximum clock frequency for SDclock in MHz 76 * value in range 10-63 MHz, 0 - not defined */ 77 #define SDHC_CAPAB_BASECLKFREQ 0ul 78 #define SDHC_CAPAB_TOUNIT 1ul /* Timeout clock unit 0 - kHz, 1 - MHz */ 79 /* Timeout clock frequency 1-63, 0 - not defined */ 80 #define SDHC_CAPAB_TOCLKFREQ 0ul 81 82 /* Now check all parameters and calculate CAPABILITIES REGISTER value */ 83 #if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 || \ 84 SDHC_CAPAB_33V > 1 || SDHC_CAPAB_SUSPRESUME > 1 || SDHC_CAPAB_SDMA > 1 || \ 85 SDHC_CAPAB_HIGHSPEED > 1 || SDHC_CAPAB_ADMA2 > 1 || SDHC_CAPAB_ADMA1 > 1 ||\ 86 SDHC_CAPAB_TOUNIT > 1 87 #error Capabilities features can have value 0 or 1 only! 88 #endif 89 90 #if SDHC_CAPAB_MAXBLOCKLENGTH == 512 91 #define MAX_BLOCK_LENGTH 0ul 92 #elif SDHC_CAPAB_MAXBLOCKLENGTH == 1024 93 #define MAX_BLOCK_LENGTH 1ul 94 #elif SDHC_CAPAB_MAXBLOCKLENGTH == 2048 95 #define MAX_BLOCK_LENGTH 2ul 96 #else 97 #error Max host controller block size can have value 512, 1024 or 2048 only! 98 #endif 99 100 #if (SDHC_CAPAB_BASECLKFREQ > 0 && SDHC_CAPAB_BASECLKFREQ < 10) || \ 101 SDHC_CAPAB_BASECLKFREQ > 63 102 #error SDclock frequency can have value in range 0, 10-63 only! 103 #endif 104 105 #if SDHC_CAPAB_TOCLKFREQ > 63 106 #error Timeout clock frequency can have value in range 0-63 only! 107 #endif 108 109 #define SDHC_CAPAB_REG_DEFAULT \ 110 ((SDHC_CAPAB_64BITBUS << 28) | (SDHC_CAPAB_18V << 26) | \ 111 (SDHC_CAPAB_30V << 25) | (SDHC_CAPAB_33V << 24) | \ 112 (SDHC_CAPAB_SUSPRESUME << 23) | (SDHC_CAPAB_SDMA << 22) | \ 113 (SDHC_CAPAB_HIGHSPEED << 21) | (SDHC_CAPAB_ADMA1 << 20) | \ 114 (SDHC_CAPAB_ADMA2 << 19) | (MAX_BLOCK_LENGTH << 16) | \ 115 (SDHC_CAPAB_BASECLKFREQ << 8) | (SDHC_CAPAB_TOUNIT << 7) | \ 116 (SDHC_CAPAB_TOCLKFREQ)) 117 118 #define MASKED_WRITE(reg, mask, val) (reg = (reg & (mask)) | (val)) 119 120 static uint8_t sdhci_slotint(SDHCIState *s) 121 { 122 return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) || 123 ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) || 124 ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV)); 125 } 126 127 static inline void sdhci_update_irq(SDHCIState *s) 128 { 129 qemu_set_irq(s->irq, sdhci_slotint(s)); 130 } 131 132 static void sdhci_raise_insertion_irq(void *opaque) 133 { 134 SDHCIState *s = (SDHCIState *)opaque; 135 136 if (s->norintsts & SDHC_NIS_REMOVE) { 137 qemu_mod_timer(s->insert_timer, 138 qemu_get_clock_ns(vm_clock) + SDHC_INSERTION_DELAY); 139 } else { 140 s->prnsts = 0x1ff0000; 141 if (s->norintstsen & SDHC_NISEN_INSERT) { 142 s->norintsts |= SDHC_NIS_INSERT; 143 } 144 sdhci_update_irq(s); 145 } 146 } 147 148 static void sdhci_insert_eject_cb(void *opaque, int irq, int level) 149 { 150 SDHCIState *s = (SDHCIState *)opaque; 151 DPRINT_L1("Card state changed: %s!\n", level ? "insert" : "eject"); 152 153 if ((s->norintsts & SDHC_NIS_REMOVE) && level) { 154 /* Give target some time to notice card ejection */ 155 qemu_mod_timer(s->insert_timer, 156 qemu_get_clock_ns(vm_clock) + SDHC_INSERTION_DELAY); 157 } else { 158 if (level) { 159 s->prnsts = 0x1ff0000; 160 if (s->norintstsen & SDHC_NISEN_INSERT) { 161 s->norintsts |= SDHC_NIS_INSERT; 162 } 163 } else { 164 s->prnsts = 0x1fa0000; 165 s->pwrcon &= ~SDHC_POWER_ON; 166 s->clkcon &= ~SDHC_CLOCK_SDCLK_EN; 167 if (s->norintstsen & SDHC_NISEN_REMOVE) { 168 s->norintsts |= SDHC_NIS_REMOVE; 169 } 170 } 171 sdhci_update_irq(s); 172 } 173 } 174 175 static void sdhci_card_readonly_cb(void *opaque, int irq, int level) 176 { 177 SDHCIState *s = (SDHCIState *)opaque; 178 179 if (level) { 180 s->prnsts &= ~SDHC_WRITE_PROTECT; 181 } else { 182 /* Write enabled */ 183 s->prnsts |= SDHC_WRITE_PROTECT; 184 } 185 } 186 187 static void sdhci_reset(SDHCIState *s) 188 { 189 qemu_del_timer(s->insert_timer); 190 qemu_del_timer(s->transfer_timer); 191 /* Set all registers to 0. Capabilities registers are not cleared 192 * and assumed to always preserve their value, given to them during 193 * initialization */ 194 memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad); 195 196 sd_set_cb(s->card, s->ro_cb, s->eject_cb); 197 s->data_count = 0; 198 s->stopped_state = sdhc_not_stopped; 199 } 200 201 static void sdhci_do_data_transfer(void *opaque) 202 { 203 SDHCIState *s = (SDHCIState *)opaque; 204 205 SDHCI_GET_CLASS(s)->data_transfer(s); 206 } 207 208 static void sdhci_send_command(SDHCIState *s) 209 { 210 SDRequest request; 211 uint8_t response[16]; 212 int rlen; 213 214 s->errintsts = 0; 215 s->acmd12errsts = 0; 216 request.cmd = s->cmdreg >> 8; 217 request.arg = s->argument; 218 DPRINT_L1("sending CMD%u ARG[0x%08x]\n", request.cmd, request.arg); 219 rlen = sd_do_command(s->card, &request, response); 220 221 if (s->cmdreg & SDHC_CMD_RESPONSE) { 222 if (rlen == 4) { 223 s->rspreg[0] = (response[0] << 24) | (response[1] << 16) | 224 (response[2] << 8) | response[3]; 225 s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0; 226 DPRINT_L1("Response: RSPREG[31..0]=0x%08x\n", s->rspreg[0]); 227 } else if (rlen == 16) { 228 s->rspreg[0] = (response[11] << 24) | (response[12] << 16) | 229 (response[13] << 8) | response[14]; 230 s->rspreg[1] = (response[7] << 24) | (response[8] << 16) | 231 (response[9] << 8) | response[10]; 232 s->rspreg[2] = (response[3] << 24) | (response[4] << 16) | 233 (response[5] << 8) | response[6]; 234 s->rspreg[3] = (response[0] << 16) | (response[1] << 8) | 235 response[2]; 236 DPRINT_L1("Response received:\n RSPREG[127..96]=0x%08x, RSPREG[95.." 237 "64]=0x%08x,\n RSPREG[63..32]=0x%08x, RSPREG[31..0]=0x%08x\n", 238 s->rspreg[3], s->rspreg[2], s->rspreg[1], s->rspreg[0]); 239 } else { 240 ERRPRINT("Timeout waiting for command response\n"); 241 if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) { 242 s->errintsts |= SDHC_EIS_CMDTIMEOUT; 243 s->norintsts |= SDHC_NIS_ERR; 244 } 245 } 246 247 if ((s->norintstsen & SDHC_NISEN_TRSCMP) && 248 (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) { 249 s->norintsts |= SDHC_NIS_TRSCMP; 250 } 251 } else if (rlen != 0 && (s->errintstsen & SDHC_EISEN_CMDIDX)) { 252 s->errintsts |= SDHC_EIS_CMDIDX; 253 s->norintsts |= SDHC_NIS_ERR; 254 } 255 256 if (s->norintstsen & SDHC_NISEN_CMDCMP) { 257 s->norintsts |= SDHC_NIS_CMDCMP; 258 } 259 260 sdhci_update_irq(s); 261 262 if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) { 263 sdhci_do_data_transfer(s); 264 } 265 } 266 267 static void sdhci_end_transfer(SDHCIState *s) 268 { 269 /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */ 270 if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) { 271 SDRequest request; 272 uint8_t response[16]; 273 274 request.cmd = 0x0C; 275 request.arg = 0; 276 DPRINT_L1("Automatically issue CMD%d %08x\n", request.cmd, request.arg); 277 sd_do_command(s->card, &request, response); 278 /* Auto CMD12 response goes to the upper Response register */ 279 s->rspreg[3] = (response[0] << 24) | (response[1] << 16) | 280 (response[2] << 8) | response[3]; 281 } 282 283 s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE | 284 SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT | 285 SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE); 286 287 if (s->norintstsen & SDHC_NISEN_TRSCMP) { 288 s->norintsts |= SDHC_NIS_TRSCMP; 289 } 290 291 sdhci_update_irq(s); 292 } 293 294 /* 295 * Programmed i/o data transfer 296 */ 297 298 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */ 299 static void sdhci_read_block_from_card(SDHCIState *s) 300 { 301 int index = 0; 302 303 if ((s->trnmod & SDHC_TRNS_MULTI) && 304 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) { 305 return; 306 } 307 308 for (index = 0; index < (s->blksize & 0x0fff); index++) { 309 s->fifo_buffer[index] = sd_read_data(s->card); 310 } 311 312 /* New data now available for READ through Buffer Port Register */ 313 s->prnsts |= SDHC_DATA_AVAILABLE; 314 if (s->norintstsen & SDHC_NISEN_RBUFRDY) { 315 s->norintsts |= SDHC_NIS_RBUFRDY; 316 } 317 318 /* Clear DAT line active status if that was the last block */ 319 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || 320 ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) { 321 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE; 322 } 323 324 /* If stop at block gap request was set and it's not the last block of 325 * data - generate Block Event interrupt */ 326 if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) && 327 s->blkcnt != 1) { 328 s->prnsts &= ~SDHC_DAT_LINE_ACTIVE; 329 if (s->norintstsen & SDHC_EISEN_BLKGAP) { 330 s->norintsts |= SDHC_EIS_BLKGAP; 331 } 332 } 333 334 sdhci_update_irq(s); 335 } 336 337 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */ 338 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size) 339 { 340 uint32_t value = 0; 341 int i; 342 343 /* first check that a valid data exists in host controller input buffer */ 344 if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) { 345 ERRPRINT("Trying to read from empty buffer\n"); 346 return 0; 347 } 348 349 for (i = 0; i < size; i++) { 350 value |= s->fifo_buffer[s->data_count] << i * 8; 351 s->data_count++; 352 /* check if we've read all valid data (blksize bytes) from buffer */ 353 if ((s->data_count) >= (s->blksize & 0x0fff)) { 354 DPRINT_L2("All %u bytes of data have been read from input buffer\n", 355 s->data_count); 356 s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */ 357 s->data_count = 0; /* next buff read must start at position [0] */ 358 359 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 360 s->blkcnt--; 361 } 362 363 /* if that was the last block of data */ 364 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || 365 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) || 366 /* stop at gap request */ 367 (s->stopped_state == sdhc_gap_read && 368 !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) { 369 SDHCI_GET_CLASS(s)->end_data_transfer(s); 370 } else { /* if there are more data, read next block from card */ 371 SDHCI_GET_CLASS(s)->read_block_from_card(s); 372 } 373 break; 374 } 375 } 376 377 return value; 378 } 379 380 /* Write data from host controller FIFO to card */ 381 static void sdhci_write_block_to_card(SDHCIState *s) 382 { 383 int index = 0; 384 385 if (s->prnsts & SDHC_SPACE_AVAILABLE) { 386 if (s->norintstsen & SDHC_NISEN_WBUFRDY) { 387 s->norintsts |= SDHC_NIS_WBUFRDY; 388 } 389 sdhci_update_irq(s); 390 return; 391 } 392 393 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 394 if (s->blkcnt == 0) { 395 return; 396 } else { 397 s->blkcnt--; 398 } 399 } 400 401 for (index = 0; index < (s->blksize & 0x0fff); index++) { 402 sd_write_data(s->card, s->fifo_buffer[index]); 403 } 404 405 /* Next data can be written through BUFFER DATORT register */ 406 s->prnsts |= SDHC_SPACE_AVAILABLE; 407 if (s->norintstsen & SDHC_NISEN_WBUFRDY) { 408 s->norintsts |= SDHC_NIS_WBUFRDY; 409 } 410 411 /* Finish transfer if that was the last block of data */ 412 if ((s->trnmod & SDHC_TRNS_MULTI) == 0 || 413 ((s->trnmod & SDHC_TRNS_MULTI) && 414 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) { 415 SDHCI_GET_CLASS(s)->end_data_transfer(s); 416 } 417 418 /* Generate Block Gap Event if requested and if not the last block */ 419 if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) && 420 s->blkcnt > 0) { 421 s->prnsts &= ~SDHC_DOING_WRITE; 422 if (s->norintstsen & SDHC_EISEN_BLKGAP) { 423 s->norintsts |= SDHC_EIS_BLKGAP; 424 } 425 SDHCI_GET_CLASS(s)->end_data_transfer(s); 426 } 427 428 sdhci_update_irq(s); 429 } 430 431 /* Write @size bytes of @value data to host controller @s Buffer Data Port 432 * register */ 433 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size) 434 { 435 unsigned i; 436 437 /* Check that there is free space left in a buffer */ 438 if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) { 439 ERRPRINT("Can't write to data buffer: buffer full\n"); 440 return; 441 } 442 443 for (i = 0; i < size; i++) { 444 s->fifo_buffer[s->data_count] = value & 0xFF; 445 s->data_count++; 446 value >>= 8; 447 if (s->data_count >= (s->blksize & 0x0fff)) { 448 DPRINT_L2("write buffer filled with %u bytes of data\n", 449 s->data_count); 450 s->data_count = 0; 451 s->prnsts &= ~SDHC_SPACE_AVAILABLE; 452 if (s->prnsts & SDHC_DOING_WRITE) { 453 SDHCI_GET_CLASS(s)->write_block_to_card(s); 454 } 455 } 456 } 457 } 458 459 /* 460 * Single DMA data transfer 461 */ 462 463 /* Multi block SDMA transfer */ 464 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s) 465 { 466 bool page_aligned = false; 467 unsigned int n, begin; 468 const uint16_t block_size = s->blksize & 0x0fff; 469 uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12); 470 uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk); 471 472 /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for 473 * possible stop at page boundary if initial address is not page aligned, 474 * allow them to work properly */ 475 if ((s->sdmasysad % boundary_chk) == 0) { 476 page_aligned = true; 477 } 478 479 if (s->trnmod & SDHC_TRNS_READ) { 480 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT | 481 SDHC_DAT_LINE_ACTIVE; 482 while (s->blkcnt) { 483 if (s->data_count == 0) { 484 for (n = 0; n < block_size; n++) { 485 s->fifo_buffer[n] = sd_read_data(s->card); 486 } 487 } 488 begin = s->data_count; 489 if (((boundary_count + begin) < block_size) && page_aligned) { 490 s->data_count = boundary_count + begin; 491 boundary_count = 0; 492 } else { 493 s->data_count = block_size; 494 boundary_count -= block_size - begin; 495 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 496 s->blkcnt--; 497 } 498 } 499 dma_memory_write(&dma_context_memory, s->sdmasysad, 500 &s->fifo_buffer[begin], s->data_count - begin); 501 s->sdmasysad += s->data_count - begin; 502 if (s->data_count == block_size) { 503 s->data_count = 0; 504 } 505 if (page_aligned && boundary_count == 0) { 506 break; 507 } 508 } 509 } else { 510 s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT | 511 SDHC_DAT_LINE_ACTIVE; 512 while (s->blkcnt) { 513 begin = s->data_count; 514 if (((boundary_count + begin) < block_size) && page_aligned) { 515 s->data_count = boundary_count + begin; 516 boundary_count = 0; 517 } else { 518 s->data_count = block_size; 519 boundary_count -= block_size - begin; 520 } 521 dma_memory_read(&dma_context_memory, s->sdmasysad, 522 &s->fifo_buffer[begin], s->data_count); 523 s->sdmasysad += s->data_count - begin; 524 if (s->data_count == block_size) { 525 for (n = 0; n < block_size; n++) { 526 sd_write_data(s->card, s->fifo_buffer[n]); 527 } 528 s->data_count = 0; 529 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 530 s->blkcnt--; 531 } 532 } 533 if (page_aligned && boundary_count == 0) { 534 break; 535 } 536 } 537 } 538 539 if (s->blkcnt == 0) { 540 SDHCI_GET_CLASS(s)->end_data_transfer(s); 541 } else { 542 if (s->norintstsen & SDHC_NISEN_DMA) { 543 s->norintsts |= SDHC_NIS_DMA; 544 } 545 sdhci_update_irq(s); 546 } 547 } 548 549 /* single block SDMA transfer */ 550 551 static void sdhci_sdma_transfer_single_block(SDHCIState *s) 552 { 553 int n; 554 uint32_t datacnt = s->blksize & 0x0fff; 555 556 if (s->trnmod & SDHC_TRNS_READ) { 557 for (n = 0; n < datacnt; n++) { 558 s->fifo_buffer[n] = sd_read_data(s->card); 559 } 560 dma_memory_write(&dma_context_memory, s->sdmasysad, s->fifo_buffer, 561 datacnt); 562 } else { 563 dma_memory_read(&dma_context_memory, s->sdmasysad, s->fifo_buffer, 564 datacnt); 565 for (n = 0; n < datacnt; n++) { 566 sd_write_data(s->card, s->fifo_buffer[n]); 567 } 568 } 569 570 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 571 s->blkcnt--; 572 } 573 574 SDHCI_GET_CLASS(s)->end_data_transfer(s); 575 } 576 577 typedef struct ADMADescr { 578 hwaddr addr; 579 uint16_t length; 580 uint8_t attr; 581 uint8_t incr; 582 } ADMADescr; 583 584 static void get_adma_description(SDHCIState *s, ADMADescr *dscr) 585 { 586 uint32_t adma1 = 0; 587 uint64_t adma2 = 0; 588 hwaddr entry_addr = (hwaddr)s->admasysaddr; 589 switch (SDHC_DMA_TYPE(s->hostctl)) { 590 case SDHC_CTRL_ADMA2_32: 591 dma_memory_read(&dma_context_memory, entry_addr, (uint8_t *)&adma2, 592 sizeof(adma2)); 593 adma2 = le64_to_cpu(adma2); 594 /* The spec does not specify endianness of descriptor table. 595 * We currently assume that it is LE. 596 */ 597 dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull; 598 dscr->length = (uint16_t)extract64(adma2, 16, 16); 599 dscr->attr = (uint8_t)extract64(adma2, 0, 7); 600 dscr->incr = 8; 601 break; 602 case SDHC_CTRL_ADMA1_32: 603 dma_memory_read(&dma_context_memory, entry_addr, (uint8_t *)&adma1, 604 sizeof(adma1)); 605 adma1 = le32_to_cpu(adma1); 606 dscr->addr = (hwaddr)(adma1 & 0xFFFFF000); 607 dscr->attr = (uint8_t)extract32(adma1, 0, 7); 608 dscr->incr = 4; 609 if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) { 610 dscr->length = (uint16_t)extract32(adma1, 12, 16); 611 } else { 612 dscr->length = 4096; 613 } 614 break; 615 case SDHC_CTRL_ADMA2_64: 616 dma_memory_read(&dma_context_memory, entry_addr, 617 (uint8_t *)(&dscr->attr), 1); 618 dma_memory_read(&dma_context_memory, entry_addr + 2, 619 (uint8_t *)(&dscr->length), 2); 620 dscr->length = le16_to_cpu(dscr->length); 621 dma_memory_read(&dma_context_memory, entry_addr + 4, 622 (uint8_t *)(&dscr->addr), 8); 623 dscr->attr = le64_to_cpu(dscr->attr); 624 dscr->attr &= 0xfffffff8; 625 dscr->incr = 12; 626 break; 627 } 628 } 629 630 /* Advanced DMA data transfer */ 631 632 static void sdhci_do_adma(SDHCIState *s) 633 { 634 unsigned int n, begin, length; 635 const uint16_t block_size = s->blksize & 0x0fff; 636 ADMADescr dscr; 637 int i; 638 639 for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) { 640 s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH; 641 642 get_adma_description(s, &dscr); 643 DPRINT_L2("ADMA loop: addr=" TARGET_FMT_plx ", len=%d, attr=%x\n", 644 dscr.addr, dscr.length, dscr.attr); 645 646 if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) { 647 /* Indicate that error occurred in ST_FDS state */ 648 s->admaerr &= ~SDHC_ADMAERR_STATE_MASK; 649 s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS; 650 651 /* Generate ADMA error interrupt */ 652 if (s->errintstsen & SDHC_EISEN_ADMAERR) { 653 s->errintsts |= SDHC_EIS_ADMAERR; 654 s->norintsts |= SDHC_NIS_ERR; 655 } 656 657 sdhci_update_irq(s); 658 return; 659 } 660 661 length = dscr.length ? dscr.length : 65536; 662 663 switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) { 664 case SDHC_ADMA_ATTR_ACT_TRAN: /* data transfer */ 665 666 if (s->trnmod & SDHC_TRNS_READ) { 667 while (length) { 668 if (s->data_count == 0) { 669 for (n = 0; n < block_size; n++) { 670 s->fifo_buffer[n] = sd_read_data(s->card); 671 } 672 } 673 begin = s->data_count; 674 if ((length + begin) < block_size) { 675 s->data_count = length + begin; 676 length = 0; 677 } else { 678 s->data_count = block_size; 679 length -= block_size - begin; 680 } 681 dma_memory_write(&dma_context_memory, dscr.addr, 682 &s->fifo_buffer[begin], 683 s->data_count - begin); 684 dscr.addr += s->data_count - begin; 685 if (s->data_count == block_size) { 686 s->data_count = 0; 687 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 688 s->blkcnt--; 689 if (s->blkcnt == 0) { 690 break; 691 } 692 } 693 } 694 } 695 } else { 696 while (length) { 697 begin = s->data_count; 698 if ((length + begin) < block_size) { 699 s->data_count = length + begin; 700 length = 0; 701 } else { 702 s->data_count = block_size; 703 length -= block_size - begin; 704 } 705 dma_memory_read(&dma_context_memory, dscr.addr, 706 &s->fifo_buffer[begin], s->data_count); 707 dscr.addr += s->data_count - begin; 708 if (s->data_count == block_size) { 709 for (n = 0; n < block_size; n++) { 710 sd_write_data(s->card, s->fifo_buffer[n]); 711 } 712 s->data_count = 0; 713 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) { 714 s->blkcnt--; 715 if (s->blkcnt == 0) { 716 break; 717 } 718 } 719 } 720 } 721 } 722 s->admasysaddr += dscr.incr; 723 break; 724 case SDHC_ADMA_ATTR_ACT_LINK: /* link to next descriptor table */ 725 s->admasysaddr = dscr.addr; 726 DPRINT_L1("ADMA link: admasysaddr=0x%lx\n", s->admasysaddr); 727 break; 728 default: 729 s->admasysaddr += dscr.incr; 730 break; 731 } 732 733 /* ADMA transfer terminates if blkcnt == 0 or by END attribute */ 734 if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && 735 (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) { 736 DPRINT_L2("ADMA transfer completed\n"); 737 if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) && 738 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && 739 s->blkcnt != 0)) { 740 ERRPRINT("SD/MMC host ADMA length mismatch\n"); 741 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH | 742 SDHC_ADMAERR_STATE_ST_TFR; 743 if (s->errintstsen & SDHC_EISEN_ADMAERR) { 744 ERRPRINT("Set ADMA error flag\n"); 745 s->errintsts |= SDHC_EIS_ADMAERR; 746 s->norintsts |= SDHC_NIS_ERR; 747 } 748 749 sdhci_update_irq(s); 750 } 751 SDHCI_GET_CLASS(s)->end_data_transfer(s); 752 return; 753 } 754 755 if (dscr.attr & SDHC_ADMA_ATTR_INT) { 756 DPRINT_L1("ADMA interrupt: admasysaddr=0x%lx\n", s->admasysaddr); 757 if (s->norintstsen & SDHC_NISEN_DMA) { 758 s->norintsts |= SDHC_NIS_DMA; 759 } 760 761 sdhci_update_irq(s); 762 return; 763 } 764 } 765 766 /* we have unfinished business - reschedule to continue ADMA */ 767 qemu_mod_timer(s->transfer_timer, 768 qemu_get_clock_ns(vm_clock) + SDHC_TRANSFER_DELAY); 769 } 770 771 /* Perform data transfer according to controller configuration */ 772 773 static void sdhci_data_transfer(SDHCIState *s) 774 { 775 SDHCIClass *k = SDHCI_GET_CLASS(s); 776 s->data_count = 0; 777 778 if (s->trnmod & SDHC_TRNS_DMA) { 779 switch (SDHC_DMA_TYPE(s->hostctl)) { 780 case SDHC_CTRL_SDMA: 781 if ((s->trnmod & SDHC_TRNS_MULTI) && 782 (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || s->blkcnt == 0)) { 783 break; 784 } 785 786 if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) { 787 k->do_sdma_single(s); 788 } else { 789 k->do_sdma_multi(s); 790 } 791 792 break; 793 case SDHC_CTRL_ADMA1_32: 794 if (!(s->capareg & SDHC_CAN_DO_ADMA1)) { 795 ERRPRINT("ADMA1 not supported\n"); 796 break; 797 } 798 799 k->do_adma(s); 800 break; 801 case SDHC_CTRL_ADMA2_32: 802 if (!(s->capareg & SDHC_CAN_DO_ADMA2)) { 803 ERRPRINT("ADMA2 not supported\n"); 804 break; 805 } 806 807 k->do_adma(s); 808 break; 809 case SDHC_CTRL_ADMA2_64: 810 if (!(s->capareg & SDHC_CAN_DO_ADMA2) || 811 !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) { 812 ERRPRINT("64 bit ADMA not supported\n"); 813 break; 814 } 815 816 k->do_adma(s); 817 break; 818 default: 819 ERRPRINT("Unsupported DMA type\n"); 820 break; 821 } 822 } else { 823 if ((s->trnmod & SDHC_TRNS_READ) && sd_data_ready(s->card)) { 824 s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT | 825 SDHC_DAT_LINE_ACTIVE; 826 SDHCI_GET_CLASS(s)->read_block_from_card(s); 827 } else { 828 s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE | 829 SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT; 830 SDHCI_GET_CLASS(s)->write_block_to_card(s); 831 } 832 } 833 } 834 835 static bool sdhci_can_issue_command(SDHCIState *s) 836 { 837 if (!SDHC_CLOCK_IS_ON(s->clkcon) || !(s->pwrcon & SDHC_POWER_ON) || 838 (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) && 839 ((s->cmdreg & SDHC_CMD_DATA_PRESENT) || 840 ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY && 841 !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) { 842 return false; 843 } 844 845 return true; 846 } 847 848 /* The Buffer Data Port register must be accessed in sequential and 849 * continuous manner */ 850 static inline bool 851 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num) 852 { 853 if ((s->data_count & 0x3) != byte_num) { 854 ERRPRINT("Non-sequential access to Buffer Data Port register" 855 "is prohibited\n"); 856 return false; 857 } 858 return true; 859 } 860 861 static uint32_t sdhci_read(SDHCIState *s, unsigned int offset, unsigned size) 862 { 863 uint32_t ret = 0; 864 865 switch (offset & ~0x3) { 866 case SDHC_SYSAD: 867 ret = s->sdmasysad; 868 break; 869 case SDHC_BLKSIZE: 870 ret = s->blksize | (s->blkcnt << 16); 871 break; 872 case SDHC_ARGUMENT: 873 ret = s->argument; 874 break; 875 case SDHC_TRNMOD: 876 ret = s->trnmod | (s->cmdreg << 16); 877 break; 878 case SDHC_RSPREG0 ... SDHC_RSPREG3: 879 ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2]; 880 break; 881 case SDHC_BDATA: 882 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) { 883 ret = SDHCI_GET_CLASS(s)->bdata_read(s, size); 884 DPRINT_L2("read %ub: addr[0x%04x] -> %u\n", size, offset, ret); 885 return ret; 886 } 887 break; 888 case SDHC_PRNSTS: 889 ret = s->prnsts; 890 break; 891 case SDHC_HOSTCTL: 892 ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) | 893 (s->wakcon << 24); 894 break; 895 case SDHC_CLKCON: 896 ret = s->clkcon | (s->timeoutcon << 16); 897 break; 898 case SDHC_NORINTSTS: 899 ret = s->norintsts | (s->errintsts << 16); 900 break; 901 case SDHC_NORINTSTSEN: 902 ret = s->norintstsen | (s->errintstsen << 16); 903 break; 904 case SDHC_NORINTSIGEN: 905 ret = s->norintsigen | (s->errintsigen << 16); 906 break; 907 case SDHC_ACMD12ERRSTS: 908 ret = s->acmd12errsts; 909 break; 910 case SDHC_CAPAREG: 911 ret = s->capareg; 912 break; 913 case SDHC_MAXCURR: 914 ret = s->maxcurr; 915 break; 916 case SDHC_ADMAERR: 917 ret = s->admaerr; 918 break; 919 case SDHC_ADMASYSADDR: 920 ret = (uint32_t)s->admasysaddr; 921 break; 922 case SDHC_ADMASYSADDR + 4: 923 ret = (uint32_t)(s->admasysaddr >> 32); 924 break; 925 case SDHC_SLOT_INT_STATUS: 926 ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s); 927 break; 928 default: 929 ERRPRINT("bad %ub read: addr[0x%04x]\n", size, offset); 930 break; 931 } 932 933 ret >>= (offset & 0x3) * 8; 934 ret &= (1ULL << (size * 8)) - 1; 935 DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, offset, ret, ret); 936 return ret; 937 } 938 939 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value) 940 { 941 if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) { 942 return; 943 } 944 s->blkgap = value & SDHC_STOP_AT_GAP_REQ; 945 946 if ((value & SDHC_CONTINUE_REQ) && s->stopped_state && 947 (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) { 948 if (s->stopped_state == sdhc_gap_read) { 949 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ; 950 SDHCI_GET_CLASS(s)->read_block_from_card(s); 951 } else { 952 s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE; 953 SDHCI_GET_CLASS(s)->write_block_to_card(s); 954 } 955 s->stopped_state = sdhc_not_stopped; 956 } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) { 957 if (s->prnsts & SDHC_DOING_READ) { 958 s->stopped_state = sdhc_gap_read; 959 } else if (s->prnsts & SDHC_DOING_WRITE) { 960 s->stopped_state = sdhc_gap_write; 961 } 962 } 963 } 964 965 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value) 966 { 967 switch (value) { 968 case SDHC_RESET_ALL: 969 DEVICE_GET_CLASS(s)->reset(DEVICE(s)); 970 break; 971 case SDHC_RESET_CMD: 972 s->prnsts &= ~SDHC_CMD_INHIBIT; 973 s->norintsts &= ~SDHC_NIS_CMDCMP; 974 break; 975 case SDHC_RESET_DATA: 976 s->data_count = 0; 977 s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE | 978 SDHC_DOING_READ | SDHC_DOING_WRITE | 979 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE); 980 s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ); 981 s->stopped_state = sdhc_not_stopped; 982 s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY | 983 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP); 984 break; 985 } 986 } 987 988 static void 989 sdhci_write(SDHCIState *s, unsigned int offset, uint32_t value, unsigned size) 990 { 991 unsigned shift = 8 * (offset & 0x3); 992 uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift); 993 value <<= shift; 994 995 switch (offset & ~0x3) { 996 case SDHC_SYSAD: 997 s->sdmasysad = (s->sdmasysad & mask) | value; 998 MASKED_WRITE(s->sdmasysad, mask, value); 999 /* Writing to last byte of sdmasysad might trigger transfer */ 1000 if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt && 1001 s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) { 1002 SDHCI_GET_CLASS(s)->do_sdma_multi(s); 1003 } 1004 break; 1005 case SDHC_BLKSIZE: 1006 if (!TRANSFERRING_DATA(s->prnsts)) { 1007 MASKED_WRITE(s->blksize, mask, value); 1008 MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16); 1009 } 1010 break; 1011 case SDHC_ARGUMENT: 1012 MASKED_WRITE(s->argument, mask, value); 1013 break; 1014 case SDHC_TRNMOD: 1015 /* DMA can be enabled only if it is supported as indicated by 1016 * capabilities register */ 1017 if (!(s->capareg & SDHC_CAN_DO_DMA)) { 1018 value &= ~SDHC_TRNS_DMA; 1019 } 1020 MASKED_WRITE(s->trnmod, mask, value); 1021 MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16); 1022 1023 /* Writing to the upper byte of CMDREG triggers SD command generation */ 1024 if ((mask & 0xFF000000) || !SDHCI_GET_CLASS(s)->can_issue_command(s)) { 1025 break; 1026 } 1027 1028 SDHCI_GET_CLASS(s)->send_command(s); 1029 break; 1030 case SDHC_BDATA: 1031 if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) { 1032 SDHCI_GET_CLASS(s)->bdata_write(s, value >> shift, size); 1033 } 1034 break; 1035 case SDHC_HOSTCTL: 1036 if (!(mask & 0xFF0000)) { 1037 sdhci_blkgap_write(s, value >> 16); 1038 } 1039 MASKED_WRITE(s->hostctl, mask, value); 1040 MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8); 1041 MASKED_WRITE(s->wakcon, mask >> 24, value >> 24); 1042 if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 || 1043 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) { 1044 s->pwrcon &= ~SDHC_POWER_ON; 1045 } 1046 break; 1047 case SDHC_CLKCON: 1048 if (!(mask & 0xFF000000)) { 1049 sdhci_reset_write(s, value >> 24); 1050 } 1051 MASKED_WRITE(s->clkcon, mask, value); 1052 MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16); 1053 if (s->clkcon & SDHC_CLOCK_INT_EN) { 1054 s->clkcon |= SDHC_CLOCK_INT_STABLE; 1055 } else { 1056 s->clkcon &= ~SDHC_CLOCK_INT_STABLE; 1057 } 1058 break; 1059 case SDHC_NORINTSTS: 1060 if (s->norintstsen & SDHC_NISEN_CARDINT) { 1061 value &= ~SDHC_NIS_CARDINT; 1062 } 1063 s->norintsts &= mask | ~value; 1064 s->errintsts &= (mask >> 16) | ~(value >> 16); 1065 if (s->errintsts) { 1066 s->norintsts |= SDHC_NIS_ERR; 1067 } else { 1068 s->norintsts &= ~SDHC_NIS_ERR; 1069 } 1070 sdhci_update_irq(s); 1071 break; 1072 case SDHC_NORINTSTSEN: 1073 MASKED_WRITE(s->norintstsen, mask, value); 1074 MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16); 1075 s->norintsts &= s->norintstsen; 1076 s->errintsts &= s->errintstsen; 1077 if (s->errintsts) { 1078 s->norintsts |= SDHC_NIS_ERR; 1079 } else { 1080 s->norintsts &= ~SDHC_NIS_ERR; 1081 } 1082 sdhci_update_irq(s); 1083 break; 1084 case SDHC_NORINTSIGEN: 1085 MASKED_WRITE(s->norintsigen, mask, value); 1086 MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16); 1087 sdhci_update_irq(s); 1088 break; 1089 case SDHC_ADMAERR: 1090 MASKED_WRITE(s->admaerr, mask, value); 1091 break; 1092 case SDHC_ADMASYSADDR: 1093 s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL | 1094 (uint64_t)mask)) | (uint64_t)value; 1095 break; 1096 case SDHC_ADMASYSADDR + 4: 1097 s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL | 1098 ((uint64_t)mask << 32))) | ((uint64_t)value << 32); 1099 break; 1100 case SDHC_FEAER: 1101 s->acmd12errsts |= value; 1102 s->errintsts |= (value >> 16) & s->errintstsen; 1103 if (s->acmd12errsts) { 1104 s->errintsts |= SDHC_EIS_CMD12ERR; 1105 } 1106 if (s->errintsts) { 1107 s->norintsts |= SDHC_NIS_ERR; 1108 } 1109 sdhci_update_irq(s); 1110 break; 1111 default: 1112 ERRPRINT("bad %ub write offset: addr[0x%04x] <- %u(0x%x)\n", 1113 size, offset, value >> shift, value >> shift); 1114 break; 1115 } 1116 DPRINT_L2("write %ub: addr[0x%04x] <- %u(0x%x)\n", 1117 size, offset, value >> shift, value >> shift); 1118 } 1119 1120 static uint64_t 1121 sdhci_readfn(void *opaque, hwaddr offset, unsigned size) 1122 { 1123 SDHCIState *s = (SDHCIState *)opaque; 1124 1125 return SDHCI_GET_CLASS(s)->mem_read(s, offset, size); 1126 } 1127 1128 static void 1129 sdhci_writefn(void *opaque, hwaddr off, uint64_t val, unsigned sz) 1130 { 1131 SDHCIState *s = (SDHCIState *)opaque; 1132 1133 SDHCI_GET_CLASS(s)->mem_write(s, off, val, sz); 1134 } 1135 1136 static const MemoryRegionOps sdhci_mmio_ops = { 1137 .read = sdhci_readfn, 1138 .write = sdhci_writefn, 1139 .valid = { 1140 .min_access_size = 1, 1141 .max_access_size = 4, 1142 .unaligned = false 1143 }, 1144 .endianness = DEVICE_LITTLE_ENDIAN, 1145 }; 1146 1147 static inline unsigned int sdhci_get_fifolen(SDHCIState *s) 1148 { 1149 switch (SDHC_CAPAB_BLOCKSIZE(s->capareg)) { 1150 case 0: 1151 return 512; 1152 case 1: 1153 return 1024; 1154 case 2: 1155 return 2048; 1156 default: 1157 hw_error("SDHC: unsupported value for maximum block size\n"); 1158 return 0; 1159 } 1160 } 1161 1162 static void sdhci_initfn(Object *obj) 1163 { 1164 SDHCIState *s = SDHCI(obj); 1165 DriveInfo *di; 1166 1167 di = drive_get_next(IF_SD); 1168 s->card = sd_init(di ? di->bdrv : NULL, 0); 1169 s->eject_cb = qemu_allocate_irqs(sdhci_insert_eject_cb, s, 1)[0]; 1170 s->ro_cb = qemu_allocate_irqs(sdhci_card_readonly_cb, s, 1)[0]; 1171 sd_set_cb(s->card, s->ro_cb, s->eject_cb); 1172 1173 s->insert_timer = qemu_new_timer_ns(vm_clock, sdhci_raise_insertion_irq, s); 1174 s->transfer_timer = qemu_new_timer_ns(vm_clock, sdhci_do_data_transfer, s); 1175 } 1176 1177 static void sdhci_uninitfn(Object *obj) 1178 { 1179 SDHCIState *s = SDHCI(obj); 1180 1181 qemu_del_timer(s->insert_timer); 1182 qemu_free_timer(s->insert_timer); 1183 qemu_del_timer(s->transfer_timer); 1184 qemu_free_timer(s->transfer_timer); 1185 qemu_free_irqs(&s->eject_cb); 1186 qemu_free_irqs(&s->ro_cb); 1187 1188 if (s->fifo_buffer) { 1189 g_free(s->fifo_buffer); 1190 s->fifo_buffer = NULL; 1191 } 1192 } 1193 1194 const VMStateDescription sdhci_vmstate = { 1195 .name = "sdhci", 1196 .version_id = 1, 1197 .minimum_version_id = 1, 1198 .fields = (VMStateField[]) { 1199 VMSTATE_UINT32(sdmasysad, SDHCIState), 1200 VMSTATE_UINT16(blksize, SDHCIState), 1201 VMSTATE_UINT16(blkcnt, SDHCIState), 1202 VMSTATE_UINT32(argument, SDHCIState), 1203 VMSTATE_UINT16(trnmod, SDHCIState), 1204 VMSTATE_UINT16(cmdreg, SDHCIState), 1205 VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4), 1206 VMSTATE_UINT32(prnsts, SDHCIState), 1207 VMSTATE_UINT8(hostctl, SDHCIState), 1208 VMSTATE_UINT8(pwrcon, SDHCIState), 1209 VMSTATE_UINT8(blkgap, SDHCIState), 1210 VMSTATE_UINT8(wakcon, SDHCIState), 1211 VMSTATE_UINT16(clkcon, SDHCIState), 1212 VMSTATE_UINT8(timeoutcon, SDHCIState), 1213 VMSTATE_UINT8(admaerr, SDHCIState), 1214 VMSTATE_UINT16(norintsts, SDHCIState), 1215 VMSTATE_UINT16(errintsts, SDHCIState), 1216 VMSTATE_UINT16(norintstsen, SDHCIState), 1217 VMSTATE_UINT16(errintstsen, SDHCIState), 1218 VMSTATE_UINT16(norintsigen, SDHCIState), 1219 VMSTATE_UINT16(errintsigen, SDHCIState), 1220 VMSTATE_UINT16(acmd12errsts, SDHCIState), 1221 VMSTATE_UINT16(data_count, SDHCIState), 1222 VMSTATE_UINT64(admasysaddr, SDHCIState), 1223 VMSTATE_UINT8(stopped_state, SDHCIState), 1224 VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, 0, buf_maxsz), 1225 VMSTATE_TIMER(insert_timer, SDHCIState), 1226 VMSTATE_TIMER(transfer_timer, SDHCIState), 1227 VMSTATE_END_OF_LIST() 1228 } 1229 }; 1230 1231 /* Capabilities registers provide information on supported features of this 1232 * specific host controller implementation */ 1233 static Property sdhci_properties[] = { 1234 DEFINE_PROP_HEX32("capareg", SDHCIState, capareg, 1235 SDHC_CAPAB_REG_DEFAULT), 1236 DEFINE_PROP_HEX32("maxcurr", SDHCIState, maxcurr, 0), 1237 DEFINE_PROP_END_OF_LIST(), 1238 }; 1239 1240 static void sdhci_realize(DeviceState *dev, Error ** errp) 1241 { 1242 SDHCIState *s = SDHCI(dev); 1243 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1244 1245 s->buf_maxsz = sdhci_get_fifolen(s); 1246 s->fifo_buffer = g_malloc0(s->buf_maxsz); 1247 sysbus_init_irq(sbd, &s->irq); 1248 memory_region_init_io(&s->iomem, &sdhci_mmio_ops, s, "sdhci", 1249 SDHC_REGISTERS_MAP_SIZE); 1250 sysbus_init_mmio(sbd, &s->iomem); 1251 } 1252 1253 static void sdhci_generic_reset(DeviceState *ds) 1254 { 1255 SDHCIState *s = SDHCI(ds); 1256 SDHCI_GET_CLASS(s)->reset(s); 1257 } 1258 1259 static void sdhci_class_init(ObjectClass *klass, void *data) 1260 { 1261 DeviceClass *dc = DEVICE_CLASS(klass); 1262 SDHCIClass *k = SDHCI_CLASS(klass); 1263 1264 dc->vmsd = &sdhci_vmstate; 1265 dc->props = sdhci_properties; 1266 dc->reset = sdhci_generic_reset; 1267 dc->realize = sdhci_realize; 1268 1269 k->reset = sdhci_reset; 1270 k->mem_read = sdhci_read; 1271 k->mem_write = sdhci_write; 1272 k->send_command = sdhci_send_command; 1273 k->can_issue_command = sdhci_can_issue_command; 1274 k->data_transfer = sdhci_data_transfer; 1275 k->end_data_transfer = sdhci_end_transfer; 1276 k->do_sdma_single = sdhci_sdma_transfer_single_block; 1277 k->do_sdma_multi = sdhci_sdma_transfer_multi_blocks; 1278 k->do_adma = sdhci_do_adma; 1279 k->read_block_from_card = sdhci_read_block_from_card; 1280 k->write_block_to_card = sdhci_write_block_to_card; 1281 k->bdata_read = sdhci_read_dataport; 1282 k->bdata_write = sdhci_write_dataport; 1283 } 1284 1285 static const TypeInfo sdhci_type_info = { 1286 .name = TYPE_SDHCI, 1287 .parent = TYPE_SYS_BUS_DEVICE, 1288 .instance_size = sizeof(SDHCIState), 1289 .instance_init = sdhci_initfn, 1290 .instance_finalize = sdhci_uninitfn, 1291 .class_init = sdhci_class_init, 1292 .class_size = sizeof(SDHCIClass) 1293 }; 1294 1295 static void sdhci_register_types(void) 1296 { 1297 type_register_static(&sdhci_type_info); 1298 } 1299 1300 type_init(sdhci_register_types) 1301