xref: /openbmc/qemu/hw/sd/sdhci.c (revision c2b38b27)
1 /*
2  * SD Association Host Standard Specification v2.0 controller emulation
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  * Mitsyanko Igor <i.mitsyanko@samsung.com>
6  * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
7  *
8  * Based on MMC controller for Samsung S5PC1xx-based board emulation
9  * by Alexey Merkulov and Vladimir Monakhov.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
19  * See the GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License along
22  * with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "sysemu/block-backend.h"
28 #include "sysemu/blockdev.h"
29 #include "sysemu/dma.h"
30 #include "qemu/timer.h"
31 #include "qemu/bitops.h"
32 #include "sdhci-internal.h"
33 #include "qemu/log.h"
34 
35 /* host controller debug messages */
36 #ifndef SDHC_DEBUG
37 #define SDHC_DEBUG                        0
38 #endif
39 
40 #define DPRINT_L1(fmt, args...) \
41     do { \
42         if (SDHC_DEBUG) { \
43             fprintf(stderr, "QEMU SDHC: " fmt, ## args); \
44         } \
45     } while (0)
46 #define DPRINT_L2(fmt, args...) \
47     do { \
48         if (SDHC_DEBUG > 1) { \
49             fprintf(stderr, "QEMU SDHC: " fmt, ## args); \
50         } \
51     } while (0)
52 #define ERRPRINT(fmt, args...) \
53     do { \
54         if (SDHC_DEBUG) { \
55             fprintf(stderr, "QEMU SDHC ERROR: " fmt, ## args); \
56         } \
57     } while (0)
58 
59 #define TYPE_SDHCI_BUS "sdhci-bus"
60 #define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)
61 
62 /* Default SD/MMC host controller features information, which will be
63  * presented in CAPABILITIES register of generic SD host controller at reset.
64  * If not stated otherwise:
65  * 0 - not supported, 1 - supported, other - prohibited.
66  */
67 #define SDHC_CAPAB_64BITBUS       0ul        /* 64-bit System Bus Support */
68 #define SDHC_CAPAB_18V            1ul        /* Voltage support 1.8v */
69 #define SDHC_CAPAB_30V            0ul        /* Voltage support 3.0v */
70 #define SDHC_CAPAB_33V            1ul        /* Voltage support 3.3v */
71 #define SDHC_CAPAB_SUSPRESUME     0ul        /* Suspend/resume support */
72 #define SDHC_CAPAB_SDMA           1ul        /* SDMA support */
73 #define SDHC_CAPAB_HIGHSPEED      1ul        /* High speed support */
74 #define SDHC_CAPAB_ADMA1          1ul        /* ADMA1 support */
75 #define SDHC_CAPAB_ADMA2          1ul        /* ADMA2 support */
76 /* Maximum host controller R/W buffers size
77  * Possible values: 512, 1024, 2048 bytes */
78 #define SDHC_CAPAB_MAXBLOCKLENGTH 512ul
79 /* Maximum clock frequency for SDclock in MHz
80  * value in range 10-63 MHz, 0 - not defined */
81 #define SDHC_CAPAB_BASECLKFREQ    52ul
82 #define SDHC_CAPAB_TOUNIT         1ul  /* Timeout clock unit 0 - kHz, 1 - MHz */
83 /* Timeout clock frequency 1-63, 0 - not defined */
84 #define SDHC_CAPAB_TOCLKFREQ      52ul
85 
86 /* Now check all parameters and calculate CAPABILITIES REGISTER value */
87 #if SDHC_CAPAB_64BITBUS > 1 || SDHC_CAPAB_18V > 1 || SDHC_CAPAB_30V > 1 ||     \
88     SDHC_CAPAB_33V > 1 || SDHC_CAPAB_SUSPRESUME > 1 || SDHC_CAPAB_SDMA > 1 ||  \
89     SDHC_CAPAB_HIGHSPEED > 1 || SDHC_CAPAB_ADMA2 > 1 || SDHC_CAPAB_ADMA1 > 1 ||\
90     SDHC_CAPAB_TOUNIT > 1
91 #error Capabilities features can have value 0 or 1 only!
92 #endif
93 
94 #if SDHC_CAPAB_MAXBLOCKLENGTH == 512
95 #define MAX_BLOCK_LENGTH 0ul
96 #elif SDHC_CAPAB_MAXBLOCKLENGTH == 1024
97 #define MAX_BLOCK_LENGTH 1ul
98 #elif SDHC_CAPAB_MAXBLOCKLENGTH == 2048
99 #define MAX_BLOCK_LENGTH 2ul
100 #else
101 #error Max host controller block size can have value 512, 1024 or 2048 only!
102 #endif
103 
104 #if (SDHC_CAPAB_BASECLKFREQ > 0 && SDHC_CAPAB_BASECLKFREQ < 10) || \
105     SDHC_CAPAB_BASECLKFREQ > 63
106 #error SDclock frequency can have value in range 0, 10-63 only!
107 #endif
108 
109 #if SDHC_CAPAB_TOCLKFREQ > 63
110 #error Timeout clock frequency can have value in range 0-63 only!
111 #endif
112 
113 #define SDHC_CAPAB_REG_DEFAULT                                 \
114    ((SDHC_CAPAB_64BITBUS << 28) | (SDHC_CAPAB_18V << 26) |     \
115     (SDHC_CAPAB_30V << 25) | (SDHC_CAPAB_33V << 24) |          \
116     (SDHC_CAPAB_SUSPRESUME << 23) | (SDHC_CAPAB_SDMA << 22) |  \
117     (SDHC_CAPAB_HIGHSPEED << 21) | (SDHC_CAPAB_ADMA1 << 20) |  \
118     (SDHC_CAPAB_ADMA2 << 19) | (MAX_BLOCK_LENGTH << 16) |      \
119     (SDHC_CAPAB_BASECLKFREQ << 8) | (SDHC_CAPAB_TOUNIT << 7) | \
120     (SDHC_CAPAB_TOCLKFREQ))
121 
122 #define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))
123 
124 static uint8_t sdhci_slotint(SDHCIState *s)
125 {
126     return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
127          ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
128          ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
129 }
130 
131 static inline void sdhci_update_irq(SDHCIState *s)
132 {
133     qemu_set_irq(s->irq, sdhci_slotint(s));
134 }
135 
136 static void sdhci_raise_insertion_irq(void *opaque)
137 {
138     SDHCIState *s = (SDHCIState *)opaque;
139 
140     if (s->norintsts & SDHC_NIS_REMOVE) {
141         timer_mod(s->insert_timer,
142                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
143     } else {
144         s->prnsts = 0x1ff0000;
145         if (s->norintstsen & SDHC_NISEN_INSERT) {
146             s->norintsts |= SDHC_NIS_INSERT;
147         }
148         sdhci_update_irq(s);
149     }
150 }
151 
152 static void sdhci_set_inserted(DeviceState *dev, bool level)
153 {
154     SDHCIState *s = (SDHCIState *)dev;
155     DPRINT_L1("Card state changed: %s!\n", level ? "insert" : "eject");
156 
157     if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
158         /* Give target some time to notice card ejection */
159         timer_mod(s->insert_timer,
160                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
161     } else {
162         if (level) {
163             s->prnsts = 0x1ff0000;
164             if (s->norintstsen & SDHC_NISEN_INSERT) {
165                 s->norintsts |= SDHC_NIS_INSERT;
166             }
167         } else {
168             s->prnsts = 0x1fa0000;
169             s->pwrcon &= ~SDHC_POWER_ON;
170             s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
171             if (s->norintstsen & SDHC_NISEN_REMOVE) {
172                 s->norintsts |= SDHC_NIS_REMOVE;
173             }
174         }
175         sdhci_update_irq(s);
176     }
177 }
178 
179 static void sdhci_set_readonly(DeviceState *dev, bool level)
180 {
181     SDHCIState *s = (SDHCIState *)dev;
182 
183     if (level) {
184         s->prnsts &= ~SDHC_WRITE_PROTECT;
185     } else {
186         /* Write enabled */
187         s->prnsts |= SDHC_WRITE_PROTECT;
188     }
189 }
190 
191 static void sdhci_reset(SDHCIState *s)
192 {
193     DeviceState *dev = DEVICE(s);
194 
195     timer_del(s->insert_timer);
196     timer_del(s->transfer_timer);
197     /* Set all registers to 0. Capabilities registers are not cleared
198      * and assumed to always preserve their value, given to them during
199      * initialization */
200     memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
201 
202     /* Reset other state based on current card insertion/readonly status */
203     sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
204     sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
205 
206     s->data_count = 0;
207     s->stopped_state = sdhc_not_stopped;
208     s->pending_insert_state = false;
209 }
210 
211 static void sdhci_poweron_reset(DeviceState *dev)
212 {
213     /* QOM (ie power-on) reset. This is identical to reset
214      * commanded via device register apart from handling of the
215      * 'pending insert on powerup' quirk.
216      */
217     SDHCIState *s = (SDHCIState *)dev;
218 
219     sdhci_reset(s);
220 
221     if (s->pending_insert_quirk) {
222         s->pending_insert_state = true;
223     }
224 }
225 
226 static void sdhci_data_transfer(void *opaque);
227 
228 static void sdhci_send_command(SDHCIState *s)
229 {
230     SDRequest request;
231     uint8_t response[16];
232     int rlen;
233 
234     s->errintsts = 0;
235     s->acmd12errsts = 0;
236     request.cmd = s->cmdreg >> 8;
237     request.arg = s->argument;
238     DPRINT_L1("sending CMD%u ARG[0x%08x]\n", request.cmd, request.arg);
239     rlen = sdbus_do_command(&s->sdbus, &request, response);
240 
241     if (s->cmdreg & SDHC_CMD_RESPONSE) {
242         if (rlen == 4) {
243             s->rspreg[0] = (response[0] << 24) | (response[1] << 16) |
244                            (response[2] << 8)  |  response[3];
245             s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
246             DPRINT_L1("Response: RSPREG[31..0]=0x%08x\n", s->rspreg[0]);
247         } else if (rlen == 16) {
248             s->rspreg[0] = (response[11] << 24) | (response[12] << 16) |
249                            (response[13] << 8) |  response[14];
250             s->rspreg[1] = (response[7] << 24) | (response[8] << 16) |
251                            (response[9] << 8)  |  response[10];
252             s->rspreg[2] = (response[3] << 24) | (response[4] << 16) |
253                            (response[5] << 8)  |  response[6];
254             s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
255                             response[2];
256             DPRINT_L1("Response received:\n RSPREG[127..96]=0x%08x, RSPREG[95.."
257                   "64]=0x%08x,\n RSPREG[63..32]=0x%08x, RSPREG[31..0]=0x%08x\n",
258                   s->rspreg[3], s->rspreg[2], s->rspreg[1], s->rspreg[0]);
259         } else {
260             ERRPRINT("Timeout waiting for command response\n");
261             if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
262                 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
263                 s->norintsts |= SDHC_NIS_ERR;
264             }
265         }
266 
267         if ((s->norintstsen & SDHC_NISEN_TRSCMP) &&
268             (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
269             s->norintsts |= SDHC_NIS_TRSCMP;
270         }
271     }
272 
273     if (s->norintstsen & SDHC_NISEN_CMDCMP) {
274         s->norintsts |= SDHC_NIS_CMDCMP;
275     }
276 
277     sdhci_update_irq(s);
278 
279     if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
280         s->data_count = 0;
281         sdhci_data_transfer(s);
282     }
283 }
284 
285 static void sdhci_end_transfer(SDHCIState *s)
286 {
287     /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
288     if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
289         SDRequest request;
290         uint8_t response[16];
291 
292         request.cmd = 0x0C;
293         request.arg = 0;
294         DPRINT_L1("Automatically issue CMD%d %08x\n", request.cmd, request.arg);
295         sdbus_do_command(&s->sdbus, &request, response);
296         /* Auto CMD12 response goes to the upper Response register */
297         s->rspreg[3] = (response[0] << 24) | (response[1] << 16) |
298                 (response[2] << 8) | response[3];
299     }
300 
301     s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
302             SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
303             SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
304 
305     if (s->norintstsen & SDHC_NISEN_TRSCMP) {
306         s->norintsts |= SDHC_NIS_TRSCMP;
307     }
308 
309     sdhci_update_irq(s);
310 }
311 
312 /*
313  * Programmed i/o data transfer
314  */
315 
316 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
317 static void sdhci_read_block_from_card(SDHCIState *s)
318 {
319     int index = 0;
320 
321     if ((s->trnmod & SDHC_TRNS_MULTI) &&
322             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
323         return;
324     }
325 
326     for (index = 0; index < (s->blksize & 0x0fff); index++) {
327         s->fifo_buffer[index] = sdbus_read_data(&s->sdbus);
328     }
329 
330     /* New data now available for READ through Buffer Port Register */
331     s->prnsts |= SDHC_DATA_AVAILABLE;
332     if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
333         s->norintsts |= SDHC_NIS_RBUFRDY;
334     }
335 
336     /* Clear DAT line active status if that was the last block */
337     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
338             ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
339         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
340     }
341 
342     /* If stop at block gap request was set and it's not the last block of
343      * data - generate Block Event interrupt */
344     if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
345             s->blkcnt != 1)    {
346         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
347         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
348             s->norintsts |= SDHC_EIS_BLKGAP;
349         }
350     }
351 
352     sdhci_update_irq(s);
353 }
354 
355 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
356 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
357 {
358     uint32_t value = 0;
359     int i;
360 
361     /* first check that a valid data exists in host controller input buffer */
362     if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
363         ERRPRINT("Trying to read from empty buffer\n");
364         return 0;
365     }
366 
367     for (i = 0; i < size; i++) {
368         value |= s->fifo_buffer[s->data_count] << i * 8;
369         s->data_count++;
370         /* check if we've read all valid data (blksize bytes) from buffer */
371         if ((s->data_count) >= (s->blksize & 0x0fff)) {
372             DPRINT_L2("All %u bytes of data have been read from input buffer\n",
373                     s->data_count);
374             s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
375             s->data_count = 0;  /* next buff read must start at position [0] */
376 
377             if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
378                 s->blkcnt--;
379             }
380 
381             /* if that was the last block of data */
382             if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
383                 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
384                  /* stop at gap request */
385                 (s->stopped_state == sdhc_gap_read &&
386                  !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
387                 sdhci_end_transfer(s);
388             } else { /* if there are more data, read next block from card */
389                 sdhci_read_block_from_card(s);
390             }
391             break;
392         }
393     }
394 
395     return value;
396 }
397 
398 /* Write data from host controller FIFO to card */
399 static void sdhci_write_block_to_card(SDHCIState *s)
400 {
401     int index = 0;
402 
403     if (s->prnsts & SDHC_SPACE_AVAILABLE) {
404         if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
405             s->norintsts |= SDHC_NIS_WBUFRDY;
406         }
407         sdhci_update_irq(s);
408         return;
409     }
410 
411     if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
412         if (s->blkcnt == 0) {
413             return;
414         } else {
415             s->blkcnt--;
416         }
417     }
418 
419     for (index = 0; index < (s->blksize & 0x0fff); index++) {
420         sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
421     }
422 
423     /* Next data can be written through BUFFER DATORT register */
424     s->prnsts |= SDHC_SPACE_AVAILABLE;
425 
426     /* Finish transfer if that was the last block of data */
427     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
428             ((s->trnmod & SDHC_TRNS_MULTI) &&
429             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
430         sdhci_end_transfer(s);
431     } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
432         s->norintsts |= SDHC_NIS_WBUFRDY;
433     }
434 
435     /* Generate Block Gap Event if requested and if not the last block */
436     if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
437             s->blkcnt > 0) {
438         s->prnsts &= ~SDHC_DOING_WRITE;
439         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
440             s->norintsts |= SDHC_EIS_BLKGAP;
441         }
442         sdhci_end_transfer(s);
443     }
444 
445     sdhci_update_irq(s);
446 }
447 
448 /* Write @size bytes of @value data to host controller @s Buffer Data Port
449  * register */
450 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
451 {
452     unsigned i;
453 
454     /* Check that there is free space left in a buffer */
455     if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
456         ERRPRINT("Can't write to data buffer: buffer full\n");
457         return;
458     }
459 
460     for (i = 0; i < size; i++) {
461         s->fifo_buffer[s->data_count] = value & 0xFF;
462         s->data_count++;
463         value >>= 8;
464         if (s->data_count >= (s->blksize & 0x0fff)) {
465             DPRINT_L2("write buffer filled with %u bytes of data\n",
466                     s->data_count);
467             s->data_count = 0;
468             s->prnsts &= ~SDHC_SPACE_AVAILABLE;
469             if (s->prnsts & SDHC_DOING_WRITE) {
470                 sdhci_write_block_to_card(s);
471             }
472         }
473     }
474 }
475 
476 /*
477  * Single DMA data transfer
478  */
479 
480 /* Multi block SDMA transfer */
481 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
482 {
483     bool page_aligned = false;
484     unsigned int n, begin;
485     const uint16_t block_size = s->blksize & 0x0fff;
486     uint32_t boundary_chk = 1 << (((s->blksize & 0xf000) >> 12) + 12);
487     uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
488 
489     /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
490      * possible stop at page boundary if initial address is not page aligned,
491      * allow them to work properly */
492     if ((s->sdmasysad % boundary_chk) == 0) {
493         page_aligned = true;
494     }
495 
496     if (s->trnmod & SDHC_TRNS_READ) {
497         s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
498                 SDHC_DAT_LINE_ACTIVE;
499         while (s->blkcnt) {
500             if (s->data_count == 0) {
501                 for (n = 0; n < block_size; n++) {
502                     s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
503                 }
504             }
505             begin = s->data_count;
506             if (((boundary_count + begin) < block_size) && page_aligned) {
507                 s->data_count = boundary_count + begin;
508                 boundary_count = 0;
509              } else {
510                 s->data_count = block_size;
511                 boundary_count -= block_size - begin;
512                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
513                     s->blkcnt--;
514                 }
515             }
516             dma_memory_write(&address_space_memory, s->sdmasysad,
517                              &s->fifo_buffer[begin], s->data_count - begin);
518             s->sdmasysad += s->data_count - begin;
519             if (s->data_count == block_size) {
520                 s->data_count = 0;
521             }
522             if (page_aligned && boundary_count == 0) {
523                 break;
524             }
525         }
526     } else {
527         s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
528                 SDHC_DAT_LINE_ACTIVE;
529         while (s->blkcnt) {
530             begin = s->data_count;
531             if (((boundary_count + begin) < block_size) && page_aligned) {
532                 s->data_count = boundary_count + begin;
533                 boundary_count = 0;
534              } else {
535                 s->data_count = block_size;
536                 boundary_count -= block_size - begin;
537             }
538             dma_memory_read(&address_space_memory, s->sdmasysad,
539                             &s->fifo_buffer[begin], s->data_count - begin);
540             s->sdmasysad += s->data_count - begin;
541             if (s->data_count == block_size) {
542                 for (n = 0; n < block_size; n++) {
543                     sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
544                 }
545                 s->data_count = 0;
546                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
547                     s->blkcnt--;
548                 }
549             }
550             if (page_aligned && boundary_count == 0) {
551                 break;
552             }
553         }
554     }
555 
556     if (s->blkcnt == 0) {
557         sdhci_end_transfer(s);
558     } else {
559         if (s->norintstsen & SDHC_NISEN_DMA) {
560             s->norintsts |= SDHC_NIS_DMA;
561         }
562         sdhci_update_irq(s);
563     }
564 }
565 
566 /* single block SDMA transfer */
567 
568 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
569 {
570     int n;
571     uint32_t datacnt = s->blksize & 0x0fff;
572 
573     if (s->trnmod & SDHC_TRNS_READ) {
574         for (n = 0; n < datacnt; n++) {
575             s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
576         }
577         dma_memory_write(&address_space_memory, s->sdmasysad, s->fifo_buffer,
578                          datacnt);
579     } else {
580         dma_memory_read(&address_space_memory, s->sdmasysad, s->fifo_buffer,
581                         datacnt);
582         for (n = 0; n < datacnt; n++) {
583             sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
584         }
585     }
586 
587     if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
588         s->blkcnt--;
589     }
590 
591     sdhci_end_transfer(s);
592 }
593 
594 typedef struct ADMADescr {
595     hwaddr addr;
596     uint16_t length;
597     uint8_t attr;
598     uint8_t incr;
599 } ADMADescr;
600 
601 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
602 {
603     uint32_t adma1 = 0;
604     uint64_t adma2 = 0;
605     hwaddr entry_addr = (hwaddr)s->admasysaddr;
606     switch (SDHC_DMA_TYPE(s->hostctl)) {
607     case SDHC_CTRL_ADMA2_32:
608         dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma2,
609                         sizeof(adma2));
610         adma2 = le64_to_cpu(adma2);
611         /* The spec does not specify endianness of descriptor table.
612          * We currently assume that it is LE.
613          */
614         dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
615         dscr->length = (uint16_t)extract64(adma2, 16, 16);
616         dscr->attr = (uint8_t)extract64(adma2, 0, 7);
617         dscr->incr = 8;
618         break;
619     case SDHC_CTRL_ADMA1_32:
620         dma_memory_read(&address_space_memory, entry_addr, (uint8_t *)&adma1,
621                         sizeof(adma1));
622         adma1 = le32_to_cpu(adma1);
623         dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
624         dscr->attr = (uint8_t)extract32(adma1, 0, 7);
625         dscr->incr = 4;
626         if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
627             dscr->length = (uint16_t)extract32(adma1, 12, 16);
628         } else {
629             dscr->length = 4096;
630         }
631         break;
632     case SDHC_CTRL_ADMA2_64:
633         dma_memory_read(&address_space_memory, entry_addr,
634                         (uint8_t *)(&dscr->attr), 1);
635         dma_memory_read(&address_space_memory, entry_addr + 2,
636                         (uint8_t *)(&dscr->length), 2);
637         dscr->length = le16_to_cpu(dscr->length);
638         dma_memory_read(&address_space_memory, entry_addr + 4,
639                         (uint8_t *)(&dscr->addr), 8);
640         dscr->attr = le64_to_cpu(dscr->attr);
641         dscr->attr &= 0xfffffff8;
642         dscr->incr = 12;
643         break;
644     }
645 }
646 
647 /* Advanced DMA data transfer */
648 
649 static void sdhci_do_adma(SDHCIState *s)
650 {
651     unsigned int n, begin, length;
652     const uint16_t block_size = s->blksize & 0x0fff;
653     ADMADescr dscr;
654     int i;
655 
656     for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
657         s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
658 
659         get_adma_description(s, &dscr);
660         DPRINT_L2("ADMA loop: addr=" TARGET_FMT_plx ", len=%d, attr=%x\n",
661                 dscr.addr, dscr.length, dscr.attr);
662 
663         if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
664             /* Indicate that error occurred in ST_FDS state */
665             s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
666             s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
667 
668             /* Generate ADMA error interrupt */
669             if (s->errintstsen & SDHC_EISEN_ADMAERR) {
670                 s->errintsts |= SDHC_EIS_ADMAERR;
671                 s->norintsts |= SDHC_NIS_ERR;
672             }
673 
674             sdhci_update_irq(s);
675             return;
676         }
677 
678         length = dscr.length ? dscr.length : 65536;
679 
680         switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
681         case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */
682 
683             if (s->trnmod & SDHC_TRNS_READ) {
684                 while (length) {
685                     if (s->data_count == 0) {
686                         for (n = 0; n < block_size; n++) {
687                             s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
688                         }
689                     }
690                     begin = s->data_count;
691                     if ((length + begin) < block_size) {
692                         s->data_count = length + begin;
693                         length = 0;
694                      } else {
695                         s->data_count = block_size;
696                         length -= block_size - begin;
697                     }
698                     dma_memory_write(&address_space_memory, dscr.addr,
699                                      &s->fifo_buffer[begin],
700                                      s->data_count - begin);
701                     dscr.addr += s->data_count - begin;
702                     if (s->data_count == block_size) {
703                         s->data_count = 0;
704                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
705                             s->blkcnt--;
706                             if (s->blkcnt == 0) {
707                                 break;
708                             }
709                         }
710                     }
711                 }
712             } else {
713                 while (length) {
714                     begin = s->data_count;
715                     if ((length + begin) < block_size) {
716                         s->data_count = length + begin;
717                         length = 0;
718                      } else {
719                         s->data_count = block_size;
720                         length -= block_size - begin;
721                     }
722                     dma_memory_read(&address_space_memory, dscr.addr,
723                                     &s->fifo_buffer[begin],
724                                     s->data_count - begin);
725                     dscr.addr += s->data_count - begin;
726                     if (s->data_count == block_size) {
727                         for (n = 0; n < block_size; n++) {
728                             sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
729                         }
730                         s->data_count = 0;
731                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
732                             s->blkcnt--;
733                             if (s->blkcnt == 0) {
734                                 break;
735                             }
736                         }
737                     }
738                 }
739             }
740             s->admasysaddr += dscr.incr;
741             break;
742         case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
743             s->admasysaddr = dscr.addr;
744             DPRINT_L1("ADMA link: admasysaddr=0x%" PRIx64 "\n",
745                       s->admasysaddr);
746             break;
747         default:
748             s->admasysaddr += dscr.incr;
749             break;
750         }
751 
752         if (dscr.attr & SDHC_ADMA_ATTR_INT) {
753             DPRINT_L1("ADMA interrupt: admasysaddr=0x%" PRIx64 "\n",
754                       s->admasysaddr);
755             if (s->norintstsen & SDHC_NISEN_DMA) {
756                 s->norintsts |= SDHC_NIS_DMA;
757             }
758 
759             sdhci_update_irq(s);
760         }
761 
762         /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
763         if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
764                     (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
765             DPRINT_L2("ADMA transfer completed\n");
766             if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
767                 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
768                 s->blkcnt != 0)) {
769                 ERRPRINT("SD/MMC host ADMA length mismatch\n");
770                 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
771                         SDHC_ADMAERR_STATE_ST_TFR;
772                 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
773                     ERRPRINT("Set ADMA error flag\n");
774                     s->errintsts |= SDHC_EIS_ADMAERR;
775                     s->norintsts |= SDHC_NIS_ERR;
776                 }
777 
778                 sdhci_update_irq(s);
779             }
780             sdhci_end_transfer(s);
781             return;
782         }
783 
784     }
785 
786     /* we have unfinished business - reschedule to continue ADMA */
787     timer_mod(s->transfer_timer,
788                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
789 }
790 
791 /* Perform data transfer according to controller configuration */
792 
793 static void sdhci_data_transfer(void *opaque)
794 {
795     SDHCIState *s = (SDHCIState *)opaque;
796 
797     if (s->trnmod & SDHC_TRNS_DMA) {
798         switch (SDHC_DMA_TYPE(s->hostctl)) {
799         case SDHC_CTRL_SDMA:
800             if ((s->trnmod & SDHC_TRNS_MULTI) &&
801                     (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || s->blkcnt == 0)) {
802                 break;
803             }
804 
805             if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
806                 sdhci_sdma_transfer_single_block(s);
807             } else {
808                 sdhci_sdma_transfer_multi_blocks(s);
809             }
810 
811             break;
812         case SDHC_CTRL_ADMA1_32:
813             if (!(s->capareg & SDHC_CAN_DO_ADMA1)) {
814                 ERRPRINT("ADMA1 not supported\n");
815                 break;
816             }
817 
818             sdhci_do_adma(s);
819             break;
820         case SDHC_CTRL_ADMA2_32:
821             if (!(s->capareg & SDHC_CAN_DO_ADMA2)) {
822                 ERRPRINT("ADMA2 not supported\n");
823                 break;
824             }
825 
826             sdhci_do_adma(s);
827             break;
828         case SDHC_CTRL_ADMA2_64:
829             if (!(s->capareg & SDHC_CAN_DO_ADMA2) ||
830                     !(s->capareg & SDHC_64_BIT_BUS_SUPPORT)) {
831                 ERRPRINT("64 bit ADMA not supported\n");
832                 break;
833             }
834 
835             sdhci_do_adma(s);
836             break;
837         default:
838             ERRPRINT("Unsupported DMA type\n");
839             break;
840         }
841     } else {
842         if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
843             s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
844                     SDHC_DAT_LINE_ACTIVE;
845             sdhci_read_block_from_card(s);
846         } else {
847             s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
848                     SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
849             sdhci_write_block_to_card(s);
850         }
851     }
852 }
853 
854 static bool sdhci_can_issue_command(SDHCIState *s)
855 {
856     if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
857         (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
858         ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
859         ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
860         !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
861         return false;
862     }
863 
864     return true;
865 }
866 
867 /* The Buffer Data Port register must be accessed in sequential and
868  * continuous manner */
869 static inline bool
870 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
871 {
872     if ((s->data_count & 0x3) != byte_num) {
873         ERRPRINT("Non-sequential access to Buffer Data Port register"
874                 "is prohibited\n");
875         return false;
876     }
877     return true;
878 }
879 
880 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
881 {
882     SDHCIState *s = (SDHCIState *)opaque;
883     uint32_t ret = 0;
884 
885     switch (offset & ~0x3) {
886     case SDHC_SYSAD:
887         ret = s->sdmasysad;
888         break;
889     case SDHC_BLKSIZE:
890         ret = s->blksize | (s->blkcnt << 16);
891         break;
892     case SDHC_ARGUMENT:
893         ret = s->argument;
894         break;
895     case SDHC_TRNMOD:
896         ret = s->trnmod | (s->cmdreg << 16);
897         break;
898     case SDHC_RSPREG0 ... SDHC_RSPREG3:
899         ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
900         break;
901     case  SDHC_BDATA:
902         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
903             ret = sdhci_read_dataport(s, size);
904             DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset,
905                       ret, ret);
906             return ret;
907         }
908         break;
909     case SDHC_PRNSTS:
910         ret = s->prnsts;
911         break;
912     case SDHC_HOSTCTL:
913         ret = s->hostctl | (s->pwrcon << 8) | (s->blkgap << 16) |
914               (s->wakcon << 24);
915         break;
916     case SDHC_CLKCON:
917         ret = s->clkcon | (s->timeoutcon << 16);
918         break;
919     case SDHC_NORINTSTS:
920         ret = s->norintsts | (s->errintsts << 16);
921         break;
922     case SDHC_NORINTSTSEN:
923         ret = s->norintstsen | (s->errintstsen << 16);
924         break;
925     case SDHC_NORINTSIGEN:
926         ret = s->norintsigen | (s->errintsigen << 16);
927         break;
928     case SDHC_ACMD12ERRSTS:
929         ret = s->acmd12errsts;
930         break;
931     case SDHC_CAPAREG:
932         ret = s->capareg;
933         break;
934     case SDHC_MAXCURR:
935         ret = s->maxcurr;
936         break;
937     case SDHC_ADMAERR:
938         ret =  s->admaerr;
939         break;
940     case SDHC_ADMASYSADDR:
941         ret = (uint32_t)s->admasysaddr;
942         break;
943     case SDHC_ADMASYSADDR + 4:
944         ret = (uint32_t)(s->admasysaddr >> 32);
945         break;
946     case SDHC_SLOT_INT_STATUS:
947         ret = (SD_HOST_SPECv2_VERS << 16) | sdhci_slotint(s);
948         break;
949     default:
950         ERRPRINT("bad %ub read: addr[0x%04x]\n", size, (int)offset);
951         break;
952     }
953 
954     ret >>= (offset & 0x3) * 8;
955     ret &= (1ULL << (size * 8)) - 1;
956     DPRINT_L2("read %ub: addr[0x%04x] -> %u(0x%x)\n", size, (int)offset, ret, ret);
957     return ret;
958 }
959 
960 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
961 {
962     if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
963         return;
964     }
965     s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
966 
967     if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
968             (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
969         if (s->stopped_state == sdhc_gap_read) {
970             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
971             sdhci_read_block_from_card(s);
972         } else {
973             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
974             sdhci_write_block_to_card(s);
975         }
976         s->stopped_state = sdhc_not_stopped;
977     } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
978         if (s->prnsts & SDHC_DOING_READ) {
979             s->stopped_state = sdhc_gap_read;
980         } else if (s->prnsts & SDHC_DOING_WRITE) {
981             s->stopped_state = sdhc_gap_write;
982         }
983     }
984 }
985 
986 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
987 {
988     switch (value) {
989     case SDHC_RESET_ALL:
990         sdhci_reset(s);
991         break;
992     case SDHC_RESET_CMD:
993         s->prnsts &= ~SDHC_CMD_INHIBIT;
994         s->norintsts &= ~SDHC_NIS_CMDCMP;
995         break;
996     case SDHC_RESET_DATA:
997         s->data_count = 0;
998         s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
999                 SDHC_DOING_READ | SDHC_DOING_WRITE |
1000                 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
1001         s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
1002         s->stopped_state = sdhc_not_stopped;
1003         s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
1004                 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
1005         break;
1006     }
1007 }
1008 
1009 static void
1010 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1011 {
1012     SDHCIState *s = (SDHCIState *)opaque;
1013     unsigned shift =  8 * (offset & 0x3);
1014     uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1015     uint32_t value = val;
1016     value <<= shift;
1017 
1018     switch (offset & ~0x3) {
1019     case SDHC_SYSAD:
1020         s->sdmasysad = (s->sdmasysad & mask) | value;
1021         MASKED_WRITE(s->sdmasysad, mask, value);
1022         /* Writing to last byte of sdmasysad might trigger transfer */
1023         if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1024                 s->blksize && SDHC_DMA_TYPE(s->hostctl) == SDHC_CTRL_SDMA) {
1025             sdhci_sdma_transfer_multi_blocks(s);
1026         }
1027         break;
1028     case SDHC_BLKSIZE:
1029         if (!TRANSFERRING_DATA(s->prnsts)) {
1030             MASKED_WRITE(s->blksize, mask, value);
1031             MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1032         }
1033 
1034         /* Limit block size to the maximum buffer size */
1035         if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1036             qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
1037                           "the maximum buffer 0x%x", __func__, s->blksize,
1038                           s->buf_maxsz);
1039 
1040             s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1041         }
1042 
1043         break;
1044     case SDHC_ARGUMENT:
1045         MASKED_WRITE(s->argument, mask, value);
1046         break;
1047     case SDHC_TRNMOD:
1048         /* DMA can be enabled only if it is supported as indicated by
1049          * capabilities register */
1050         if (!(s->capareg & SDHC_CAN_DO_DMA)) {
1051             value &= ~SDHC_TRNS_DMA;
1052         }
1053         MASKED_WRITE(s->trnmod, mask, value);
1054         MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1055 
1056         /* Writing to the upper byte of CMDREG triggers SD command generation */
1057         if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1058             break;
1059         }
1060 
1061         sdhci_send_command(s);
1062         break;
1063     case  SDHC_BDATA:
1064         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1065             sdhci_write_dataport(s, value >> shift, size);
1066         }
1067         break;
1068     case SDHC_HOSTCTL:
1069         if (!(mask & 0xFF0000)) {
1070             sdhci_blkgap_write(s, value >> 16);
1071         }
1072         MASKED_WRITE(s->hostctl, mask, value);
1073         MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1074         MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1075         if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1076                 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1077             s->pwrcon &= ~SDHC_POWER_ON;
1078         }
1079         break;
1080     case SDHC_CLKCON:
1081         if (!(mask & 0xFF000000)) {
1082             sdhci_reset_write(s, value >> 24);
1083         }
1084         MASKED_WRITE(s->clkcon, mask, value);
1085         MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1086         if (s->clkcon & SDHC_CLOCK_INT_EN) {
1087             s->clkcon |= SDHC_CLOCK_INT_STABLE;
1088         } else {
1089             s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1090         }
1091         break;
1092     case SDHC_NORINTSTS:
1093         if (s->norintstsen & SDHC_NISEN_CARDINT) {
1094             value &= ~SDHC_NIS_CARDINT;
1095         }
1096         s->norintsts &= mask | ~value;
1097         s->errintsts &= (mask >> 16) | ~(value >> 16);
1098         if (s->errintsts) {
1099             s->norintsts |= SDHC_NIS_ERR;
1100         } else {
1101             s->norintsts &= ~SDHC_NIS_ERR;
1102         }
1103         sdhci_update_irq(s);
1104         break;
1105     case SDHC_NORINTSTSEN:
1106         MASKED_WRITE(s->norintstsen, mask, value);
1107         MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1108         s->norintsts &= s->norintstsen;
1109         s->errintsts &= s->errintstsen;
1110         if (s->errintsts) {
1111             s->norintsts |= SDHC_NIS_ERR;
1112         } else {
1113             s->norintsts &= ~SDHC_NIS_ERR;
1114         }
1115         /* Quirk for Raspberry Pi: pending card insert interrupt
1116          * appears when first enabled after power on */
1117         if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
1118             assert(s->pending_insert_quirk);
1119             s->norintsts |= SDHC_NIS_INSERT;
1120             s->pending_insert_state = false;
1121         }
1122         sdhci_update_irq(s);
1123         break;
1124     case SDHC_NORINTSIGEN:
1125         MASKED_WRITE(s->norintsigen, mask, value);
1126         MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1127         sdhci_update_irq(s);
1128         break;
1129     case SDHC_ADMAERR:
1130         MASKED_WRITE(s->admaerr, mask, value);
1131         break;
1132     case SDHC_ADMASYSADDR:
1133         s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1134                 (uint64_t)mask)) | (uint64_t)value;
1135         break;
1136     case SDHC_ADMASYSADDR + 4:
1137         s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1138                 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1139         break;
1140     case SDHC_FEAER:
1141         s->acmd12errsts |= value;
1142         s->errintsts |= (value >> 16) & s->errintstsen;
1143         if (s->acmd12errsts) {
1144             s->errintsts |= SDHC_EIS_CMD12ERR;
1145         }
1146         if (s->errintsts) {
1147             s->norintsts |= SDHC_NIS_ERR;
1148         }
1149         sdhci_update_irq(s);
1150         break;
1151     default:
1152         ERRPRINT("bad %ub write offset: addr[0x%04x] <- %u(0x%x)\n",
1153                  size, (int)offset, value >> shift, value >> shift);
1154         break;
1155     }
1156     DPRINT_L2("write %ub: addr[0x%04x] <- %u(0x%x)\n",
1157               size, (int)offset, value >> shift, value >> shift);
1158 }
1159 
1160 static const MemoryRegionOps sdhci_mmio_ops = {
1161     .read = sdhci_read,
1162     .write = sdhci_write,
1163     .valid = {
1164         .min_access_size = 1,
1165         .max_access_size = 4,
1166         .unaligned = false
1167     },
1168     .endianness = DEVICE_LITTLE_ENDIAN,
1169 };
1170 
1171 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
1172 {
1173     switch (SDHC_CAPAB_BLOCKSIZE(s->capareg)) {
1174     case 0:
1175         return 512;
1176     case 1:
1177         return 1024;
1178     case 2:
1179         return 2048;
1180     default:
1181         hw_error("SDHC: unsupported value for maximum block size\n");
1182         return 0;
1183     }
1184 }
1185 
1186 static void sdhci_initfn(SDHCIState *s)
1187 {
1188     qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
1189                         TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1190 
1191     s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1192     s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1193 }
1194 
1195 static void sdhci_uninitfn(SDHCIState *s)
1196 {
1197     timer_del(s->insert_timer);
1198     timer_free(s->insert_timer);
1199     timer_del(s->transfer_timer);
1200     timer_free(s->transfer_timer);
1201     qemu_free_irq(s->eject_cb);
1202     qemu_free_irq(s->ro_cb);
1203 
1204     g_free(s->fifo_buffer);
1205     s->fifo_buffer = NULL;
1206 }
1207 
1208 static bool sdhci_pending_insert_vmstate_needed(void *opaque)
1209 {
1210     SDHCIState *s = opaque;
1211 
1212     return s->pending_insert_state;
1213 }
1214 
1215 static const VMStateDescription sdhci_pending_insert_vmstate = {
1216     .name = "sdhci/pending-insert",
1217     .version_id = 1,
1218     .minimum_version_id = 1,
1219     .needed = sdhci_pending_insert_vmstate_needed,
1220     .fields = (VMStateField[]) {
1221         VMSTATE_BOOL(pending_insert_state, SDHCIState),
1222         VMSTATE_END_OF_LIST()
1223     },
1224 };
1225 
1226 const VMStateDescription sdhci_vmstate = {
1227     .name = "sdhci",
1228     .version_id = 1,
1229     .minimum_version_id = 1,
1230     .fields = (VMStateField[]) {
1231         VMSTATE_UINT32(sdmasysad, SDHCIState),
1232         VMSTATE_UINT16(blksize, SDHCIState),
1233         VMSTATE_UINT16(blkcnt, SDHCIState),
1234         VMSTATE_UINT32(argument, SDHCIState),
1235         VMSTATE_UINT16(trnmod, SDHCIState),
1236         VMSTATE_UINT16(cmdreg, SDHCIState),
1237         VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1238         VMSTATE_UINT32(prnsts, SDHCIState),
1239         VMSTATE_UINT8(hostctl, SDHCIState),
1240         VMSTATE_UINT8(pwrcon, SDHCIState),
1241         VMSTATE_UINT8(blkgap, SDHCIState),
1242         VMSTATE_UINT8(wakcon, SDHCIState),
1243         VMSTATE_UINT16(clkcon, SDHCIState),
1244         VMSTATE_UINT8(timeoutcon, SDHCIState),
1245         VMSTATE_UINT8(admaerr, SDHCIState),
1246         VMSTATE_UINT16(norintsts, SDHCIState),
1247         VMSTATE_UINT16(errintsts, SDHCIState),
1248         VMSTATE_UINT16(norintstsen, SDHCIState),
1249         VMSTATE_UINT16(errintstsen, SDHCIState),
1250         VMSTATE_UINT16(norintsigen, SDHCIState),
1251         VMSTATE_UINT16(errintsigen, SDHCIState),
1252         VMSTATE_UINT16(acmd12errsts, SDHCIState),
1253         VMSTATE_UINT16(data_count, SDHCIState),
1254         VMSTATE_UINT64(admasysaddr, SDHCIState),
1255         VMSTATE_UINT8(stopped_state, SDHCIState),
1256         VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1257         VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1258         VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1259         VMSTATE_END_OF_LIST()
1260     },
1261     .subsections = (const VMStateDescription*[]) {
1262         &sdhci_pending_insert_vmstate,
1263         NULL
1264     },
1265 };
1266 
1267 /* Capabilities registers provide information on supported features of this
1268  * specific host controller implementation */
1269 static Property sdhci_pci_properties[] = {
1270     DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
1271             SDHC_CAPAB_REG_DEFAULT),
1272     DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
1273     DEFINE_PROP_END_OF_LIST(),
1274 };
1275 
1276 static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1277 {
1278     SDHCIState *s = PCI_SDHCI(dev);
1279     dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
1280     dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
1281     sdhci_initfn(s);
1282     s->buf_maxsz = sdhci_get_fifolen(s);
1283     s->fifo_buffer = g_malloc0(s->buf_maxsz);
1284     s->irq = pci_allocate_irq(dev);
1285     memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1286             SDHC_REGISTERS_MAP_SIZE);
1287     pci_register_bar(dev, 0, 0, &s->iomem);
1288 }
1289 
1290 static void sdhci_pci_exit(PCIDevice *dev)
1291 {
1292     SDHCIState *s = PCI_SDHCI(dev);
1293     sdhci_uninitfn(s);
1294 }
1295 
1296 static void sdhci_pci_class_init(ObjectClass *klass, void *data)
1297 {
1298     DeviceClass *dc = DEVICE_CLASS(klass);
1299     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1300 
1301     k->realize = sdhci_pci_realize;
1302     k->exit = sdhci_pci_exit;
1303     k->vendor_id = PCI_VENDOR_ID_REDHAT;
1304     k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
1305     k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1306     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1307     dc->vmsd = &sdhci_vmstate;
1308     dc->props = sdhci_pci_properties;
1309     dc->reset = sdhci_poweron_reset;
1310 }
1311 
1312 static const TypeInfo sdhci_pci_info = {
1313     .name = TYPE_PCI_SDHCI,
1314     .parent = TYPE_PCI_DEVICE,
1315     .instance_size = sizeof(SDHCIState),
1316     .class_init = sdhci_pci_class_init,
1317 };
1318 
1319 static Property sdhci_sysbus_properties[] = {
1320     DEFINE_PROP_UINT32("capareg", SDHCIState, capareg,
1321             SDHC_CAPAB_REG_DEFAULT),
1322     DEFINE_PROP_UINT32("maxcurr", SDHCIState, maxcurr, 0),
1323     DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
1324                      false),
1325     DEFINE_PROP_END_OF_LIST(),
1326 };
1327 
1328 static void sdhci_sysbus_init(Object *obj)
1329 {
1330     SDHCIState *s = SYSBUS_SDHCI(obj);
1331 
1332     sdhci_initfn(s);
1333 }
1334 
1335 static void sdhci_sysbus_finalize(Object *obj)
1336 {
1337     SDHCIState *s = SYSBUS_SDHCI(obj);
1338     sdhci_uninitfn(s);
1339 }
1340 
1341 static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1342 {
1343     SDHCIState *s = SYSBUS_SDHCI(dev);
1344     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1345 
1346     s->buf_maxsz = sdhci_get_fifolen(s);
1347     s->fifo_buffer = g_malloc0(s->buf_maxsz);
1348     sysbus_init_irq(sbd, &s->irq);
1349     memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1350             SDHC_REGISTERS_MAP_SIZE);
1351     sysbus_init_mmio(sbd, &s->iomem);
1352 }
1353 
1354 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1355 {
1356     DeviceClass *dc = DEVICE_CLASS(klass);
1357 
1358     dc->vmsd = &sdhci_vmstate;
1359     dc->props = sdhci_sysbus_properties;
1360     dc->realize = sdhci_sysbus_realize;
1361     dc->reset = sdhci_poweron_reset;
1362 }
1363 
1364 static const TypeInfo sdhci_sysbus_info = {
1365     .name = TYPE_SYSBUS_SDHCI,
1366     .parent = TYPE_SYS_BUS_DEVICE,
1367     .instance_size = sizeof(SDHCIState),
1368     .instance_init = sdhci_sysbus_init,
1369     .instance_finalize = sdhci_sysbus_finalize,
1370     .class_init = sdhci_sysbus_class_init,
1371 };
1372 
1373 static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1374 {
1375     SDBusClass *sbc = SD_BUS_CLASS(klass);
1376 
1377     sbc->set_inserted = sdhci_set_inserted;
1378     sbc->set_readonly = sdhci_set_readonly;
1379 }
1380 
1381 static const TypeInfo sdhci_bus_info = {
1382     .name = TYPE_SDHCI_BUS,
1383     .parent = TYPE_SD_BUS,
1384     .instance_size = sizeof(SDBus),
1385     .class_init = sdhci_bus_class_init,
1386 };
1387 
1388 static void sdhci_register_types(void)
1389 {
1390     type_register_static(&sdhci_pci_info);
1391     type_register_static(&sdhci_sysbus_info);
1392     type_register_static(&sdhci_bus_info);
1393 }
1394 
1395 type_init(sdhci_register_types)
1396